RESULTADOS DE EXERCÍCIOS DE AULAS ANTERIORES

Postulado de Koch: inoculação de vírus

Meio de cultura BDA e esterilização

Resultado da inoculação de vírus em abobrinha

folhas de abobrinha c/ vírus

macerar o tecido foliar em tampão

polvilhar carborundo nas folhas das plantas sadias de abobrinha

colocar a planta em condições adequadas

lavar a folha com água molhar algodão na suspensão e passar sobre a folhas (inoculação por microferimentos)

Exercício: meio de cultura e esterilização

BDA (Batata-Dextrose-Ágar)

- Batata -----200 g/L
- Dextrose (glicose) ----- 20 g/L
- Ágar ----- 15 g/L

meio complexo e não seletivo

- Pesar 1,2 g de BDA
- Colocar em Erlemeyer (30 mL H₂O) e fechar com tampão de algodão
- Cobrir o bocal do Erlemeyer com jornal/papel e anotar o número do balcão e turma
- Colocar na autoclave para esterilizar
- Após esterilização, verter em 2 placas/bancada (câmara asséptica ou bancada)

CONTROLE DE MICRORGANISMOS

TERMINOLOGIA

- Sepsia refere-se a contaminação microbiana
- Assepsia é a ausência de contaminação significante
- o Biocida/germicida: Mata microrganismos
- Bacteriostático: Inibe, mão mata, microrganismos

Tabela 7.1	Terminologia relacionada ao controle do crescimento microbiano	
	Definição	Comentários
Esterilização	Destruição ou remoção de todas as formas de vida microbiana, incluindo os endosporos, possivelmente com exceção dos príons.	Normalmente realizada com vapor sob pressão ou um gás esterilizante, como o óxido de etileno.
Esterilização comercial	Tratamento de calor suficiente para matar os endosporos de Clostridium botulinum em alimentos enlatados.	Os endosporos mais resistentes de bactérias termófilas podem sobreviver, mas não irão germinar e crescer sob condições normais de armazenamento.
Desinfecção	Destruição de patógenos na forma vegetativa.	Pode fazer uso de métodos físicos ou químicos.
Antissepsia	Destruição de patógenos na forma vegetativa em tecidos vivos.	O tratamento é quase sempre por antimicrobianos químicos.
Degermina- ção	Remoção de micro-organismos de uma área limitada, como a pele ao redor do local da aplicação de uma injeção.	Basicamente uma remoção mecânica feita com algodão embebido em álcool.
Sanitização	Tratamento destinado a reduzir as contagens microbianas nos utensílios alimentares a níveis seguros de saúde pública.	Pode ser feita por meio de lavagem em altas temperaturas ou imersão em um desinfetante químico.

AGENTES MICROBIOCIDAS OU MICROBIOSTÁTICOS

Físicos: Temperatura – calor úmido, seco, incineração

Filtração

Radiação – UV, ionizantes

Pressão Osmótica

Químicos: Antissépticos, desinfetantes

Antibióticos, Fungicidas, Viricidas

Biológicos: Antagonistas (antibiose)

Competidores

Predadores

Parasitas

Temperatura

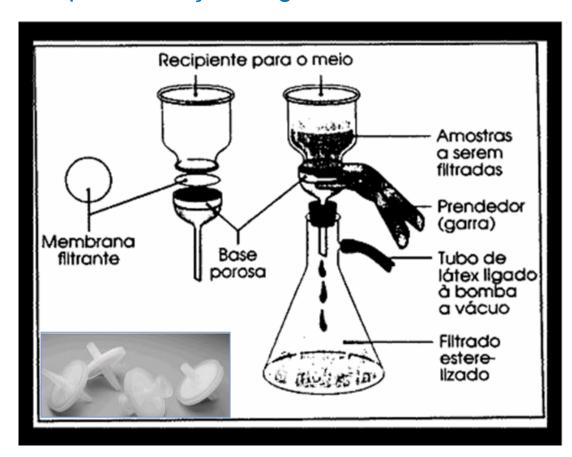
Temperatura elevada – denaturação de proteínas

```
com pressão (121,6°C a 1 atm, ≈ 15-30min)

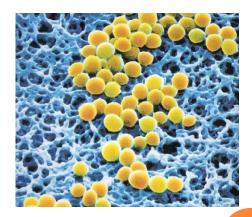
sem pressão (100°C, ≈ 10 min; não esterilizante)

seco (170-180°C por 2h)

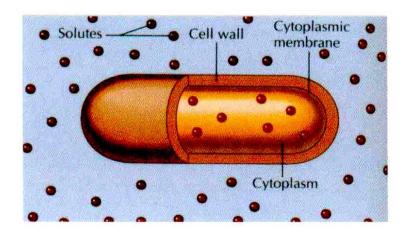
incineração (centenas de °C por segundos)
```

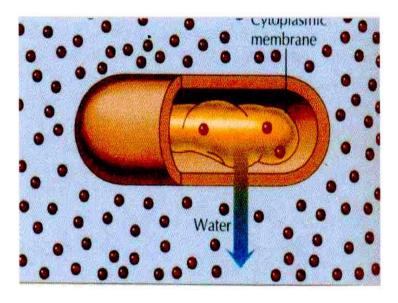

Baixa temperatura (microbiostático!)

Congelamento - temp. < 0°C Nitrogênio líquido - temp < -196°C


FILTRAÇÃO

Doméstico


Milipore -Soluções e gases termolábeis

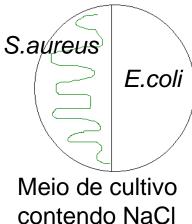


Pressão Osmótica

Meio isotônico

Meio hipertônico

Açúcar




Pressão Osmótica

Alguns microrganismos podem viver em concentrações elevadas de sal. Esses microrganismos são chamados de **halófilos**.

Outros podem viver em concentrações elevadas de açúcar e são os sacarófilos.

Como regra geral, concentrações de 10-15% de sal e 50-70% de açúcar inibem o crescimento de grande maioria dos microrganismos.

contendo Glicose

RADIAÇÃO

Ionizante ou não-ionizante

Raios gama e X 0,5 a 40 nm Alto poder de penetração Desloca e- produz íons Danifica DNA

Luz U.V. <u>~</u>200 nm Baixa penetração Absorvida por bases DNA

Purina e pirimidina

FIGURE 12.16 Ultraviolet light irradiates a thin layer of water, killing harmful organisms. (Flip Chalfant/The Image Bank/Getty)

AGENTES MICROBIOCIDAS OU MICROBIOSTÁTICOS

Físicos: Temperatura – calor úmido, seco, incineração

Filtração

Radiação – UV, ionizantes, sonicação

Pressão Osmótica

Químicos: Antissépticos, desinfetantes

Antibióticos, Fungicidas, Viricidas

Biológicos: Antagonistas (antibiose)

Competidores

Predadores

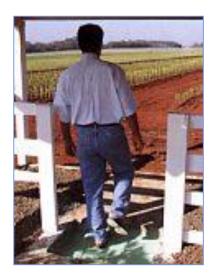
Parasitas

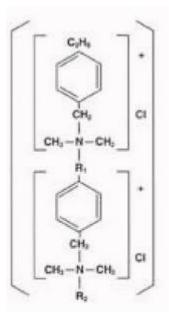
Principais grupos de agentes antisépticos e desinfetantes

Álcoois – denaturam proteínas e dissolvem lipídios da membrana

Compostos clorados – poderoso agente oxidante (inativação proteínas e outras substâncias)

Exemplos: Hipocloritos Ca(OCl₂) e NaOCl 1% - higiene pessoal 5-12% - desinfestantes


Detergentes – afetam permeabilidade da membrana celular


Metais pesados (prata e cobre) – inativam proteínas

Sais quaternários de amônio

Aplicação de fungicidas

AGENTES MICROBIOCIDAS OU MICROBIOSTÁTICOS

Físicos: Temperatura – calor úmido, seco, incineração

Filtração

Radiação – UV, ionizantes, sonicação

Pressão Osmótica

Químicos: Antissépticos, desinfetantes

Antibióticos, Fungicidas, Viricidas

Biológicos: Parasitas

Antibiose

Competidores


Predadores

PARASITISMO

"Microrganismo estabelece relações com seu hospedeiro e se nutre de suas estruturas vegetativas e/ou reprodutivas"

Controle biológico de *Rhizoctonia solani* pelo fungo *Trichoderma harzianum*

Trichoderma sp. envolvendo hifas de *Rhizopus* sp

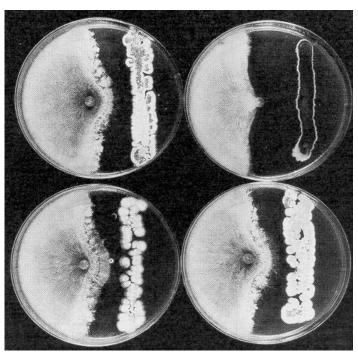
Sclerotinia sclerotiorum colonizada por Trichoderma sp.

PREDAÇÃO

"Interação entre dois organismos,

na qual um se alimenta do outro (ingestão) "

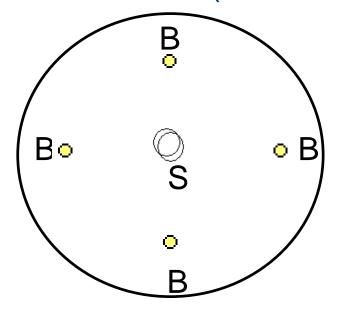
Ex: nematóides se alimentam de bactérias no solo

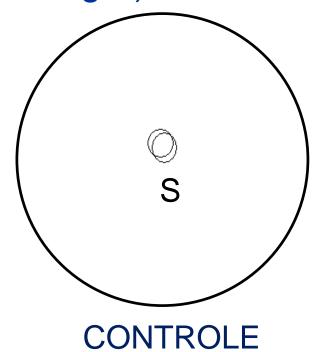

COMPETIÇÃO

"Interação entre dois ou mais organismos que concorrem pelos mesmos fatores do ambiente - alimentos, espaço, oxigênio..."

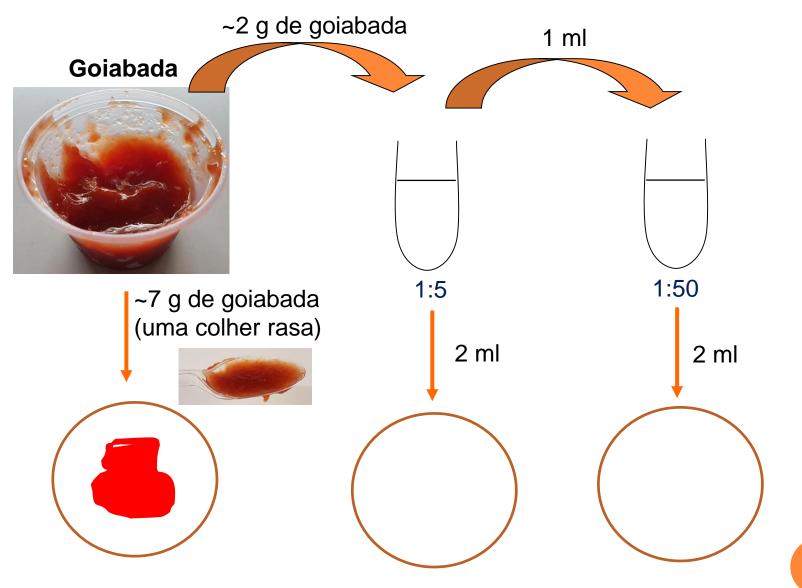
ANTIBIOSE

"Interação entre organismos, na qual um ou mais metabólitos produzidos pelo antagonista tem efeito negativo sobre o outro microrganismo, resultando na inibição do crescimento."


Antibiose entre bactérias isoladas do solo e *Rhizoctonia solani*

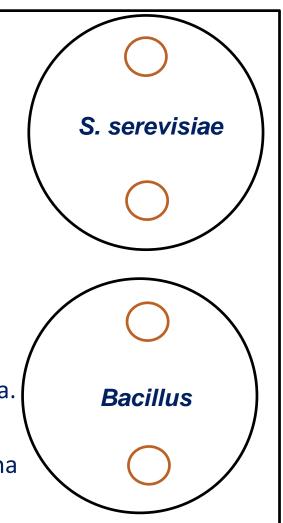


Antibióticos produzidos por antagonistas bacterianos


EXERCÍCIO PRÁTICO 1: ANTIBIOSE

- o Bacillus sp. (B)
- Sclerotinia sp.(S)
- Meio de cultura: BDA (batata dextrose ágar)

Exercício prático 2: Pressão Osmótica


3 placas de Petri/bancada

EXERCÍCIO PRÁTICO 3: ANTIBIÓTICO

- Saccharomyces serevisiae
- Bacillus sp (Gram +)
- BDA: duas placas por bancada
- Discos de papel de filtro
- Tubos de eppendorf com penicilina: 0,1 g/ml
- Alça de Drigalski

PROCEDIMENTO:

- 1) Espalhar 1 ml de *S. serevisiae* em uma placa.
- 2) Espalhar 1 ml de *Bacillus* em outra placa.
- 3) Mergulhar os discos na solução de penicilina
- 4) Colocar dois discos por placa com BDA
- 5) CONTROLE: uma placa com cada microrganismo por turma

