On-growing facilities in aquaculture: welfare implications

Baeado no material de Ian Mayer Norwegian School of Veterinary Science

Norwegian School of Veterinary Science

On-growing facilities in aquaculture: welfare implications

- Different types of aquaculture systems
- + sea cage aquaculture in Norway salmon farming
- + Fish welfare: what are the major concerns

Norwegian School of Veterinary Science

Aquaculture systems

There are four basic types of aquaculture systems:

- ①ponds
- 2 raceways
- 3 recirculatory systems
- 4 tanks and cages

1

Aquaculture systems 1. Ponds

Fish pond in Thailand

Fish pond in Thailand

Pond production

Shrimp ponds, Vietnam

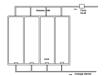
Catfish ponds, Vietnam

Norwegian School of Veterinary Science

Pond production of catfish (*Pangasius hypophthalmus*) in the Mekong delta, Vietnam

In 2009, Vietnam produced ca. 1.8 million mt of catfish, and exported 650,000 mt of catfish fillets.

Fish ponds: environmental impacts


Rice paddy, Vietnam

Mangroves, Mekong river, Vietnam

- One of the major environmental issue surrounding the construction of ponds for fish/shrimp production is the loss of coastal zone habitat.
- There is particular concern over the loss of mangrove habitat for the construction of shrimp ponds.
- The construction of shrimp ponds has resulted in the loss of 3.7 million acres of coastal zone habitat, mostly mangroves.

Aquaculture systems 2. Raceways

Norwegian School of Veterinary Science

Raceways are commonly used for trout production

- Generally 1-2 m deep, 2-6 m wide and 15-40 m long
- Water entering the raceway must be fresh or aerated (oxygen levels must be > 60% saturation).
- Major environmental concern is the large volume of water used.

Raceways can also be used for mariculture

Abalone farming in Taiwan

Diagram showing the principles of a recirculation system

Recirculatory system used for sea bream production

Norwegian School of Veterinary Science

Sea cage technology – motivation for new design

- Reduce the probability of escaped fish
 - tearing of nets during operation
 - damage to net cage due to abrasion from cage collar or weights
 - boat damage (propeller)
 - damage during severe weather
- New species, e.g. Atlantic cod
- Simplified production
- Easy operation
- Increased effective volume in current
- □ Improved fish welfare?

Norwegian School of Veterinary Science

A new alternative - offshore cage systems

Offshore cage designs must provide the following:

- provide a reasonably stable cage shape to avoid stressing the stock, and to provide a stable working environment.
- provide adequate water exchange to satisfy metabolic requirements of the stock and to remove wastes from the sea cage.
- be able to absorb or deflect environmental forces so as to maintain the structural soundness of the system.
- provide an efficient and safe working environment, for routine husbandry, and where
 equipment and materials (feed and harvested fish) can be handled.
- maintain position, and provide a secure location, free from navigational hazards, etc.
- Keep capital and operating costs as low as possible.

Norwegian School of Veterinary Science

Offshore cage systems

Three basic structural types: Floating cages - flexible structures

- rigid structures

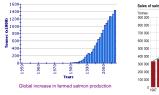
Semi-submersible cages - flexible structures - rigid structures

Submersible cages

Norwegian School of Veterinary Science

Floating cages Dunlop/Bridgestone cages are the most widely used open sea cage worldwide.

Hexagonal cage


Octagonal cage

- Often linked together in rafts of 4 to 8 cages.
- Very large volumes possible.
- One Bridgestone sea cage used for salmon farming off the west coast of Ireland is 50 m in diameter, over 20 m deep and with a volume of 40,000 m³

Norwegian School of Veterinary Science

Intensive sea cage production of Atlantic salmon

NOK million 18 000 NOK million Tonnes

- Norway produced close to 800,000 mt of salmon in 2009.
 This represents close to 50% of global farmed salmon production.
 Salmon farming is Norway's third largest export industry.

v to loc ary Science

Global increase in aquaculture

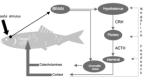
- 0 ian School of Veterinary Science

Impact of sea cage production on fish welfare

- General health and well being of fish good welfare
- Exposure to both acute and chronic stress

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations


- 1. Acute stress
- 2. Chronic stress
- 3. Stocking densities
- 4. Inability to express normal behaviour
- 5. Disease and parasites
- Inappropriate feeding regimes 6.
- 7. Slaughter methods

Sea cage farming of salmon Welfare considerations

1. Acute Stress

- Acute stress due to a variety of production procedures. - handling and grading
 - vaccination - transportation - sea lice treatment

Endocrine stress response in fish.

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

2. Chronic Stress

Consequences of chronic stress: impaired growth impaired reproduction Immunosuppression Environmental factors that can induce chronic stress include: ≻Temperature ≻Low oxygen ≻High CO₂, ammonia

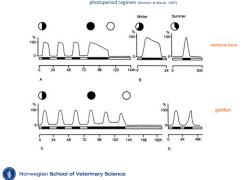
≻photoperiod

Norwegian School of Veterinary Science

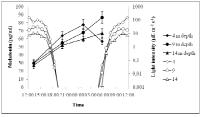
Chronic stress - environmental factors Photoperiod

Photoperiod manipulation is now commonly used in aquaculture

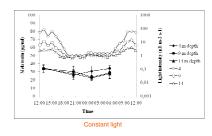
- + inhibit or delay early sexual maturation
- increase somatic growth
- + advance or delay spawning



Chronic stress - environmental factors
Photoperiod



Norwegian School of Veterinary Science


Light intensity and plasma melatonin levels in Atlantic cod kept at three different depths in a sea cage (skulstad et al., submitted)

Natural light regime

Light intensity and plasma melatonin levels in Atlantic cod kept at three different depths in a sea cage (skulstad et al., submitted)

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

3. Inappropriate stocking densities

Stocking density will depend on a variety of biological and environmental factors, including - species - species - water quality For salmonids, common stocking densities are: • Rainbow trout 20 – 120 kg m⁻³ • Atlantic salmon, smolts 50 kg m⁻³

Atlantic salmon, sea cages
 Atlantic salmon, organic
 10 kg m⁻³

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

4. Inability to express normal behaviour

The Five Domains of Welfare

Domain 4. Freedom to express normal behaviour.

- Animals should have sufficient space, proper facilities and where appropriate, the company of the animal's own kind.
- Fish should have the freedom to exhibit their normal repertoire of behaviours.

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

4. Inability to express normal behaviour

- New species
- Atlantic cod displays different behaviour compared to salmon
- Cod are farmed in the same way as salmon with no thought of its different behaviour.

Atlantic cod, Gadus morhua

Norwegian School of Veterinary Science

Cod farming in Norway

escape behaviour

Sea cage farming of salmon Welfare considerations

5. Disease and parasites

- Infectious salmon anaemia (ISA)
 ISA is a relatively new viral disease, first observed in salmon in 1984.
 ISA devastated the Chilean salmon industry in 2008-09.
 Sea lice

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

6. Nutritional deficiencies

Nutritional deficiencies (poor diets) can result in a number of developmental and structural deformities, including:

- Skeletal deformities
- ♦ Cataracts
- ♦ Fin rot
- Heart defects (heart hypertrophy)
- Impaired digestive physiology

Norwegian School of Veterinary Science

Skeletal deformities

- Most intensively farmed fish, including salmon, raised under intensive culture conditions are prone to show various deformities, especially spinal deformities.
- Skeletal deformities are caused by a combination of genetic disposition, malnutrition (especially during the fast-growth periods), and environmental factors (especially temperature).

Skeletal deformities shown in farmed cod.

Deformities shown in farmed flatfish - halibut

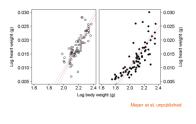
Norwegian School of Veterinary Science

Cataracts

- High instances of this condition have been found since the mid-1990s. In a 1998 study conducted on Norwegian salmon farms, it was found that 80% of all salmon showed some degree of lens opacities, with 30% of them serious.
- □ Cataracts cost the Norwegian salmon farming cost the industry up to €55 million per year.
- Advanced stages of cataract can cause bleeding, damage to the cornea, as well as blindness.

Fin erosion (fin rot)

Dover sole


rainbow trout

- Nutritional deficiencies
- Nupping and aggressive behaviour
 Abrasion tank surfaces and fish
 Sunburn exposure to *uv* light
- Water quality
 stress

0

Heart deformities

- Farmed salmon show a number of heart deformities
 These salmon are more prone to stress both a production and welfare issue
- . Heart hypertrophy also seen in other farmed species, such as Atlantic cod.

Norwegian School of Veterinary Science

7. Slaughter methods

Highly automated slaughter methods.

Slaughter methods for farmed salmon

- percussion stunning/spiking
- carbon dioxide narcosis
- electrical stunning

Norwegian School of Veterinary Science

Sea cage farming of salmon Welfare considerations

Conclusions

- Aquaculture is the fastest growing sector of animal production, with an annual growth rate of 8%.
- The intensive production of high value species, mostly carnivorous, by means of sea cage farming is growing rapidly.
- □ Salmon farming methods are becoming more intensive, and dominated by a small number of multinational companies.
- There is a growing demand that more attention should be placed on addressing welfare issues in intensive aquaculture.
- □ In addition, the environmental impacts of intensive sea cage aquaculture should also be recognised, and addressed.

Norwegian School of Veterinary Science

Environmental impacts of intensive aquaculture

Norwegian School of Veterinary Science

Thank you