MAE0221 - Probabilidade Quarta Lista de Exercícios

1. Se X_1 e X_2 são variáveis aleatórias independentes e identicamente distribuidas com

$$P(X_1 = 1) = P(X_1 = -1) = \frac{1}{2}$$

, então X_1 e $X_1.X_2$ são independentes?

- 2. Considere uma amostra sem reposição, de tamanho 2 retirada de uma urna contendo 3 bolas numeradas 1, 2 e 3. Sejam:
 - X: o número da primeira bola retirada
 - Y: o maior dos dois números retirados.
 - A) Encontrar a função de probabilidade conjunta de (X,Y)
 - B) Encontrar P(X = 1|Y = 3).
 - C) Encontrar Cov(X, Y).
- 3. Sejam X e Y variáveis aleatórias independentes e identicamente distribuidas com distribuição geométrica de parâmetro p. Encontrar P(X = Y), $P(X \ge Y)$.
- 4. Considere o lançamento de dois tetraedos com lados numerados de 1 a 4. Sejam Y_1 o menor dos números e Y_2 o maior dos números observados.
 - A) Qual a função de probabilidade conjunta de (Y_1,Y_2) ?
 - B) Encontre $P(Y_1 > 1, Y_2 > 1)$
 - C) Encontrar a distribuição condicional de $Y_2|Y_1$) para cada um dos possíveis valores de Y_1 .
 - D) Encontrar o coeficiente de correlação linear entre Y_1 e Y_2 .
- 5. Sejam X e Y variáveis aleatórias independentes e identicamente distribuidas com distribuição uniforme no conjunto $\{0, 1, 2, ..., N\}$.
 - A) Obtenha $P(X \geq Y)$ e P(X = Y).
 - B) Encontre as funções de probabilidades de $M = \min\{X, Y\}$ e de |Y X|.
- 6. Suponha que uma caixa contenha r bolas numerads de 1 a r. Seleciona-se, sem reposição, uma amostra aleatória de tamanho n. Seja Y o maior número observado na amostra e Z o menor.
 - Determine $P(Y \leq y)$ e $P(Z \geq z)$.
- 7. Seja X uma varável aleatória com distribuição uniforme no interval (0,1). Seja Y uma variável aleatória com

$$P(Y = y|X = x) = \binom{n}{y} x^y (1-x)^{n-y}, \quad y = 0, 1, ..., n.$$

Encontre E[Y]. Qual a função de distribuição de Y?

- 8. Três moedas justas são lançadas.Sejam
 - X: O número de cara das duas primeiras moedas;
 - Y: O número de coroas das duas últimas moedas.
 - A) Qual a distribuição conjunta de (X, Y)?
 - B) Encontrar a função de probabilidade da varável aleatória (Y|X=1). Qual sua função de distribuição?
 - C) Calcular Cov(X, Y).

- 9. Seja X uma variável aleatória com função de probabilidade $P(X=1)=\frac{1}{3}$ e $P(X=2)=\frac{2}{3}$. Considere a vari ' avel aleatória condicional (Y|X=x) com distribuição binomial de parâmetros x e $\frac{1}{2}$.
 - A) Qual é a E[Y] e a Var(Y)?
 - b) Qual é a distribuição conjunta de (X, Y)?
- 10. Seja Y uma variável aleatória com distribuição de Poisson com parâmetro λ . Considere a varável aleatória condicional (X|Y=y) com distribuição binomial de parâmetros y e p. Encontre a distribuição de X.
- 11. Seja X e Y variáveis aleatórias independentes e identicamente distribuidas com $P(X=k)=p(1-p)^k,\ k=0,1,2,...$ Qual a função de probabilidade da variável aleatória $Z=\frac{X}{X+Y}$? (Definir $\frac{X}{X+Y}=0$ se X+Y=0).
- 12. Se $X_1, X_2, ..., X_k$ são variáveis aleatórias com distribuições de Poisson com parâmetros $\lambda_1, \lambda_2, ..., \lambda_k$, respectivamente. Mostre que a distribuição condicional de $(X_1|X_1+X_2+...+X_k$ tem distribuição binomial.
- 13. A) Se $X_1, X_2, ..., X_n$ são variáveis aleatórias independentes e identicamente distribuição geométrica, qual a distribuição de $X_1 + X_2 + ... + X_n$?
 - B) Se $X_1, X_2, ..., X_n$ são variáveis aleatórias independentes com distribuições de Poisson de parâmetros $\lambda_1, \lambda_2, ..., \lambda_n$, respectivamente, qual a distribuição de $X_1 + X_2 + ... + X_n$?
 - C)) Se $X_1, X_2, ..., X_n$ são variáveis aleatórias independentes com distribuições binomiais negativas de parâmetros $r_1, r_2, ..., r_n$ e p, respectivamente, qual a distribuição de $X_1 + X_2 + ... + X_n$?