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Robust Controllers Enhanced With Design and
Implementation Processes

Vilma A. Oliveira, Member, IEEE, Eduardo S. Tognetti, and Daniel Siqueira

Abstract—In this paper, instructional material on the design
of robust controllers that applies to introductory graduate or
advanced undergraduate courses on control is provided. The main
objective is the presentation of key concepts and interpretations
that help students learn robust control design. The use of recently
developed techniques in robust control such as , analysis,
and synthesis is explored. Emphasis is given to the modeling of the
robust control problem with the system requirements described
in a unified approach using weighting functions and linear frac-
tional transformations (LFTs). Also, the results of a conventional
lead–lag are included to reinforce the concept of robustness. The
students should understand the basics of robust control using
the MATLAB/Simulink platform and a hardware-in-the-loop
experiment with a magnetic levitation system, which is considered
a good plant for analysis and control design since it is a nonlinear
unstable plant with practical use in high-speed transportation
and magnetic bearings. The hardware-in-the-loop experiments
are suitable for assessment during the final two semesters of
engineering courses and are useful to further develop the students’
skills in control engineering. The control algorithms are evaluated
in the LabVIEW environment, which introduces the students to
industrial platforms.

Index Terms—Control design, control education, robust control,
stability and performance robustness, synthesis.

I. INTRODUCTION

MANY successful applications of robust control have been
reported in the literature, and several control textbooks

now include robust control techniques [1]–[3]. Because robust
control is highly mathematical, one finds quite a challenge to
balance theory and practice in undergraduate courses. In this
paper, instructional material enhancing class and laboratory
work with MATLAB and LabVIEW, showing the applica-
bility of advanced control techniques, is provided. A magnetic
levitation (maglev) device that is commonly encountered in
undergraduate laboratories is used. Recently, several papers
on education using a maglev device for enhancing control
courses have appeared [4]–[6]. In these papers, the effective
usage of a real-time digital control environment with a hard-
ware-in-the-loop maglev device for reinforcement of modeling
and control education is demonstrated.

In this paper, the focus is on robust control analysis and de-
sign. Design and implementation issues of robust controllers
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and the use of analysis to check the stability and performance
robustness of the solutions are addressed. To alleviate the math-
ematics involved, the concepts of robust control are introduced
with the help of block diagrams and transfer functions. The gen-
eral control structure and analysis of solutions with different
controllers lead to several class activities, and the student is ex-
pected to develop MATLAB programs and Simulink diagrams
following the guidelines included. To facilitate the prompt re-
production of the class activities developed, the main MATLAB
commands and Simulink diagrams are provided.

The paper is organized as follows. In Section II, stability and
performance concepts for a typical control system structure are
presented. In Section III, some of the mathematics involved in
the design of robust controllers are presented in the framework
of linear fractional transformations (LFTs), with the general
block structure for robust control introduced step by step using
the usual system descriptions. Section IV presents the system
equations and linearized model about an operation point. The
design steps, which include the main MATLAB functions and
Simulink diagrams developed, are provided in Section V. In
Section VI, class assignments are provided, and in Section VII,
the digital implementation setup and typical experimental re-
sults are given. Finally, some concluding remarks are included
in Section VIII.

II. STABILITY AND PERFORMANCE

In this section, the key concepts in robust control to be learned
by the students are summarized. The students are expected to
review the subjects of singular value decomposition and matrix
norms. From the feedback system shown in Fig. 1(a), one ob-
tains the relations , , , which
yield the feedback transfer matrices from to each of the out-
puts , and , respectively, with

(1)

where is the nominal plant and the controller. The
matrices and are referred to as sensitivity and complemen-
tary sensitivity matrices, respectively. Since , the sensi-
tivity matrix determines the steady-state behavior of the feed-
back system. The relations and obtained
from Fig. 1(a) imply that the sensitivity matrix also deter-
mines the disturbance attenuation. Therefore, to reflect distur-
bance attenuation and steady-state specifications, one usually
specifies an upper bound on the norm of , that is

(2)
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Fig. 1. (a) Typical diagram of a feedback control system and (b) multiplicative unstructured uncertainty description.

where is the maximum singular value of , and
is a bound on which reflects the desired distur-

bance attenuation for each frequency . Thus, good disturbance
rejection would require the satisfaction of (2), particularly in
the low-frequency range, where and are usually significant.
If , then , and from (2) one ob-
tains with the minimum singular value
which can be defined in terms of the maximum singular value
of the inverse of the matrix by .
The transfer function from input to control is given by

. Hence, a constraint on the control can
be introduced with a bound on specified by

(3)

where is a weighing function to be specified.

A. Perturbation Model

Physical systems typically undergo a variety of perturbations.
Uncertainty in the mathematical model of the system is, in gen-
eral, described as a perturbation to the nominal system. The un-
certainty is termed unstructured when it is only known in terms
of upper and lower bounds and structured when its detailed
model is known. For a set of perturbations satisfying the
infinity norm , the perturbed plant may be modeled
in terms of a multiplicative unstructured uncertainty, in respect
to the nominal plant , as follows:

(4)

with stable transfer functions that characterize the fre-
quency structure of the uncertainty. Fig. 1(b) illustrates this
uncertainty modeling approach. Practical engineering systems,
in general, operate under perturbations so that a closed-loop
stability robustness test is needed [7]. This test should indicate
the worse case operation associated with typical modeled
perturbations. If the system in Fig. 1(b) with is stable,
the size of the smallest stable for which the system
becomes unstable is thus given by

(5)

The result on stability robustness (5) is given in terms of the sin-
gular values of the multiplicative perturbation and complemen-
tary sensitivity matrices [8]. A smaller corresponds

to a larger minimum for the destabilizing multiplicative uncer-
tainty and hence to a larger stability margin. As a consequence,
usually an upper bound on is specified as follows:

(6)

where is a weighting function used to tailor the system
stability condition. Thus, good robustness and noise rejection
would require the satisfaction of (6), particularly in the high-fre-
quency range where the noise and modeling errors are usually
significant. If then , and from (6) one
obtains .

The understanding of the effects of the weighting functions
on the control system is crucial for modeling the desired spec-
ifications. From Figs. 1(a) and (2), (3), and (6), a typical inter-
connection model for design is illustrated in Fig. 2(a), wherein,
the weighting functions , , and reflect the steady-state
specified error and the disturbance attenuation, controller input
constraints and stability condition, respectively, in the following
way:

1) weights the system sensitivity reflecting the perfor-
mance specifications;

2) weights reflecting the control input constraints;
3) weights the complementary sensitivity and tailors

the stability condition.
In Fig. 2, defines an augmented plant with and in-

puts and and outputs. The output is the vector of regulated
variables. Here, and correspond to the reference command

and error of the typical feedback diagram of Fig. 1(a), re-
spectively. The input–output mapping of the system in Fig. 2 is
described by

(7)

(8)

Substituting in (7), the closed-loop transfer matrix
from to can be found as

(9)

In the literature, the mapping in (9) is called an LFT. The no-
tation usual for an LFT is , with the superscript “ ”
denoting lower LFT. This designation is associated to the po-
sition of the feedback loop in respect to the direct loop in the
two-block structure of the system.
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Fig. 2. (a) Augmented plant with weighting functions and (b) simplified two-block diagram.

Fig. 3. General block andM �� structures.

III. ANALYSIS AND SYNTHESIS

In this section, an overview of the main results on robustness
analysis and design, including the key concepts and interpre-
tations to facilitate the understanding of the main tools available,
are presented.

A. General Control Design Structure

To model general systems, one should consider the connected
system in a three-block structure form shown in Fig. 3(a),
wherein an uncertainty block is included. Using the LFT

, the connected system in the three-block form
can be reduced to the two-block structure shown in
Fig. 3(b), which can be described as follows:

(10)

where the superscript “ ” denotes upper LFT. From (10) the
transfer matrix from the output vector to reference or distur-
bance is obtained as . The mapping in
Fig. 3 differs from mapping in Fig. 2 in the number of inputs
and outputs since input and output are added to model the
system perturbation.

For more general perturbation descriptions, the analysis for
the robustness problem can be formulated in a unified frame-
work using LFT and the structured singular value (SSV). One

Fig. 4. Stability analysis.

usually considers the perturbation with diagonal and block-di-
agonal terms

where subscripts and are the number of scalar and full
blocks, respectively. A norm-bounded subset of is defined
as .

B. Stability Robustness

The stability of a system subject to perturbation is deter-
mined by analyzing the feedback system in Fig. 3(b). Assuming
the nominal feedback system stable, any unstable poles are the
solutions of

(11)

Stability robustness is evaluated by the smallest destabilizing
perturbation that results in a solution of (11) on the imaginary
axis. The smallest perturbation is defined in terms of
as follows:

such that

A measure of the smallest destabilizing perturbation is
given in terms of the SSV and is denoted . The measure
can be seen as a stability margin with respect to the uncertainty

. A formal definition can be found in [7].
The well-known small-gain theorem establishes that for

internally stable and for all admissible perturbations
, the feedback system in Fig. 3 is internally stable if,

and only if, [9]. As is stable,
the instability can only be caused by the perturbation so that
the analysis of stability can be carried out with Fig. 4.
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C. Performance Robustness

Stability is the basic requirement of closed-loop control sys-
tems, but suitability of the controller is also dependent on the
meeting of the specified performance. For the typical intercon-
nection model shown in Fig. 2, the transfer matrix from to
denoted is obtained as follows:

(12)

From (2), (3), and (6), one can easily see that the performance
specifications can be described using upper bounds given in
terms of singular values of the transfer matrices in (12). There-
fore, one usually specifies the design requirements in terms of
the infinity norm

(13)

In (13), the motivation to call the transfer matrix of interest
is the connection between robust control and the disturbance at-
tenuation problem in which stands for the disturbance inputs.
A robustness performance condition guarantees the system per-
formance specifications for all admissible perturbations. A feed-
back system meets performance robustness if the system is kept
internally stable and condition (13) is satisfied for all admis-
sible perturbations. From the small-gain theorem and condition
(13), performance robustness conditions are thus established as
follows:

(14)

(15)

The robust performance problem can be formulated as an equiv-
alent robust stability problem by appending a virtual uncertainty
block to the augmented plant. This uncertainty block connects
the performance output to the augmented plant input. An im-
portant result for robustness analysis that relates performance
specifications and stability is given next.

Let the virtual perturbation block be , and let be a stable
transfer function. Also, let and . Thus, the
augmented uncertainty structure is as follows:

(16)

with .
The system in Fig. 5 meets the robustness conditions (14) and

(15) if, and only if, it is internally stable [9]. This result on robust
performance is crucial to understand why the performance crite-
rion is established in the same way as the stability criterion given
by the small-gain theorem. The analysis of stability and perfor-
mance margins are called analysis. A complete text in robust
control theory can be found, for example, in [7] and [10]. In the
latter, MATLAB functions for robust control are also indicated.

D. Design

The control design objective is to find a stabilizing controller
so that for all perturbations , the feedback system

is stable and satisfies , and the
synthesis goal is to minimize the peak of of the feedback

Fig. 5. LFT of the augmented perturbation system.

transfer function over all the stabilizing controllers

(17)

In the min–max problem (17), reducing the upper bound on
allows an increase in the smallest destabilizing perturba-

tion , thus increasing the robustness stability margin. The di-
rect computation of by a search over all is
not tractable. Therefore, an upper bound on is used in
the design of robust controllers. An upper bound on
is . However, this upper bound tends to be conservative.
To overcome this problem, a concept of diagonal scaling to
compute the upper bounds on was introduced in [11]. The
motivation for this approach is that if and are diagonal
matrices, but can be
made much smaller than . Therefore, as the nominal
closed-loop poles of the system in Fig. 3(b) are not affected by
a diagonal scaling, it follows that

(18)

This result leads to the following upper bound for where

(19)

with a set of scaling diagonal matrices with the property
for every and .

The minimizing problem (17) can be solved iteratively for
and . This procedure is called iteration. For a chosen

, the minimizing problem can be established as

(20)

where denotes the subspace of stable transfer matrices.

Algorithm 1 ( Iteration)

1) Establish an initial estimative of the scaling matrix
, ,

positive scalars.
2) Find stable scalar transfer functions , for

so that .
3) Let .
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Fig. 6. Experimental setup and maglev device.

4) Construct a space state model for system
.

5) Solve the optimization problem
and denote the controller found by .

6) Solve

(21)

and denote the new by .
7) Compare with the previous estimate and return to

Step 2) until convergence is reached.

IV. SYSTEM EQUATIONS

In this section, the maglev device and components are
described. The nonlinear equations are first presented to call
attention to a linear control design developed for a nonlinear
plant. The maglev device used is illustrated in Fig. 6, which
is composed of an electromagnet, a position detector, and a
power amplifier working with an analog pulsewidth modulation
(PWM) circuit of 5-kHz switching frequency and a transis-
torized dc chopper. The position detector consists of a 5-V
infrared emissor and a phototransistor MRD-300 receptor. The
objective of the control design is to keep the ball in a dynamic
balance around a desired operation point. The modeling of
the maglev system is based on its electrical, mechanical, and
electromechanical equations [12], [13]

(22)

where is the electromagnetic force; is the coil current;
is the ball position; is the applied voltage; and are coil
inductance and resistance, respectively; is a constant;

; and is the power amplifier gain. Let the maglev
system state variables be , , , and output
the sensor output. Thus, using (22), one obtains

(23)

where

with the position sensor gain and a constant which approx-
imates in the vicinity of . Now, linearizing (23) using the
first-order Taylor’s expansion around the equilibrium
for and , one obtains

(24)

where

with

(25)

The nominal linearized model of the maglev system described
above is used in the control design with 0.52 H,
21 , 2.1 V/V, V/m,
0.0045 m, 0.5773A, H,

m, and 0.00226 Kg. In the equilibrium , one
obtains . Here, one can recall the first method
of Lyapunov to analyze the stability of the equilibrium from the
linearized model (24).

V. DESIGN PROCEDURE

A. Parameter Uncertainty

Motivated by the use of magnetic systems in transportation
systems [14], the mass is subjected to variations. For a deviation
of 10% in the steel ball mass , one can write ,

with the real mass and the nominal mass. This
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mass perturbation is described in the augmented plant shown in
Fig. 8 by a LFT in . In fact, the term can be written as

(26)

Comparing (10) and (26), the corresponding LFT matrix de-
noted can be found as

(27)

The LFT can be represented in the form

B. Weighting Functions

The selection of the weighting functions for a specific design
problem is, in general, an involved task. The guidelines used to
choose the weighting functions , , and for the maglev
system are summarized below.

The function is bound for the sensitivity function and
reflects external disturbance rejection, a small steady-state error
with respect to the desired equilibrium, and plant variations tol-
erance. Considering that the bandwidth of the maglev system
ranges from 10 to 100 rad/s, to achieve a small steady-state error
an integral term approximated by a pole at is included
in . Now, the gain is set to 22.5 to achieve a steady-state gain
between the desired equilibrium and the error less than 20 dB,
thus yielding

(28)

The function is selected so that a peak requirement on the
complementary sensitivity function is satisfied to reduce the
system oscillations and to limit in the high-frequency range
for stability. However, these requirements are in conflict with

. After simulation and fine tuning, the cutoff frequency of
is set to 190 rad/s (above the closed-loop bandwidth frequency),
and its zero set to 20 rad/s so that the peak on is reduced, thus
yielding

(29)

Finally, the function should have a sufficiently large gain
to constraint the control input to an acceptable range to avoid the
saturation of the actuator. However, since a large gain can dete-
riorate the system performance, a tradeoff must be sought with
the function set so that the high-frequency noises are attenu-
ated as much as possible, and the speed of the system response is

Fig. 7. Specification requirements.

kept acceptable. Considering that the actuator input cannot ex-
ceed 10 V, after simulation and fine tuning, the weighting func-
tion is chosen as

(30)

C. Standard Controller

The standard control problem is formulated in terms of
finding an admissible controller , if there is one, so that, for a
given

(31)

The framework of control is very flexible and can in-
clude performance specifications, disturbance rejection, control
input limitations, and robustness requirements. To model the
performance and stability requirements, an augmented plant is
obtained from the nominal plant and weighting functions. To
consider a perturbed model for the plant in terms of a multi-
plicative uncertainty which reflects a variation in the mass , a
stable transfer function generated from (4) is used to adjust
the weighting function . Therefore, the stability condition for
the multiplicative uncertainty is also guaranteed,
and is altered to

(32)

The augmented plant used follows the structure shown in
Fig. 2 and is obtained with the function
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Fig. 8. Simulink block diagram to obtain the augmented P (Pmu.mdl).

and the controller is thus obtained via the following
functions:

where with Ac, Bc, Cc, Dc
the matrices of the controller found and the corresponding
closed-loop system. The controller found is of order 6. The func-
tion “ ” uses a two-Riccati algorithm [7]. Fig. 7 illustrates
the performance and stability bounds specified in terms of
and as in (2) and (6).

D. Controller

The same weighting functions used in the standard con-
troller are used in the design of the controller. The uncer-
tainty is described in terms of an LFT augmented with the ad-
dition of an input and output. The matrix for the control
problem modeling as in Fig. 8 describes the connected system

.
The solution of (20) provides the minimization of ,

, , and by the
small-gain theorem and the robust performance conditions. The

synthesis controller can be obtained with MATLAB using the
following functions [15]:

'

'

'

The file G_dk.m must contain

E. Analysis

A sixth-order controller with the smallest peak is
found in the seventh iteration for an order zero scaling
matrix . The analysis of the feedback system is carried out
with the following commands:

where input [ 1 0;1 3] is the size of the uncertainty and fictitious
uncertainty blocks and output LOGD gives the optimal diagonal
scaling D for .
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Fig. 9. Robust stability test (left) and robust performance test (right) for the three controllers.

The frequency response for the stability test is shown in Fig. 9
(left), which presents the obtained upper bound for . The peak
value occurs about 100 radians/second which is the most crit-
ical system frequency. The peak value of are 0.79, 0.261,
and 0.177 for the lead–lag, , and controllers, respectively.
These bounds indicate the corresponding intervals of for ro-
bust stability, which are ,

, and , respectively.
The frequency response for robust performance is shown in

Fig. 9 (right). This result shows that the uncertainty in the mass
deteriorates the performance about the frequency 100 rad/s.

However, the solutions given by the and controllers
achieve robust performance to uncertainty in the mass for

and . The
peak values of found in this case are 6.84, 0.325, and 0.273
for the lead–lag, , and controllers, respectively.

The maglev system could be stabilized with a lead con-
troller. However, to reduce the position steady-state error,
a second-order lead–lag controller is used in the compar-
isons. The lead–lag is found with the function sisotool of
MATLAB, which is a graphical user interface to design
single-input/single-output (SISO) compensators by simultane-
ously interacting with the root locus and Bode diagrams of the
open-loop system and the output and control responses of the
feedback system. After several trials in the sisotool, the transfer
function of the controller found is

(33)

and the discrete state-space form for controller (33) is found
using

'

Fig. 10 shows the Simulink diagram employed to obtain the sim-
ulation results of the system under perturbations using the non-
linear model of the maglev system. The results obtained with the
linearized model may present significant discrepancies. These
discrepancies may add more involved tuning in the selection of
the weighting functions if the initial conditions are not taken
closer to the operating point .

VI. CLASS ASSIGNMENTS

The main difficulty encountered in teaching control is the va-
riety of concepts involved in a single control lecture since the
student has to integrate concepts from linear algebra, differ-
ential equations, and dynamic systems. Each class period has
about 50 minutes of lecture followed by 50 minutes of simula-
tion studies. To motivate the students on the topics being taught,
one or two students at a time are assigned homework. In the fol-
lowing week, these students introduce in class their homework
solutions which are then given to the others as oriented class
work. To facilitate the completion of the homework, further in-
structions are given to them during the week. To use robust con-
trol design in practical problems, one finds that the concepts
of augmented plant, performance specification, and weighing
functions and interconnected models are of paramount impor-
tance. Some possible work class tasks involving these concepts
include the following.

1) Analysis and synthesis:
a) analysis of the stability of the equilibrium of

the nonlinear equations using a linearization model
with the system parameter values given in Section IV;

b) description of the perturbed plant and choice of
weighting functions following the guide lines given
in Section V-A and V-B;

c) construction of the augmented plant in Figs. 2 and
8 for design using the procedure provided in Sec-
tion V-C and V-D, respectively.
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Fig. 10. Simulink model for the controlled plant under perturbations.

d) development of a MATLAB program to obtain the
standard and controllers using the steps pro-
vided in Sections V-C and V-D, respectively; for the
purpose of comparison a lead–lag controller can be
found with the MATLAB function sisotool;

e) development of a MATLAB program to perform the
robustness tests in terms of the upper bounds on
using the steps given in Section V-E; typical plots
obtained by the students are shown in Fig. 9.

At this point, the students should get the feeling that higher
order lead–lag controllers would provide better solutions
than the second order obtained. The drawback is that these
solutions would not be found via a systematic procedure,
such as the case of the robust controller designs studied.

2) Simulation work:
a) develop a Simulink diagram of the type showed in

Fig. 10 to obtain responses to a disturbance step;
b) plot the feedback system responses for the lead-lag

controller obtained; typical plots obtained by the stu-
dents are shown in Fig. 16;

c) repeat for different amplitudes of the disturbance and
variation of the mass for the standard and con-
trollers obtained; typical plots obtained by the stu-
dents are shown in Figs. 17 and 18.

3) Final course project:
A project is sought to relate analysis and synthesis. The
project should be on successful applications of control
found in the literature. For this task, the students are di-
vided into small groups and required to develop the design
and simulation tests related to the application chosen. The
control problem formulation, the main robustness tests,
and simulation results obtained by each group are then
presented in class, taking about 15 minutes. This step
has a good impact on the participation of the students in
class discussions favoring the understanding of control
techniques. The laboratory experiment presented next use

the maglev device described before and may serve as a
project for a group of students. The students’ presentation
should include a description of the computational platform
used, control system components, discretization of the
controller, and the main advantages and disadvantages of
the obtained controllers.

VII. LABORATORY EXPERIMENT

A. Controller Discretization

The solution of the robust design techniques used is a high
order continuous controller. To obtain the controller discrete
space state description from its continuous space state form,
the Tustin’s rule is used since it yields satisfactory results for
high order systems when the sampling time is chosen appro-
priately. This transformation is also called a bilinear transfor-
mation because of its mathematical form. To recover the ban-
dlimited continuous signal from the sampled signal, one can
recall the Shannon’s sampling theorem which establishes that

with the maximum frequency of the contin-
uous signal and the sampling frequency. The Shannon fre-
quency plays an important role as a reference frequency since
continuous signals are not in general bandlimited. The sampling
frequency is thus chosen as 1 kHz to provide an accurate bilinear
transformation in the system bandwidth.

The block diagram realization of the discrete state space
controller is implemented via shift registers elements, adders,
and multipliers using the usual block diagram description. The
software LabVIEW is used to implement the digital controller.
LabVIEW is a development platform that uses a graphical
programming language relying on icons and graphical symbols
to specify programming tasks. The environment of LabBVIEW
consists of a front panel and a block diagram. A sequence
structure of two subdiagrams which are executed sequentially
with the variables control signal and ball position passed to
the second subdiagram to be saved in a file for further analysis
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Fig. 11. LabVIEW sequence subdiagrams (upper) and front panel (bottom).

is used. The LabVIEW presents great flexibility but executes
more slowly than the assembly or C language routines. The
maglev control routine implemented as a sequence of two sub-
diagrams achieved the real time processing with conventional
data acquisition hardware in a Pentium III PC. This procedure
was possible provided the control process is the only task
being performed. Fig. 11 shows the block diagrams and panel
used in the experiment. In the former, the controller enters
in the block-named control law. These block diagrams and
the controller matrices used are available at the Web address
http://www.sel.eesc.usp.br/rtsel [16]. There are several text-
books in digital control theory. (For a comprehensive account
on the subject, see [17] and [18]. In the latter, the fundamentals
of LabVIEW programming to implement digital control are
also given.)

B. Experimental Setup

The basic configuration of the system hardware for digital
control is composed of an acquisition board of the family 6020E
with a 12-bit 12-kHz A/D converter and a 12-bit digital–analog
(D/A) converter from National Instruments installed in an
ISA-Bus of a standard Pentium III-CPU-based 800-MHz mi-
crocomputer. The position sensor output is connected to a 5B
series conditioner board in a 5B41 voltage input module which
accepts 10 V and provides 5 V. The analog output from
a D/A converter is connected to the power amplifier module

described before. The input and output signals are connected
via a 50-pin cable and a SC20-50 board. The complete control
system diagram is shown in Fig. 12.

C. Experimental Results

Taking into account the maglev system fast time constant,
which is about 20 ms, the sampling time, denoted , is selected
as 1 ms. Following are the functions used to generate the discrete
controller found in Sections V-C and V-D.

'

To illustrate the results, step disturbances are applied after po-
sitioning the steel ball about the adopted equilibrium .
The step disturbance is set in the LabVIEW panel by altering
the voltage sent to the coil. The experiment is thus repeated
with mass variations about 7% and 25% of its nominal value to
investigate the robustness of the system with respect to varia-
tions in the mass of the steel ball. Different step disturbances
are also considered.

D. Experimental Evaluation

The experimental results obtained are shown in Figs. 13–15,
which are in good agreement with the corresponding simulation
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Fig. 12. Components of the maglev control system.

Fig. 13. System responses for a 0.1 V disturbance step with a lead–lag con-
troller without mass variation (left) and with 7% variation of the mass (right).

Fig. 14. System responses for a 0.5-V disturbance step with theH controller
(left) and � controller (right) for 25% variation of the mass.

results shown in Figs. 16–18. In Fig. 15 (left), the large effect of
a high step disturbance on the equilibrium position exceeds the
linear range of the sensor, deteriorating the system performance.
However, this effect does not occur with the controller, as il-
lustrated in Fig. 15 (right), which indicates that this controller
produced an appropriate action fast enough to avoid large devi-
ations on the steel ball position. The lead–lag controller could
not stabilize the plant for large variations on the mass and dis-
turbance. The plots shown were obtained from the experiment
data written in a file.

From Figs. 13–15, one sees that the robust controllers achieve
better disturbance rejection than the lead-lag controller and that
the robust controllers perform very well in bringing the ball back

Fig. 15. System responses for a 0.7-V disturbance step with theH controller
(left) and � controller (right).

to the adopted operating position even when the system is sub-
jected to changes in the mass . With the robust controllers,
in accordance with the robustness tests carried out using anal-
ysis, the design specifications are met for other steel balls of dif-
ferent sizes and mass. Moreover, the controller showed better
disturbance attenuation responses when compared with the stan-
dard controller responses. However, the controller is not
as efficient as the standard controller in suppressing the
control signal noise, for it presents a higher gain. The conclu-
sion is that the controller design is more conservative with
respect to disturbances.

One should note here that simpler controllers obtained by fol-
lowing a tuning procedure perform well in many industry appli-
cations. This fact explains the popularity of the well-known tree
term proportional plus integral plus derivative (PID) controller.
However, in some applications the best performance attainable
by a simpler controller is inadequate. More complex controllers,
such as the ones addressed in this paper, should overcome this
limitation but at a higher cost in terms of both implementation
and designer’s time.

VIII. STUDENT FEEDBACK

In general, the responses of students to the proposed inter-
active class activities were quite positive. The course is devel-
oped in 25 hours, and the classroom seats up to 25 students.
Student comments indicate that the introduction of robust tech-
niques with focus on applications relating control theory, sim-
ulation, and laboratory work along with the use of nonlinear
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TABLE I
STUDENT FEEDBACK

Fig. 16. Simulated responses for a 0.1-V disturbance step and white noise vari-
ance of 1e-6 with a lead–lag controller without mass variation (left) and with 7%
variation of the mass (right).

Fig. 17. Simulated responses for a 0.5-V disturbance step and white noise vari-
ance of 0.1e-7 with the H controller (left) and � controller (right) for 25%
variation of the mass.

equations in the simulations was considered the strong points
of the course. In addition, the majority of the students remarked
that the intensive use of MATLAB and Simulink in class con-
tributed to further develop their skills in computational tools.
A summary of the latest postcourse student evaluations is pro-
vided in Table I. Only 12 surveys were used since this particular
course is chosen mainly by the students enrolled for the Instru-
mentation and Control Certificate offered by the Universidade
de São Paulo at São Carlos, Brazil.

As a consequence of the experience gained in class activities
after some lectures, the participation of students in discussions
improved. Moreover, as each group explores more strongly
some aspects of the project according to their ability and in-
volvement with other disciplines, the multidisciplinarity of the

Fig. 18. Simulated responses for a 0.7-V disturbance step and white noise vari-
ance of 0.1e-6 with the H controller (left) and � controller (right).

project reveals new control components and applications to the
students. The use of frequency response techniques to describe
the performance specifications and the use of Simulink to ob-
tain the augmented plant were very well taken by the students.
The LabVIEW VI in the configuration used is provided so
that the students only need to replace the designed controller
parameters in the control law block as shown in Fig. 11.

IX. CONCLUDING REMARKS

A simple laboratory experiment using MATLAB and Lab-
VIEW has shown the applicability of recent robust control tools.
The test for robustness using analysis provided insights into
the limitations of controller designs. Design and implementa-
tion steps, including the modeling of the control problem with
weighting functions and LabVIEW programming, are described
in detail to facilitate the reproduction of the experiment. To
achieve the objectives of the course three types of assessment are
used: an individual presentation of homework solutions, a group
presentation of a final course project, and a final individual test.
To cope with large nonlinear regimes, the maglev device used
needs some improvement. In this direction, the use of photo-
diode arrays in place of the single phototransistor employed for
the position detection is at the present time being researched.
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