
Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures 43 (2015) 139–155
http://d
1477-84
(http://c

E-m
journal homepage: www.elsevier.com/locate/cl
Model-driven engineering: A survey supported by the unified
conceptual model

Alberto Rodrigues da Silva
INESC-ID & Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal
a r t i c l e i n f o

Article history:
Received 14 November 2014
Received in revised form
19 May 2015
Accepted 6 June 2015
Available online 19 June 2015

Keywords:
Model
Metamodel
Modeling language
Software system
Model-driven engineering
Model-driven approaches
x.doi.org/10.1016/j.cl.2015.06.001
24/& 2015 The Author. Published by Elsevie
reativecommons.org/licenses/by-nc-nd/4.0/)

ail address: alberto.silva@tecnico.ulisboa.pt
a b s t r a c t

During the last decade a new trend of approaches has emerged, which considers models
not just documentation artefacts, but also central artefacts in the software engineering
field, allowing the creation or automatic execution of software systems starting from
those models. These proposals have been classified generically as Model-Driven Engineer-
ing (MDE) and share common concepts and terms that need to be abstracted, discussed
and understood. This paper presents a survey on MDE based on a unified conceptual
model that clearly identifies and relates these essential concepts, namely the concepts of
system, model, metamodel, modeling language, transformations, software platform, and
software product. In addition, this paper discusses the terminologies relating MDE, MDD,
MDA and others. This survey is based on earlier work, however, contrary to those, it
intends to give a simple, broader and integrated view of the essential concepts and
respective terminology commonly involved in the MDE, answering to key questions such
as: What is a model? What is the relation between a model and a metamodel? What are
the key facets of a modeling language? How can I use models in the context of a software
development process? What are the relations between models and source code artefacts
and software platforms? and What are the relations between MDE, MDD, MDA and other
MD approaches?
& 2015 The Author. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A model is an abstraction of a system often used to replace the system under study [40,20,37]. In general a model
represents a partial and simplified view of a system, so, the creation of multiple models is usually necessary to better
represent and understand the system under study. Modeling is a well-known technique adopted by Engineering fields as
well as other areas such as Physics, Mathematics, Biology, Economy, Politics and Philosophy [20]. However, in this research
we focus on models in the context of Software Engineering and Information Systems fields. That means that our models are
thus language-based in nature and tend to describe or prescribe some system as opposed, for example, to models in
Mathematics which are understood as interpretation of a theory [11].

Models allow sharing a common vision and knowledge among technical and non-technical stakeholders, facilitating and
promoting the communication among them. Furthermore, models make the project planning more effective and efficient
while providing a more appropriate view of the system to be developed and allowing the project control to be achieved
according to objective criteria [8,85].
r Ltd. This is an open access article under the CC BY-NC-ND license
.

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.06.001&domain=pdf
mailto:alberto.silva@tecnico.ulisboa.pt
http://dx.doi.org/10.1016/j.cl.2015.06.001
http://dx.doi.org/10.1016/j.cl.2015.06.001


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155140
In the last decades numerous techniques and modeling languages have been proposed to support the design and the
development of complex software systems. Many of these languages were defined in the context of methodological
approaches – such as structured, object oriented or unified methodologies/processes, fundamentally with the purpose of
facilitating and sharing a common and coherent vision of the system under study and, consequently, of easing the
communication among stakeholders [8,84,85,34]. However, during this last decade a new trend of approaches has emerged
considering models not just as documentation artefacts, but as central artefacts in the software engineering process. In
addition to the benefits referred above, it also allows – through complex techniques such as meta-modeling, model
transformation, code generation or model interpretation – the creation or automatic execution of software systems based on
those models. These proposals – such as MDA [51,21], Software Factories [24], or recently DSL Engineering [83] – have been
classified generically as Model-Driven Engineering (MDE) but also by related names such as model-based engineering
(MBE), model-driven development (MDD), model-driven software development (MDSD) [45,3,74,67], or model-based
testing (MBT) [80]. Regardless of the adopted term and the particular application, all of them share common concepts and
terms that need to be abstracted, discussed and understood.

The objective of this paper is to survey and discuss the essential concepts of MDE and, in particular, to propose a unified
conceptual model that clearly identifies and relates those concepts, namely the concepts of system, model, metamodel,
modeling language, transformation, software platform and software product. For the sake of simplicity and readability this
unified conceptual model is described through a coherent set of UML class diagrams complemented by descriptions and
discussions in natural language. The proposed conceptual model is based on earlier work, in particular, on work that relates
the conceptualization of models and metamodels [64,20,19,37], modeling languages [46,66], and relations between models,
transformations, platforms and software products [74]. However, as further discussed in the Related Work section, unlike
these former works, this paper intends to give a simple, broad and integrated view of the key concepts and respective
terminology commonly involved in the MDE, answering to common questions like: What is a model? What is the relation
between a model and a metamodel? What are the key facets of a modeling language? How can I use models in the context
of a software development process? What are the relations between models and source code artefacts and software
platforms? and What are the relations between MDE, MDD, MDA and other MD approaches?

This paper is organized in 7 sections. Section 2 introduces the concepts and definitions of system, model and metamodel
that are central in MDE. Section 3 defines the concept of a modeling language with its different facets (i.e., abstract syntax,
concrete syntax, semantics and pragmatics) and also asserts that a modeling language provides one or more viewpoints and
can be classified according the abstraction and perspective dimensions. Section 4 extends the proposed conceptual model by
introducing and relating the concepts of software product, software platform, artefacts and model transformations. Section 5
relates and analyses the terms used around the MD approaches. Section 6 compares and discusses our research with the
related work. Finally, Section 7 presents the conclusion and identifies issues for future work.

2. Models and metamodels

This section introduces the essential concepts underlying MDE, namely the concepts of system, model, metamodel and
their relations.

In the context of MDE, we define “system as a generic concept for designating a software application, software platform or
any other software artefact”. Additionally, as suggested in Fig. 1, a system might be composed of other subsystems and a
system may have relations with other systems (e.g., a system may communicate with others).

2.1. Model

A model is an abstraction of a system under study (SUS, also known as the “Universe of Discourse” or just “system”), which
may already exist or is intended to exist in the future.

2.1.1. Model definition
In the absence of a common definition for “model”, it is relevant to refer some of its popular attempts, namely the

following: (1) model is a set of statements about the system under study [64]; (2) model is an abstraction of a (real or
System

*

Relates To

*
+sub system *

Is Composed Of >

1

Fig. 1. The System definition.



A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 141
language-based) system allowing predictions or inferences to be made [37]; (3) model is a reduced representation of some
system that highlights the properties of interest from a given viewpoint [65]; and (4) model is a simplification of a system
built with an intended goal in mind so a model should be able to answer questions in place of the original system [6].

From these definitions there is a consensus that a model defines a system under study (SUS) and vice-versa. However, a
model is itself a system, with its own identity, complexity, elements, relations, etc. In particular, whenwe think about a model
of a model we have to consider that one of them plays the role of the system under study and, consequently, it is itself a
system. To sum up, and as suggested in Fig. 2 we define “model as a system that helps to define and to give answers of the
system under study without the need to consider it directly”.

2.1.2. Criteria and principles
To distinguish a model from any other type of artefact, Stachowiak proposes three criteria for their unique identification

[40]: (1) Mapping criteria: It must be possible to identify the object or original phenomenon (of the system) that is
represented or mapped in the model; (2) Reduction criteria: The model must be a simplified version of the original, so not all
aspects of the original must be depicted in the model; and (3) Pragmatism criteria: The model has to be useful; namely it
should be able to replace the original for certain purposes.

The mapping criteria do not require the existence of the original. As in most engineering areas, usually temporally
models precede the original and are used extensively to check the completion of the original. The reduction criteria suggests
that the model is a simplification of the original, which for instance ignores original features not relevant in the model, or
adds features that can enrich the model. Finally, the pragmatism criteria refer to the useful character of models in the sense
that they must serve some purpose.

On the other hand, Booch identifies a set of purposes and benefits deriving from the existence of models, namely that [7]:
models help to visualize a system, as it is or as we want it to be; models allow to specify the structure and the behavior of a
system; models give a template that help guide the development process; and models help to document the decisions taken
along the project lifecycle.

2.2. Metamodel

Like for the model definition, there is a variety of definitions for metamodel, some of them are unclear or too weak, such
as the OMG's definition that simply states that “a metamodel is a model of models” [51]. However, some authors have
reflected extensively on these concepts, and give the following definitions: (1) a metamodel is a model that defines the
language for expressing a model [51]; (2) a metamodel is a model of a language of models [19]; (3) a metamodel is a
specification model for which the systems under study being specified are models in a certain modeling language [64].
However, the deepest analysis of this subject is maybe authored by Kühne that introduced important concerns for this
discussion, such as the classification of models as token (or instance) versus type models, ontological versus linguistic
instantiations, and the language definition stack [37].

2.2.1. Metamodel definition
Based on the previous referred works we define “metamodel as a model that defines the structure of a modeling language”.

However, from Fig. 3 we still have to understand the following facts: First, through the relationship ElementOf, between
Model and Modeling Language, a modeling language is a set of models (or a model is an element of a modeling language).
Second, through the relationship Defines, betweenMetamodel andModeling Language, a metamodel is a model of a modeling
System

Model
+model

* Defines >

+sus

1

Fig. 2. The Model definition: relationships between model and system.



A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155142
language structure (or a modeling language is defined by a metamodel). Third, a metamodel is a model of a set of models or
is a model of models. Finally, a model conforms with a metamodel (via the ConformsWith relation), meaning that the model
should satisfy the rules defined at the level of its metamodel as extensively discussed by Kühne and others [37,73,57].

2.2.2. Meta-metamodel, metamodel and model
A well-known and recurring problem of metamodeling is how to set the initial metamodel. If a metamodel is a model of

a modeling language, there must be a meta-metamodel describing its modeling language, and so on, in higher levels and
more abstract meta-metamodels. The common solution to overcome this problem is to use a language that, at a particular
level of this hierarchy, describes itself in its own language. There are numerous examples of this solution. In the field of
natural languages, the English Language describes itself in English at the level of grammar definition, dictionaries, etc. In the
field of programming languages, Lisp is a well-known example of a language that describes itself, providing in particular a
Lisp compiler written in Lisp [44].

In the field of modeling languages the solution proposed by OMG, based on a four-layer architecture and directly
supported through the Meta Object Facility (MOF) [55] is a popular example. At the top of that hierarchy there is the meta-
metamodeling layer (designated as M3) that is mainly responsible for providing a language to specify metamodels. MOF is a
unique meta-metamodel layer because it is instantiated from its own model, i.e., the MOF is defined in MOF (technically
using a restricted set of meta-classes designated by InfrastructureLibrary). In the layer below (designated as M2),
metamodels are defined by instantiation of the meta-metamodel (i.e., each element of the metamodel is an instance of
an element defined in the meta-metamodel). UML [53] or Common Warehouse Metamodel (CWM) [52] are some examples
of those metamodels, i.e. examples of MOF instances. In the layer below M2 (designated as M1), the models are defined
according to the interest and needs of its users: typically for different application domains and different levels of abstraction,
e.g. at the level of business definition, technical requirements, or software design. Note that a user model can contain either
model elements (i.e., classes and concrete types e.g., Video) or instances of these types (e.g., the instance:Video). Finally, the
lowest level of the hierarchy (the M0 layer) contains real instances of elements defined in the model that actually exist in
the context of a computational environment or even in the real world (e.g., a specific Video in your own laptop).

3. Modeling language

As mentioned in the previous section, a modeling language is defined by a metamodel and is a set of all possible models
that are conformant with its respective metamodel. However, to provide a complete definition we should consider other
aspects or facets (as suggested in Fig. 4), and consequently we define “modeling language as a set of all possible models that
are conformant with the modeling language's abstract syntax, represented by one or more concrete syntaxes and that satisfy a
given semantics. Additionally, the pragmatics (of a modeling language) helps and guides how to use it in the most appropriate
way”. Metamodel and notation are common synonyms to, respectively, abstract syntax and concrete syntax [25].

3.1. Abstract syntax

The definition of a modeling language usually starts with the capture and identification of the concepts, abstractions and
relations underlying the application domain, which represents domain analysis phase of DS(M)L development [46,32]. This
Model

System

Modeling 
Language

Meta model
1

Conforms With >

*

1

Defines >

1

*

Element Of >

1

+model

*

Defines > +sus

1

Fig. 3. The metamodel definition: relationships between metamodel and model.



A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 143
is primarily an exercise of abstraction and conceptualization, and then synthesis of the domain knowledge, that the architect
of the modeling language has to know or has to obtain from the direct interaction with the domain experts. The result of this
activity produces themodeling language's abstract syntax, which corresponds to a metamodel with all the concepts identified
at the meta domain level.

The usual techniques to the definition of abstract syntaxes are, in general, grammars for natural languages, or context free
grammars (e.g., specified in compact formalism based on Backus-Naur Form (BNF) notation) for programming languages
[57]. However, in the scope of modeling languages the common practice is the use of metamodeling techniques [79,46,66].
For example in the context of OMG, the common practice for defining modeling languages is through the use of the UML
profile mechanism or directly by using the MOF language (or some of its variations) [66,55].

The abstract syntax defines all the names of the identified concepts, and their respective relations, so it is important that
those names would be close to the application domain to be easily understood by its users. On the other hand, its simplicity
should be promoted, for example to avoid introducing additional concepts with misunderstood terms that could make it
more expressive, but also more difficult to use and to maintain.

As illustrated in Fig. 4, the abstract syntax still includes the "structural semantics" (or static semantics) that is mainly
focused on setting binding rules among its elements. For example, and in a simplified way, structural semantics allows to
define that an element of type A can be related to other elements of type B according to this or that constraint; or you can
determine that elements of type A can never be related to elements of type C. In general, structural semantics of a modeling
language can be described in the different ways: either through a declarative constraints language (e.g., Object Constraint
Language (OCL) [56] in the case of UML); through informal natural language specification; or through a blending approach.
For example, the structural semantics of UML itself is described extensively in natural language, class diagrams, and some
few aspects defined in OCL [7].

The structural semantics is needed because the structure of a language (abstract syntax) is many times context
dependent and this cannot be capture by context free metamodels (i.e. grammars) [57]. Additionally, the structural
semantics prevents its users from creating models that violate the rules of liaison and the orchestration of its elements, but
this can only be achieved if there is proper tool support where such structural semantics are duly captured and validated.

3.2. Concrete syntax

The concrete syntax of a modeling language refers to its notation, i.e. the way users will learn and will use it, either by
reading or by writing and designing the models. The notation is an important aspect of a modeling language because it
corresponds to the perspective and user experience that users would have. So, the success of a modeling language will
depend on the right balance between simplicity and expressiveness, and in particular the following concerns should be
addressed when designing a concrete syntax: writability, readability, learnability and effectiveness [83].
Modeling 
Language

Abstract 
Syntax

Concrete 
Syntax

Semantics

Pragmatics

NotationMetamodel
Structural 
Semantics

0..1

1

*

Guides How To Use >

1

1

Is Defined By

«synonym»

1..*

1

1

«synonym»

Fig. 4. The Modeling Language definition.



A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155144
Different notations can be provided, namely graphical, textual, tabular and forms-based, or combinations of them. In general,
graphical notations tend to be more suitable to illustrate relations between concepts, changing values in a spatial or temporal
distribution, causal and temporal sequences between events, or data and control flows in process modeling scenarios. However,
graphical models are not so scalable as textual or tabular-based models, that means they are not the most appropriate to support
large models; also they are poorly applicable to write or visualize logical expressions or complex actions – for such, textual
notations tend to be more appropriate [74,83]. Finally, because a modeling language might have multiple concrete syntaxes, it
would be possible to combine both for the sake of their users: for example to adopt a textual notation for writing/authoring and a
graphical notation for just reading/visualization.

3.3. Semantics

In general the semantics reveals the meaning of syntactically valid expressions (or models) specified in a given language. For
natural languages, this means correlating sentences and phrases with the concepts, thoughts and feelings based on our experiences
and background. For programming languages, semantics describes the behavior that a computer should follow when executing a
program in that language. This specification can describe the relationship between the input and output of a program or can
provide a step-by-step explanation on how a program will execute on a real or virtual machine.

For modeling languages, and depending on the concepts and models involved, there are two types of semantics [26]:
executable and non-executable semantics. Executable semantics concerns concepts directly related to programming languages,
i.e. related to the order of execution of programs, such as those found in state machines, sequence and activity diagrams. On
the other hand, non-executable semantics concerns concepts not directly related to software execution (or any other kind of
execution), such as those concepts involved on the deployment of software components on hardware nodes (e.g., UML
component and deployment diagrams), or specification of user requirements (e.g., through UML use case diagrams).

Most of the existing semantics frameworks, developed originally for programming languages [71], are also used to define
the semantics of executable models (such as UML state machines or BPMN business process diagrams). Some of these
frameworks are “structural operational semantics” and “translational semantics” [71,29]. The structural operational
semantics (SOS) describes formally a language's semantics by means of a set of inference rules: the individual computation
steps are the interpretation of a given concept of the language that will produce an equivalent symbolic representation in a
real or virtual machine. The translational semantics is a formal way to describe the language's semantics, where the abstract
syntax of a source language is mapped into the abstract syntax of a target language which is supposed to be formally defined
(e.g., as finite state machine or abstract state machine). Furthermore, the mappings between the source and the target
languages might be supported by model language transformations such as QVT, ATL or DSLTrans (see a further discussion
below, in Section 4). Regarding non-executable models their semantics can also be defined according a translational
framework.

However, and in many cases the semantics of a modeling language is defined in an informal way (by using natural
language specifications) instead of following the referred formal frameworks. In the end, and in those situations, the
semantics is just taken into consideration during the software system development, preferably through code generation
mechanisms, but also by implementing them through source code directly written in a specific programming language.

Finally and based on this discussion, we may classify the semantics of a modeling language according two-orthogonal
dimensions: executable vs. non-executable semantics and formal vs. informal semantics. A further analysis and discussion of
the challenges and directions in formalizing the semantics of modeling languages is proposed by Byrant and others [10].

3.4. Pragmatics

The pragmatics of a natural language has been treated as an area of linguistics and is concerned with the study of its use in
communication acts in which the factors regarding the context are decisive, such as social, cultural, psychological, historical
or geographical factors. While the semantics is concerned with the meaning of language's constructs, pragmatics is
concerned with the meaning and interpretation of the language in a context dependent way, i.e. it depends on its users'
knowledge and on the various factors on which the communication occurs.

On the other hand, the pragmatics of a modeling language has not drawn particular interest from the community, with a few
exceptions such as [43,65]. The pragmatics of modeling languages has been focused on the definition and discussion of aspects
related to their use in practical contexts, namely in the definition of its types of users or roles (e.g., domain experts, requirements
engineers, software architects and end-users), the activities to be conducted (e.g., drawing/writing, refinement, reading, analysis
and validation of models), and various factors (e.g., social, environmental or psychological) that may constraint themselves.

Most of the work on pragmatics is concerning how modeling languages can be used in a more efficient and appropriate
way, generally involving a set of principles, recommendations and guidelines for their use. There are languages (such as UML)
that do not define explicitly any pragmatics, i.e., they deliberately do not define or give any guidance or practices for how they
should be used, while others (e.g., SSADM [84], Booch [8] or Yourdon [85]) include the pragmatics in their own definition, in
some cases including a well-defined process (or methodology) with practical recommendations and guidelines. Furthermore,
the pragmatics might also refers practical aspects of using modeling languages and MDE on real-world projects, such as
scalability of the technologies, information overload of large models, efficiency of automatically generated code, and
integration with other development tools.



Modeling Language

- domain  :Application Domain Kind
Viewpoint

- a  :Abstraction Kind
- p  :Perspective Kind

«enumeration»
Abstraction Kind

CIM
PIM
PSM
Multiple

«enumeration»
Perspective Kind

Static
Dynamic
Multiple

«enumeration»
Application Domain Kind

general.software
general.business
dabases-queries
user-interfaces
[...]

1..*1

Fig. 5. The classification of a modeling language and its companion viewpoints.

A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 145
3.5. Classification of a modeling language

In addition to the aspects of a modeling language (introduced above) there is some controversy and debate in the
community in what concerns their classification. For example a modeling language might be classified as general-purpose
(GPML) or domain-specific modeling language (DS(M)L) [16,31,41,46,33]. A GPML is characterized by having a greater number
of generic constructs, which encourages a wider and widespread use in different fields of application. UML or SysML are
popular examples of GPMLs by providing large sets of constructs and notations used for specifying and documenting,
respectively, software systems according to the object-oriented paradigm, or any kind of systems as understood by the
system engineering discipline. On the other hand, DSLs tend to use few constructs or concepts which are closer to its
application domain. Since a DSL is expressed using domain concepts, it is normally easier to read, understand, validate and
communicate with, facilitating cooperation between developers and domain experts. Moreover, some argue that DSLs can
improve productivity, reliability, maintainability and portability [16,27]. On the other hand, the use of a DSL can raise some
problems, such as the cost of learning, implementing and maintaining a new language, as well as the support tools to
develop with it [46].

However, others argue that, due to the high-quality and sophistication level of current language workbenches, the tool
support is not anymore a main constraint (see further discussion below in Section 5.2). Furthermore, some recent studies
have shown that software language engineers do not even have the common practice of evaluating their own languages
[22], and conclude that more research is mandatory in the area of software language processes, particularly in what
concerns the design, development and evaluation of these languages [22,4,47].

Fig. 5 shows that a modeling language can be classified according its application domain attribute (e.g., based on the
values defined in the ApplicationDomainKind enumeration) and can be structured by one or more viewpoints.

A viewpoint defines a reusable set of criteria for the construction, selection, and presentation of a portion of a model,
addressing particular stakeholder concerns. A viewpoint is a general concept that allows applying the multi-viewpoint
modeling principle or the separation of concerns principle that states that a complex system is better defined by multiple
views, considering both static and dynamic aspects [7,9]. Therefore, a modeling language provides one or more viewpoints
that can be classified according the abstraction and perspective properties. On the abstraction dimension, a viewpoint can be
classified, for example using the MDA terminology [51], as computational independent model (CIM), platform independent
model (PIM), platform specific model (PSM) or multiple (meaning that viewpoint may involve elements defined at multiple
abstraction levels). On the perspective dimension, a viewpoint can be classified as static, dynamic or multiple (meaning that a
viewpoint may involve both static and dynamic elements). A static viewpoint describes a system mainly from its structural
perspective with concepts such as classes, objects, nodes, blocks and respective relations. For example, UML class diagrams
or component diagrams are static viewpoints. On the other hand, a dynamic viewpoint describes the behavior of a system
from a certain perspective with concepts such as tasks, operations, states, events, messages and respective relations. Activity
diagrams or state machines in UML or business process diagrams in BPMN are examples of dynamic viewpoints.
3.6. Discussion

Based on the proposed conceptual model, we can better analyse, understand and compare modeling languages. We can
also use this conceptual model to help defining our own modeling languages, with their specific facets, principles and
guidelines.



A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155146
For example Table 1 shows the application of this conceptual model to classify two well-known general purpose
languages, UML [53] and BPMN [54], and two domain-specific languages, XIS-Mobile ([58]) and DSL3S [72] languages. UML
is a GPML for modeling software systems at multiple abstraction levels, and to that purpose UML provides many viewpoints,
such as class, object, sequence, use cases, state machine, component diagrams, etc. BPMN may be classified as a GPML for
modeling business systems from a dynamic perspective and mainly at a computational independent abstraction level;
BPMN provides four viewpoints: process, collaboration choreography and conversation diagrams. XIS-Mobile is a DSML for
modeling mobile applications in a cross-platform (or platform independent) way; XIS-Mobile is defined as a UML profile
and provides the following viewpoints: domain, business entities, architectural, use cases, navigation space, and interaction
space views (or diagrams). Finally, DSL3S is a DSML for spatial simulation in the field of Geographic Information Systems;
DSL3S provides the following viewpoints to organized static and platform-independent models: simulation, scenario,
animat and animat interactions views.

Furthermore, there are other discussion topics that are worthwhile to mention, namely in what concern the quality of
modeling languages. An open topic is the discussion of what should be these key qualities for analyzing and comparing modeling
languages and their corresponding trade-offs, as for example simplicity, expressiveness, focus, multiple views, or usability.

The simplicity of a modeling language can be analyzed at various levels, such as at the level of its abstract syntax (through
the definition of its concepts and relations) and its concrete syntax (through the definition of textual or graphical
representation). A simple language should have few concepts and its notation should be simple and consistent.
Notwithstanding, an expressive modeling language may require the introduction of additional concepts and notations,
which would facilitate the work of its users, but, on the other hand, make it less simple. For example, in the context of
business process modeling, UML activity diagrams are simpler (but also less expressive and more informal) than Business
Process Model and Notation (BPMN) diagrams [54].

Krogstie proposed and discussed extensively this topic of quality of modeling languages and quality of models, in
particular with the SEQUAL framework [34]. On the other hand, Barišić proposed a process for evaluating the usability of
DSLs [4]. Recently, Morais and Silva also proposed the ARENA framework and used it to compare and evaluate user-interface
modeling languages [47].

4. Software products, platforms and transformations

MDE approach claims that the use of modeling languages help to specify models in a certain level of abstraction, and also
that those models are used to support the development of software applications [3,74,67]. As suggested in Fig. 6, we define
“software application (or software product) as a system composed of a nontrivial integration of software platforms, artefacts
generated through model-to-text transformations, artefacts directly written by developers, and eventually models directly
executable in the context of a particular software platform”. (For the sake of simplicity it is not illustrated in Fig. 6, but software
applications, platforms, artefacts and models should all be considered “systems” according to the discussion above in
Section 2.1.1., see Fig. 1).
Table 1
Classification of modeling languages: UML2, BPMN, XIS-Mobile and DSL3S.

Modeling Language

Name Application Domain Viewpoint Abstraction Perspective

UML (Unified Modeling Language) General/Software Class Diagram Multiple Static
Object Diagram Multiple Static
Sequence Diagram Multiple Dynamic
Use Case Diagram PIM Dynamic
State Machine Diagram Multiple Dynamic
Component Diagram PSM Static
– – –

BPMN (Business Process Modeling Notation) General/Business Processes Process Diagram CIM Dynamic
Collaboration Diagram CIM Dynamic
Choreography Diagram CIM Dynamic
Conversation Diagram CIM Dynamic

XIS-Mobile (DSL for Mobile Apps) Specific/Mobile Apps Domain View PIM Static
BusinessEntities View PIM Static
Architectural View PIM Static
UseCases View PIM Dynamic
NavigationSpace View PIM Static
InteractionSpace View PIM Static

DSL3S (DSL for Spatial Simulation Scenarios) Specific/Spatial Apps Simulation View PIM Static
Scenario View PIM Static
Animat View PIM Static
Animat Interactions View PIM Static



Software 
Plataform

Software 
Product

Transformation

Model2 Model 
Transformation

Model2 Text 
Transformation

Generated 
Artifact

Non-Generated 
Artifact

Model

+executable model

*

*

*

+target

*

+target 1

+source

1

*

Fig. 6. Software product, platforms, transformations, and models.

A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 147
First, software platformsmean an integrated set of computational elements that enable the development and execution of
a class of software products [9,83,24]. Usually these elements provide different functionalities through reuse and
extensibility mechanisms and are referred to technologies such as middleware, software libraries, application frameworks,
and software components, but also database management systems, web servers, content management and document
management systems, workflow management systems, etc. Thus, it is common for a certain class of software product the
use and integration of several software platforms, which might have constraints and dependencies among them. For
example a mobile application developed for Android depends on the Android platform and on the SQLite database, which
depend on the Java Virtual Machine and so on.

Second, generated and non-generated artefacts are also elements of the software application. These artefacts might be
only relevant during the development time while other artefacts might be relevant at application runtime. Nevertheless,
both types of artefacts are tightly dependent on the involved platforms. Many examples of these artefacts might be
considered such as: source and binary code files, configuration and deployment scripts, database scripts, and even
documentation files, including the models themselves.

Third, two main types of transformations tend to be considered in MDE approach. On the one hand, model-to-text
transformations (M2T) that generate or produce software artefacts – typically source code, XML and other text files –, from
models. The most common technique for this class of transformations is known as code generation, and there are multiple
solutions and techniques as discussed by Czarnecki and others [14,74]. On the other hand, model-to-model transformations
(M2M) allow translating models into another set of models, typically closer to the solution domain or that satisfy specific
needs for different stakeholders. These transformations are specified through distinct languages, such as the mainstream
programming languages, but also by specialized model transformation languages, for different purposes and with different
modeling paradigms such as QVT,1 Acceleo,2 ATL,3 VIATRA,4 DSLTrans5 as extensively discussed by Syriani and others
[76,36,15,23,2].

Fourth, as suggested in Fig. 6, models are a central concept of the MDE approach. On one hand, a model can be created directly
by users (i.e. model designers) or can be produced automatically from model-to-model transformations and, then, still edited and
refined. On the other hand, models can be used to produce generated or non-generated software artefacts, respectively by means
of M2T transformations or direct authoring by their users (i.e. software developers). Furthermore, in some particular situations,
models can be directly interpreted and executed by specific platforms integrated with the software application [42,13]. Of
course, it is important to emphasize that to be effectively used in the context of the MDE models must be defined in a consistent and
rigorous way. In general, it is required a certain level of quality in order that those models might be properly used in M2M or M2T
scenarios. For this purpose there are features that the tools should provide, such as model analysis, validation and simulation as
discussed in [81].
1 QVT. http://www.omg.org/spec/QVT/
2 Acceleo, http://www.eclipse.org/acceleo/
3 ATL. http://www.eclipse.org/atl/
4 http://eclipse.org/viatra/
5 https://github.com/githubbrunob/DSLTransGIT

http://www.eclipse.org/acceleo/
http://www.eclipse.org/atl/
http://eclipse.org/viatra/
https://github.com/githubbrunob/DSLTransGIT


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155148
5. From abstract to concrete model-driven approaches

This section discusses the final research question of this paper: What are the relations between MDE, MDD, MDA and other
MD approaches? This question is still important because these terms are used in the community many times without a clear
understanding of their meanings and respective relations.

Fig. 7 shows the proposed conceptual model that introduces these terms and their relations. This model defines a hierarchical
structure of MD approaches, each one at a level of abstraction, with the respective generalization and specialization relationships.
On the top of this hierarchy it is the most abstract term (MDE) while in the bottom there are some concrete MD approaches that
are briefly introduced below. It is not the purpose of this paper to give a complete or exhaustive identification of all middle-level
and concrete-level approaches.

Table 2 complements Fig. 7 to help understand and discuss the proposed model. There are a certain number of aspects that
were considered to support the analysis and comparison of those MD approaches, namely: abstraction level, software
engineering disciplines, models, transformations, meta-modeling languages, application domain, and tool support. The aspect
“abstraction level” defines how abstract or concrete is an approach. For simplicity reasons we define just 3 levels: high,
medium and low. The aspect “software engineering disciplines” defines the engineering tasks addressed by each approach. For
this classification we considered the following disciplines, as defined in Rational Unified Process (RUP) [35]: business
Concrete-level Approaches, MD-Tools

MDT 
(Testing)

Middle-level Approaches, MD-MetaTools

High-level Approaches

MDE 
(Engineering)

MDD 
(Development)

OMG MDA

Microsoft 
Software 
Factories

JetBrains 
MPS

SilabMDD XIS-MobileWeb Service 
Software 
Factory

{This taxonomy is necessarily
incomplete. That means it does not
intend to identify completely or
exhaustively all middle-level and
concrete-level approaches.}

PBGT

Eclipse 
Modeling 

Framework

Fig. 7. MDE, related terminology and concrete approaches.



Table 2
Classification of model-driven approaches: from abstract to concrete approaches.

Model-Driven
Approaches

Abstraction
Level

Software Eng.
Disciplines

Models Transformations Meta
modeling
languages

Domain Tool Support

Levels Language Types Languages

MDE High Any ND ND ND ND ND Any ND
MDD Requirements,

Analysis and
design,
Implementation

ND ND ND ND ND Any ND

MBT Testing ND ND ND ND ND Any ND
OMG MDA Analysis and

design,
Implementation

CIM,
PIM,
PSM

UML, UML
Profiles

M2M,
M2T

QVT MOF,
EMOF,
Ecore,
UML

Any Several, e.g.,
Eclipse
Modeling
Framework,
Enterprise
Architect MDG

EMF (Eclipse Modeling
Framework)

Medium Any Any UML, UML
Profiles

M2M,
M2T

Several Ecore,
EMOF

Any Eclipse and
Eclipse
Modeling
Framework

Microsoft Software
Factories

Any Any DSLs ND .NET
languages

UML Any Microsoft
Visual Studio -
Visualization &
Modeling SDK

JetBrains MPS Any Any Textual
DSLs

M2M,
M2T

Java MPS's
Base
Language

Any JetBrains
IntelliJ IDEA
and MPS

Web Service Software
Factory

Concrete Design,
Implementarion

PSM DSL M2T .NET
languages

UML Web Services Microsoft
Visual Studio

XIS-Mobile Analysis and
design,
Implementation

PIM XIS-Mobile
(UML
Profile)

M2M,
M2T

C#, Acceleo UML Mobile Apps Sparx EA,
Eclipse
Modeling
Framework,
Accelo

SillaMDD Requirements,
Analysis and
design,
Implementation

CIM SilabReq
(Textual
DSL)

M2T Java MPS's
Base
Language

Requirements
of Business
Apps

JetBrains
IntelliJ IDEA
and MPS

PBGT (Pattern Based GUI
Testing)

Testing PIM PARADIGM M2T Java Ecore Software
Testing

Eclipse
Modeling
Framework,
Selenium

Legend: ND (Not defined or not relevant); Models Levels: CIM (Computing independent Model); PIM (Platform Independent Model); PSM (Platform
Specific Model); Transformations Types: M2M (Model to Model), M2T (Model to Text).

A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 149
modeling, requirements, analysis and design, implementation, testing, deployment; of course this list can be extended with
other disciplines such as maintenance and simulation. The aspect “models” defines the abstraction levels
(e.g., CIM, PIM, PSM) and the modeling languages supported by each approach, as discussed in Section 3. The aspect
“transformations” defines the types (e.g., M2M and M2T) and the languages used by each approach to support the model
transformations. The aspect “meta-modeling languages” defines the technologies used to define modeling languages. The
aspect “domain” defines the application domains of each approach; usually only concrete approaches are domain-specific.
Finally, the aspect “tool support” defines the type of tool supported by each approach.

5.1. High-level approaches

MDE is on the top of abstraction of MD approaches. MDE is a software engineering approach that considers models not
just as documentation artefacts but also as first-class citizens, where models might be used throughout all engineering
disciplines and in any application domain. In this context, MDE is better classified as a software engineering paradigm and
so, it does not have any concrete tool support. At this same level of abstraction are MDD and MBT (as well as other concerns
could be considered such as enterprise engineering [17] or ontologies and knowledge representation [68]).

Model-Driven Development (MDD) approach is mainly focused on the requirements, analysis and design, and
implementation disciplines [45,3,74,67]. Concrete MDD approaches tend to define modeling languages to specify the
System Under Study (SUS) at different levels of abstraction, to provide M2M and M2T transformations in order to improve
the productivity and quality of the process and the final software system.



Table 3
Related work analysis – Part 1.

Related Work Seidewitz, 2003
(2003) [64]
What models
mean

Stahl et al.,
(2005) [74],
Model-Driven
Software
Development

Favre et al.,
(2005) [19],
Towards a
megamodel to
model software
evolution
through
transformations

Kühne, 2006
(2006) [37],
Matters of
(meta-)
modeling

Research Questions What is a model? Y Y Y Y
What is the relation between a
model and a metamodel?

Y Y Y Y

What are the key facets of a
modeling language?

N (not explicit) Y N (not explicit) N (not
explicit)

How can I use models in the
context of a software
development process?

N (not explicit) Y N (not explicit) N (not
explicit)

What are the relations between
models and source code artefacts
and software platforms?

N (not explicit) Y N (not explicit) N (not
explicit)

What are the relations between
MDE, MDD, MDA and other MD
approaches?

N N N N

A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155150
On the other hand,Model-Based Testing (MBT) [80] is mainly focused on the automation of the testing discipline. Testing
models are used to represent the desired behavior of the “System Under Test” (SUT), to represent testing strategies and the
testing environment. A testing model describing the SUT is usually an abstract, partial representation of the SUT's desired
behavior. Test cases derived from such a model are functional tests on the same level of abstraction as the model, and might
then be mapped into executable tests that can communicate directly with the SUT under specific testing tools and
frameworks.

Model Driven Architecture (MDA) is the MD approach proposed by OMG, available since early 2000, and focused
primarily on the definition of models and their transformations [51,21]. MDA supports the definition of models at different
levels of abstraction, namely Computational Independent Models (CIM), Platform Independent Models and Platform Specific
Models PSM (PIM). Computational platforms correspond to concrete implementations of application servers, database
servers, content management systems, frameworks and software architectures; these platforms can be described
themselves through Platform Description Models (PDM). MDA also considers different types of model-to-model
transformations, namely: CIM-CIM, CIM-PIM, PIM-PIM, PIM-PSM and PSM-PSM. Additionally, it considers the transforma-
tion of PSM models into source code and other types of textual artefacts (PSM-Text). In theory, an application developed
under the MDA approach is platform-independent, which allows it to be installed on different computing platforms and
properly supports different technologies thanks to these transformations, particularly to PIM-PSM PSM-PSM and PSM-Text
transformations.

In spite not being a concrete MD approach, because it did not specify concrete modeling languages and associated tools,
MDA still defends the use of several concrete OMG specifications (that is the reason that we put it in Fig. 7 a little below
MDD and MBT), namely: (1) MOF as a core component of its meta-modeling architecture; (2) QVT6 as a set of languages for
model query and transformations; and (3) UML Profiles7 as a simple but practical way to define graphical DSMLs. However,
the creation of DSMLs based on UML profile mechanism – i.e., based on the definition of stereotypes, tags and constraints –,
is not free of criticism. For example, the definition of a UML stereotype allows adding new properties to the original element,
but not to eliminate or inhibit the properties of the original element. In addition, modeling tools that support the UML
Profile mechanism usually do not check properly the quality of these models. On the other hand, this mechanism is broadly
supported by UML CASE tools and development environments and, consequently, it is used easily to define DSMLs.

5.2. Middle-level approaches (MD MetaTools)

In the middle-level of Fig. 7 we identify MD approaches as proposed by their respective companies or communities.
These approaches are conducted by technologies and usually supported by complex tools that we refer as “MD MetaTools”
and are commonly known as “language workbenches” [18]. Most of these tools provide a collection of features to help users
to define DS(M)Ls, with specific editors, model validation, model transformation, etc. Below we briefly introduce Eclipse
6 QVT (Query/Views/Transformations). http://www.omg.org/spec/QVT/
7 UML Profiles. http://www.uml.org/

http://www.omg.org/spec/QVT/
http://www.uml.org/


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 151
EMF, Microsoft Software Factories, and JetBrains MPS, but many others could be considered as well, namely: MetaEditþ
[79], SDF/Stratego/Spoofax [30], xText [5], Obeo Designer/Sirius [82] or some academic proposals such as MIC (Model
Integrated Computing) [78] with the tool GME (Generic Modeling Environment) [1], VMTS [38], MetaSketch [50], or
AtomPM ([77]).

A detailed analysis of Microsoft DSL Tools, alongside with equivalent tools (e.g., Enterprise Architect, MetaSketch or
MetaEditþ) is discussed in [60] and other comparison of MDE approaches for Web-application development in [61]. Savić
et al. report their experience using MPS to implement the SilabReq language, a text language for requirements specification
[62]. Additionally, they compare MPS with other alternative tools – namely Spoofax, Obeo Designer, MetaEditþ , XText,
Papyrus and EMFText – in what respect the following criteria: support for the abstract and concrete syntax definition, and
supported IDEs. Furthermore the annual Language Workbench Challenge (LWC) is another initiative that promotes the
comparison and discussion of DSL workbenches. Erdweg et al. present and discuss 10 language workbenches that
participated in LWC'2013 [18]. The set of tools analyzed was defined according to the tools that applied to solve an
assignment and were subsequently accepted. The assignment was to implement a DSL for questionnaires, which should be
rendered as an interactive GUI reactive to user input to present additional questions. Additionally, the DSLs produced did not
have the restriction of being graphical.

Eclipse Modeling Project8 focuses on the evolution and promotion of model-based development technologies within the
Eclipse community by providing a unified set of modeling frameworks, tooling, and standards implementations. Eclipse
Modeling Project involves an integrated set of extensible tools and frameworks, including EMF (at the core), graphical
modeling, textual modeling, and concrete modeling tools particularly supporting OMG specifications, such as UML, OCL,
SysML, and BPMN. EMF (Eclipse Modeling Framework) [75] is the core modeling framework and code generation facility for
building tools and applications based on models defined in the Ecore meta metamodel. There are several tools and
frameworks developed on top of EMF such as GMF, Sirius, GMF-Tooling, MoDisco, Papyrus, Acceleo, ATL, Epsilon, MMT,
Xtext, etc. In general, most of these tools are popular, relatively easy to use and maintain, and they have an open and strong
community support.

Microsoft Software Factories [24] is the approach proposed by Microsoft strongly inspired by the "assembly line"
metaphor, found in industrial automation areas, which has also been adopted by software engineering through initiatives
such as Software Product Lines [12]. A software factory is a structured collection of related software assets used for creating
specific types of software, and may include processes, DSLs, templates, integrated development environment, configurations
and views. Microsoft Visual Studio offers an integrated suite of tools, called Visualization and Modeling SDK9 (previously
named DSL Tools), which supports the realization of software factories, in particular by providing support to the definition of
DSLs, with their respective source code or documentation generators.

Finally, JetBrains Meta Programing System (MPS)10 is open source and is developed by JetBrains. MPS is is a projectional
language workbench, which means that no grammar and parser is involved. Instead, an editor allows changing directly the
underlying abstract syntax tree, which is projected in a way that looks like text. MPS supports mixed notations (such as
textual, symbolic, tabular, graphical) and a wide range of language composition features based on the BaseLanguage, which
is the MPS's meta metamodel. MPS users extend this BaseLanguage to define their own languages: during the process of
creating a new language the users directly derive concepts from the BaseLanguage or combine concepts from other existent
languages [83].
5.3. Concrete-level approaches (MD tools)

Finally, the bottom of Fig. 7 shows some example of concrete MD approaches, namely XIS-Mobile, WebService Software
Factory, SilabMDD, and PBGT. These examples show the applicability of the proposed model in a way that it allows clearly
classifying and describing these (and other) MD approaches.

XIS-Mobile11 is a MDD approach to increase the productivity of developing cross-plaform mobile applications. The XIS-
Mobile DSL was defined as a UML profile, with a multi-view organization that supports two design approaches: the dummy
and the smart design approach. XIS-Mobile has a supporting framework based on Sparx Systems Enterprise Architect MDG
Technology and EMF, which intends to generate source code for multiple platforms from a single PIM model specification,
through M2M and M2T transformations. Composed of four major components, this framework suggests developing a
mobile application in four steps whenever possible: defining of the required views using the Visual Editor, validating them
using the Model Validator, generating the User-Interfaces View models with the Model Generator, and finally generating the
application's source code through the Code Generator. This way the developer takes advantage of the MDD benefits, namely
increasing his productivity by using a single specification of the system, by avoiding the implementation of boilerplate code
and reducing errors ([58,59]).
8 Eclipse Modeling, http://eclipse.org/modeling/
9 VSVMSDK (Visual Studio Visualization and Modeling SDK). http://archive.msdn.microsoft.com/vsvmsdk
10 JetBrains MPS, https://www.jetbrains.com/mps/
11 XIS-Mobile, https://github.com/MDDLingo/xis-mobile

http://eclipse.org/modeling/
http://archive.msdn.microsoft.com/vsvmsdk
https://www.jetbrains.com/mps/
https://github.com/MDDLingo/xis-mobile


Table 4
Related work analysis – Part 2.

Related Work Seidewitz, 2003
(2003) [64]
What models
mean

Stahl et al., (2005) [74], Model-
Driven Software Development

Favre et al., (2005) [19],
Towards a megamodel to
model software evolution
through transformations

Kühne, 2006 (2006) [37], Matters
of (meta-) modeling

Definition
of

System Y N (not explicit) Y Y
Model Y Y (Formal Model) Y Y
System to Model
relation

N (not explicit) N (not explicit) Y (RepresentationOf) Y ( model-of )

Metamodel Y Y Y Y
Model to
Metamodel
relationships

N (not explicit) Y (instanceof) Y (ConformsTo) Y (instance-of)

Modeling
Language

Y Y Y (with the ElementOf
association)

Y

Modeling
Language Facets

N Y N N

Transformation N Y Y (with the IsTransformedIn
association)

N

Software
Platform

N Y N (not explicit) N (not explicit)

Software
Product

N Y N (not explicit) N (not explicit)

Approach Discussed Textually, with a
generic and
informal
discussion of
concepts

Textually and UML class
diagrams, deep discussion of
concepts

Textually and UML class
diagrams, deep discussion
of concepts

Textually and mathematically,
deep discussion of concepts

Key concepts
discussed

models,
metamodels,
modeling
languages, in
general terms

models, metamodels, modeling
languages, transformations,
platforms, products

models, metamodels,
modeling languages,
transformations

models, metamodels, modeling
languages

Complementary
issues discussed

four-layer
metamodeling
architecture;
meaning of
models

domains, domain-specific
languages, model2model and
model2platform
transformation, software
system families

transformation models;
software evolution

descriptive vs prescriptive models;
token models vs type models;
classification vs generalization;
ontological vs linguistic
instatiation

A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155152
Web Service Software Factory12 (also known as the Service Factory) is an example of the Microsoft Software Factories
and is a concrete MDD approach that provides an integrated collection of resources designed to help to quickly and
consistently build Web services that adhere to well-known architecture and design patterns. These resources consist of
patterns and architecture topics in the form of written guidance and models with code generation in the form of tools
integrated with Visual Studio.

SilabMDD is a MDD approach particularly focused on the Requirements discipline and, consequently, also known as a
MDRE (Model-driven Requirement Engineering) approach [39]. SilabMDD includes the SilabReq language which is
implemented with JetBrains MPS. SilabReq is a textual DSL that allow users to define and manage requirements based on
use-cases specification. Consequently, SilabReq imposes a rigorous definition of use case specification, particularly based on
the description of sequences of actions, pre- and post-conditions, and the relations between use cases and elements defined
at domain models (still specified textually). The goal of SilabMDD is to provide a complete software development
workbench (by extending JetBrains MPS) to be used by requirements engineers, developers, as well as non-technical
stakeholders [62,63].

PBGT is a MBT approach that provides generic test strategies (based on user interface (UI) Test Patterns), with multiple
configurations for testing different implementations of UI Patterns. PBGT approach is supported by the PBGT tool, in which
the UI Test Patterns are defined within a domain specific language, PARADIGM, developed on top of the Eclipse Modeling
Framework using the Ecore meta metamodel. PBGT tool is freely available as an Eclipse plugin.13 It is a fully integrated
12 Service Factory, http://servicefactory.codeplex.com/
13 PBGT Tool, http://paginas.fe.up.pt/�apaiva/pbgtwiki/doku.php?id=tools

http://servicefactory.codeplex.com/
http://paginas.fe.up.pt/~apaiva/pbgtwiki/doku.php?id=tools
http://paginas.fe.up.pt/~apaiva/pbgtwiki/doku.php?id=tools


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 153
testing environment that provides functionalities for modeling (either manually or automatically), configuration, automated
test case generation, automated test case execution and test coverage analysis. Currently the PBGT tool is able to test both
web and mobile (Android based) applications on top of the Selenium framework14 ([48], 2014).

6. Related work

As mentioned in Section 1, the objective of this paper is to survey and discuss the essential concepts of MDE and
supporting this survey by a unified conceptual model that would help to clearly identify and relate those concepts. This
research started from earlier work, in particular on the conceptualization of models and metamodels [64,20,19,37],
modeling languages [46,66], and relations between models, transformations, platforms and software products [74].
However and differently from those works, this paper intends to give a simple but broad and integrated view of the key
concepts and respective terminology, and answering to common questions as defined in Table 3. Tables 3 and 4 summarize the
comparative analysis of the related work, those that are more related with this paper, namely focused on the following
references [64,19,74,37].

The paper “What models mean” [64] introduced the concepts of system, model, metamodel and modeling language and
proposed respective definitions. However, this paper did not present any type of conceptual model, and so it is not clear the
relations between those concepts. Also this paper did not discuss any other of the MDE concepts like we did in this paper.

The book “Model-Driven Software Development” [74] gives a good and broad overview of the main concepts of MDE, and
also tries to explain them through a UML-based model. However, it is not completely clear the definitions of system and
model, as well as its relations. However, in spite not being a research paper this is a relevant reference.

The paper “Towards a megamodel to model software evolution through transformations” [19] gave a good inspiration
and starting point to propose this survey, in particular with the idea of a “megamodel for MDE”. The focus of that paper was
just on modeling large-scale software evolution processes. Nevertheless, it also provided some discussion and definitions on
concepts such as system, model, metamodel and model transformations. However, contrary to this paper, only system and
transformation were defined as first citizen concepts in that megamodel. Additionally, that paper did not define concepts,
such as of modeling language, software product, software artefact and software platform.

The paper “Matters of (Meta-) Modeling” [37] provides a formal and extensive definition on the concepts of system,
model, metamodel and modeling language. Additionally, it gives a deep discussion on related subjects such as: token
models, type models, classification versus generalization, ontological versus linguistic instantiation. That is a significant
paper that adopted a formal approach (based on Mathematics expressions) to clearly and unambiguously defined the
referred concepts. However, this paper did not refer the other concepts discussed throughout this paper, such as modeling
language facets, model transformations, software platform and software products.

Finally, none of these papers try to answer and discuss our last research question concerning the relations between MDE
and other MD approaches.

7. Conclusion

MDE is a relatively new engineering approach with some expectations and challenges to be addressed in the next years
[49]. As discussed throughout this paper there are some concrete proposals and many more tools and platforms that, in
some way would achieve that general vision and relevance.

For an effective implementation of MDE several features should be supported and integrated into appropriate tools,
typically classified as IDEs, CASEs and MetaCASEs. Among those we refer the following that can exist in most of these tools,
namely to support: (1) the creation of modeling languages, in particular the creation of their abstract and concrete syntaxes
and the corresponding structural semantics; (2) multi-user and collaborative environment for models design and
management; (3) model validation, with eventual support for model analysis and simulation; (4) model-to-model
transformations; (5) model-to-text transformations; and even in some cases (6) models interpretation and execution.

A variety of tools that embody the main ideas of MDE have been developed and improved over this last decade. Some of
them correspond to tools developed in an academic environment, as is the case of experiments carried out under GME [1],
ProjectIT ([69]), VMTS [38], MetaSketch [50], or AtomPM ([77]). Other tools are commercial, such as the case of Microsoft
Visual Studio Visualization and Modeling SDK, Sparx Enterprise Architect,15 Metacase MetaEditþ ,16 or Obeo Designer.17

Beyond these, it is worth to highlight some tools and technologies currently developed around the Eclipse Modeling Project
and the JetBrains MPS.

The proposed survey on MDE is the result of our research experience in the area throughout this last decade, during
which we have designed and developed several modeling languages, tools and real-world applications following the MDE
approach [69,70,60,72,58,58,59]. The unified conceptual model proposed in this paper might help others to have a broad
vision and a better understanding of MDE and its key concepts and terminology. First, it defines the concepts of system,
14 Selenium, http://docs.seleniumhq.org/
15 Sparxs Enterprise Architect MDG Technologies. http://www.sparxsystems.com.au/resources/mdg_tech/
16 Metacase MetaEditþ . http://www.metacase.com/mep/
17 Obeo Designer, http://www.obeodesigner.com

http://docs.seleniumhq.org/
http://www.sparxsystems.com.au/resources/mdg_tech/
http://www.metacase.com/mep/
http://www.obeodesigner.com


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155154
model and metamodel. Second, it extensively defines the concept of modeling language, with its multiple aspects, namely
abstract syntax, concrete syntax, semantics and pragmatics. Third, it defines, in a cohesive way, the remaining concepts:
software product, software platform, software artefact, model-to-model and model-to-text transformations. Finally, the
paper also clarifies and discusses common terminology, namely by relating MDE with MDD, MBT, MDA and other MD
approaches.

As future work we consider that this survey might be extended by being applied to describe and discuss concrete
modeling languages and concrete MDE approaches. Additionally, it can be used as a general and conceptual framework to
better analyse MDE practices in industry such as discussed in [28].
Acknowledgments

This work was partially supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under the
projects POSC/EIA/57642/2004, CMUP-EPB/TIC/0053/2013, UID/CEC/50021/2013 and DataStorm Research Line of Excellency
funding (EXCL/EEI-ESS/0257/2012). Thanks to my colleagues and PhD and MSc students for their strong participation and
involvement in this research throughout the last decade. Finally, thanks to the anonymous reviewers for their relevant
criticism and suggestions that helped to improve the paper.

References

[1] Agrawal A, Karsai G, Ledeczi A.: An end-to-end domain-driven software development framework. In: Companion of the 18th annual OOPSLA '03 ACM
SIGPLAN Conference, ACM; 2003.

[2] Al-Sibahi AS. On the Computational Expressiveness of Model Transformation Languages, Technical Report, IT University of Copenhagen; 2015.
[3] Atkinson C, Kühne T. Model-driven development: a metamodeling foundation. IEEE Software 2003;20(5):36–41.
[4] Barišić A, Amaral V, Goulao M. Usability evaluation of domain-specific languages. In: International Conference on the Quality of Information and

Commuications Technology (QUATIC'2012), IEEE Computer Society; 2012.
[5] Bettini L. Implementing Domain-Specific Languages with Xtext and Xtend. Packt Publishing Ltd; 2013.
[6] Bézivin J, Gerbé O. Towards a Precise Definition of the OMG/MDA Framework. In: IEEE international conference on automated software engineering;

2001.
[7] Booch G, Rumbaugh J, Jacobson I. The Unified Modeling Language User Guide. Addison Wesley; 1999.
[8] Booch G. Object-Oriented Analysis and Design with Applications. 2nd EditionAddison Wesley; 1994.
[9] Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice. Synthesis Lectures on Software Engineering, Morgan & Claypool,

2012.
[10] Bryant BR, Gray J, Mernik M, Clarke PJ, France RB, Karsai G. Challenges and directions in formalizing the semantics of modeling languages. Comput Sci

Inf Syst 2011;8(2):225–53.
[11] Chang CC, Keisler HJ. Model theory. Elsevier; 1990.
[12] Clements P, Northrop LM. Software Product Lines: Practices and Patterns. Addison-Wesley; 2001.
[13] Crane ML, Dingel J.: Towards a UML virtual machine: implementing an interpreter for UML 2 actions and activities. In: Proceedings of the 2008

conference of the center for advanced studies on collaborative research: meeting of minds. ACM; 2008.
[14] Czarnecki K, Eisenecker UW. Generative programming: methods, tools, and applications. Addison-Wesley; 2000.
[15] Czarnecki K, Helsen S.: Classification of model transformation approaches. In: OOPSLA workshop on generative techniques in the context of model

driven architecture; 2013.
[16] Deursen A, Klint P, Visser J.: Domain-specific languages: an annotated bibliography. ACM Sigplan Notices; 2000.
[17] Dietz J, Proper E, Tribolet J. (Series Editors): The Enterprise Engineering Series, Springer; 2009–2014.
[18] Erdweg S, van der Storm T, Völter M, Boersma M, Bosman R, Cook WR, et al. The state of the art in language workbenches. Softw Lang Eng 2013:

197–217 Springer.
[19] Favre J-M, Nguyen T. Towards a megamodel to model software evolution through transformations. Electron Notes Theor Comput Sci 2005;127:3.
[20] Favre J-M. Megamodelling and Etymology. Dagstuhl Seminar (Transformation Techniques in Software Engineering); 2005.
[21] Frankel D. Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley; 2003.
[22] Gabriel P, Goulao M, Amaral V.: Do Software Languages Engineers Evaluate their Languages? arXiv:1109.6794; 2011.
[23] Gomes, C., Barroca, B., Amaral, V.: Classification of model transformation tools: pattern matching techniques. In: Model-Driven Engineering Languages

and Systems, LNCS 8767, Springer; 2014. p. 619–35.
[24] Greenfield J, Short K, Cook S, Kent S. Software factories: assembling applications with patterns, models, frameworks, and tools. Wiley; 2004.
[25] Harel D, Rumpe B. Modeling languages: syntax, semantics and all that stuff. tech. report MCS00-16, Weizmann Institute of Science; 2000.
[26] Heering J, Mernik M. Domain-specific languages in perspective. CWI; 2007 Technical Report, SEN-E0702.
[27] Hermans F, Pinzger M, Van Deursen A. Domain-specific languages in practice: a user study on the success factors. In: Model driven engineering

languages and systems, LNCS 5795, Springer; 2009. p.423–37.
[28] Hutchinson J, Whittle J, Rouncefield M. Model-driven engineering practices in industry: social, organizational and managerial factors that lead to

success or failure. Sci Comput Program 2014;89:144–61.
[29] Kamandi A, Habibi J. A survey of syntax and semantics frameworks of modeling languages. In: Proceedings of Computer Science and its Applications

(CSA'2009), IEEE Computer Society; 2009.
[30] Kats LC, Visser E. The spoofax language workbench: rules for declarative specification of languages and IDEs. In ACM Sigplan Notices, 45(10), 2010. p.

444–63.
[31] Kelly S, Tolvanen JP. Visual domain-specific modelling: benefits and experiences of using metacase tools. ECOOP Workshop on Model Engineering

2000.
[32] Kelly S, Tolvanen JP. Domain-specific modeling: enabling full code generation. Wiley; 2008.
[33] Kosar T, Oliveira N, Mernik M, Varanda Pereira MJ, Črepinšek M, da Cruz DC, et al. Comparing general-purpose and domain-specific languages: An

empirical study. Comput Sci Inf Syst 2010;7(2):247–64.
[34] Krogstie J. Model-Based Development and Evolution of Information Systems – A Quality Approach. Springer; 2012.
[35] Kruchten P. The rational unified process: an introduction. Addison-Wesley Professional; 2004.
[36] Kühne T, Mezei G, Syriani E, Vangheluwe H, Wimmer M. Explicit transformation modeling. Models Softw Eng 2010:240–55.
[37] Kühne T. Matters of (Meta-) modeling. Softw Syst Model 2006;5(4):369–85.

http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0005
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0010
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0015
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0020
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0025
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0025
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0030
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0035
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0040
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0045
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0045
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0050
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0055
arXiv:1109.6794
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0060
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0065
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0070
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0070
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0075
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0075
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0080
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0085
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0085
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0090
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0095
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0100
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0105


A. Rodrigues da Silva / Computer Languages, Systems & Structures 43 (2015) 139–155 155
[38] Levendovszky T, Lengyel L, Mezei G, Charaf H. A systematic approach to metamodeling environments and model transformation systems in VMTS.
Electron Notes Theor Comput Sci 2005;127(1):65–75.

[39] Loniewski G, Insfran E, Abrahão S.: A systematic review of the use of requirements engineering techniques in model-driven development. In: 13th
international conference on model driven engineering languages and systems (MODELS'10), Springerl; 2010.

[40] Ludewig J. Models in Software Engineering – An Introduction. Softw Syst Model 2003;2(1):5–14.
[41] Luoma J, Kelly S, Tolvanen JP. Defining domain-specific modeling languages: collected experiences. OOPSLAWorkshop on Domain-Specific Modeling;

2004.
[42] Luz MP, Silva AR. Executing UML Models. In: Proceedings of the 3rd workshop in software model engineering, IEEE Computer Society; 2004.
[43] Martin J, Odell J. Object-oriented methods. Pragmatic considerations.Prentice Hall; 1996.
[44] McCarthy J. History of LISP. In: History of programming languages I. ACM; 1978. p. 173–85.
[45] Mellor S, Balcer M. Executable UML: a foundation for model driven architecture. Addison Wesley; 2003.
[46] Mernik M, Heering J, Sloane A. When and how to develop domain-specific languages. ACM Comput Surv 2005;37(4):316–44.
[47] Morais F, Silva AR.: Assessing the Quality of User-Interface Modeling Languages. In: Proceedings of ICEIS’2015 Conference, SCITEPRESS; 2015.
[48] Moreira RM, Paiva AC. PBGT tool: an integrated modeling and testing environment for pattern-based GUI testing. In: Proceedings of the 29th ACM/

IEEE international conference on Automated software engineering, ACM.
[49] Mussbacher G, Amyot D, Breu R, Bruel JM, Cheng BH, Collet P, et al. The relevance of model-driven engineering thirty years from now. Model-driven

engineering languages and systems (MODELS'2014), Springer; 2014.
[50] Nóbrega L, Nunes N, Coelho H.: The meta sketch editor. In: Proceedings of the sixth international conference on computer-aided design of user

interfaces (CADUI'2006), Springer; 2008.
[51] OMG: Object Management Group – MDA (Model Driven Architecture) Guide Version 1.0.1; 2001 Available at 〈http://www.omg.org/mda/〉.
[52] OMG: Object Management Group – Common warehouse metamodel (CWM); 2003 Available at: 〈http://www.omg.org/spec/cwm/〉.
[53] OMG. United Modeling Language Infrastructure Specification, Version 2.4.1; 2011 Available at 〈http://www.uml.org/〉.
[54] OMG. Business Process Model and Notation (BPMN), Version 2.0.2; 2013 Available at: 〈http://www.omg.org/spec/BPMN/〉.
[55] OMG. Object Management Group - Meta Object Facility (MOF) Core Specification, v2.4.2.; 2014 Available at: 〈http://www.omg.org/mof/〉.
[56] OMG. Object Constraint Language (OCL), v2.4; 2014 Available at: 〈http://www.omg.org/spec/OCL/〉.
[57] Paige RF, Kolovos DS, Polack F. A tutorial on metamodelling for grammar researchers. Sci Comput Program 2014;96:396–416.
[58] Ribeiro A, Silva AR. XIS-Mobile: a DSL for Mobile Applications. In: ACM Symposium on Applied Computing (SAC), ACM; 2014a.
[59] Ribeiro A, Silva AR. Evaluation of XIS-Mobile, a domain specific language for mobile application development. J\ Softw Eng Appl 2014;7(11):906–19.
[60] Saraiva J, Silva AR. Evaluation of MDE tools from a metamodeling perspective. J Database Manag 2008;19(4):50–75.
[61] Saraiva J, Silva AR. A reference model for the analysis and comparison of MDE approaches for web-application development. J Softw Eng Appl 2010;3

(5):419–25.
[62] Savić D, Silva AR, Siniša V, Lazarević S, Antović I, Stanojević V, et al.: Preliminary experience using JetBrains MPS to implement a requirements

specification language. In: Proceedings of the Eighth international conference on the quality of information and communications technology. IEEE
Computer Society; 2014.

[63] Siniša V, Lazarević S, Stanojević, Antović I, Milić V, Silva M, et al. Model driven approach. In: Proceedings of the 5th international conference on
information society and technology (ICIST 2015), Society for Information Systems and Computer Networks; 2015.

[64] Seidewitz E. What models mean. IEEE Softw 2003;20(5):26–32.
[65] Selic B. The pragmatics of model-driven development. IEEE Softw 2003;20(5):19–25.
[66] Selic B. A systematic approach to domain-specific language design using UML. In: Proceedings of the international symposium on object and

component-oriented real-time distributed computing (ISORC); 2007.
[67] Selic B. Personal reflections on automation, programming culture, and model-based software engineering. Autom Softw Eng 2008;15(3–4):379–91.
[68] Selic BV, Gaševic D, Djuric D, Bézivin J, Devedžic V.: Model driven engineering and ontology development, Springer; 2009.
[69] Silva AR, Saraiva J, Ferreira D, Silva R, Videira C. Integration of RE and MDE Paradigms: the projectIT approach and tools. IET Softw J 2007;1(6):217–314.
[70] Silva AR, Saraiva J, Silva R, Martins C. XIS-UML Profile for eXtreme Modeling Interactive Systems. MOMPES, IEEE Computer Society; 2007b.
[71] Slonneger K, Kurtz, Barry L. Formal syntax and semantics of programming languages. Addison-Wesley; 1995.
[72] Sousa L, Silva AR. Preliminary design and implementation of DSL3S – a domain specific language for spatial simulation scenarios. In: Proceedings of

the International symposium on cellular automata modeling for urban and spatial systems (CAMUSS); 2012.
[73] Sprinkle J, Rumpe B, Vangheluwe, H, Karsai G. 3Metamodelling – state of the art and research challenges. In: Model-based eng embedded real-time

syst, Springer, 2010. p. 57–76.
[74] Stahl T, Volter M. Model-driven software development. Wiley; 2005.
[75] Steinberg D, Budinsky F, Paternostro M, Merks E, Eclipse EMF. Modeling framework. 2nd editionAddison-Wesley; 2009.
[76] Syriani E, Gray J, Vangheluwe H. Modeling a model transformation language. Domain Eng 2013:211–37.
[77] Syriani E, Vangheluwe H, Mannadiar R, Hansen C, Van Mierlo S, Ergin H. AToMPM: a web-based Modeling Environment. Demos/Posters/

StudentResearch @ MoDELS; 2013b.
[78] Sztipanovits J, Karsai G. Model-integrated computing. IEEE Comput 1997;30(4):110–1.
[79] Tolvanen J-P, Rossi M.: MetaEditþ: defining and using domain-specific modeling languages and code generators. OOPSLA’2003, ACM; 2003.
[80] Utting M, Legeard B. Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann Publishers; 2007.
[81] Vangheluwe H, De Lara J, Mosterman, PJ. An introduction to multi-paradigm modelling and simulation. In: Proceedings of the AIS’2002 conference;

2002.
[82] Viyovic V, Maksimovic M, Perisic B. Sirius: a rapid development of DSM graphical editor. In: International conference on intelligent engineering

systems, IEEE; 2014.
[83] Voelter M, Benz S, Dietrich C, Engelmann B, Helander M, Kats LC, et al.: DSL engineering: designing, implementing and using domain-specific

languages, dslbook.org; 2013.
[84] Weaver P, Lambrou N, Walkley M. Practical SSADM Version 4þ . 2nd editionPrentice Hall; 1998.
[85] Yourdon E. Modern structured analysis. Prentice Hall; 1999.

http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0110
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0110
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0115
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0120
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0125
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0130
http://www.omg.org/mda/
http://www.omg.org/spec/cwm/
http://www.uml.org/
http://www.omg.org/spec/BPMN/
http://www.omg.org/mof/
http://www.omg.org/spec/OCL/
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0135
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0140
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0145
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0150
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0150
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0155
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0160
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0165
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0170
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0175
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0180
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0185
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0190
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0195
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0200
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0205
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0205
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0205
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0205
http://refhub.elsevier.com/S1477-8424(15)00040-8/sbref0210

	Model-driven engineering: A survey supported by the unified conceptual model
	Introduction
	Models and metamodels
	Model
	Model definition
	Criteria and principles

	Metamodel
	Metamodel definition
	Meta-metamodel, metamodel and model


	Modeling language
	Abstract syntax
	Concrete syntax
	Semantics
	Pragmatics
	Classification of a modeling language
	Discussion

	Software products, platforms and transformations
	From abstract to concrete model-driven approaches
	High-level approaches
	Middle-level approaches (MD MetaTools)
	Concrete-level approaches (MD tools)

	Related work
	Conclusion
	Acknowledgments
	References




