
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Binary Search Trees

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

2

Today

 Search

 Linear search

 Binary Search Trees

 Tree traversals (using divide-and-conquer)

 Searching

 Insertion

 Deletion

© André de Carvalho - ICMC/USP

Introduction

 Search is frequently in several applications

 Games

 Best players in checker and chess are search
algorithms

 Minimum path

 Traveller salesman problem are solved by search
algorithms

 Search engines

 Search algorithms can find the most relevant sites

 Dictionaries

© André de Carvalho - ICMC/USP 3

Chess

 In 1997, the current world champion Gary
Kasparov played 6 games against Deep Blue, a
program written by IBM researchers

 Deep Blue won 3, lost 2, tied 1
 Searched 126.000.000 nodes per sec

 Generated 30 billion positions per move,
reaching depth 14 routinely

© André de Carvalho - ICMC/USP 4

5

Dictionaries

 Dictionary Abstract data type (ADT)

 Dynamic set with methods:
 Search(S, k) – a query method that returns a

pointer x to an element, where x.key = k
 Insert(S, x) – a modifier method that adds

the element pointed to by x to S

 Delete(S, x) – a modifier method that
removes the element pointed to by x from S

 An element has a key part and a satellite
data part

© André de Carvalho - ICMC/USP 6

Ordered Dictionaries

 Besides the previous functions, it should also
support the priority-queue-type operations

 Min(S)

 Max(S)

 It would be useful to support

 Predecessor(S, k)

 Successor(S, k)

 These operations require the keys to be
comparable

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 2

Ordered Dictionaries

 Basic data structures for ordered
dictionaries

 Sorted linked list

 Sorted array

© André de Carvalho - ICMC/USP 7

42 871 3 5HEAD

42 871 3 5
1 2 3 4 5 6 7

Sorted arrays

 O(n) insert/delete:

 O(lg(n)) search, O(1) select:

© André de Carvalho - ICMC/USP 8

421 3

42 871 3 5

Search: Binary search to see if 3 is in A

8754.5

Select: Third smallest is A[3]

42 871 3 5

Linked lists

 O(1) insert/delete

 Assuming we have a pointer to the location of
the insert/delete operation:

 O(n) search/select:

© André de Carvalho - ICMC/USP 9

42 871 3 5HEAD

6

42 871 3 5HEAD

42 871 3 5

Search complexity

© André de Carvalho - ICMC/USP 10

Sorted
Arrays

Linked
Lists

Binary
Search
Trees

Search O(lg(n)) O(n) O(lg(n))

Insert /
Delete

O(n) O(1) O(lg(n))

Binary Search Trees (BSTs)

 Each tree node has:

 Satellite data: application-
based information stored in
each node

 key: identifying field
allowing element ordering

 left: pointer to left child
(may be NULL)

 right: pointer to right child
(may be NULL)

 p: pointer to parent node
(NULL for the root)

© André de Carvalho - ICMC/USP 11

Left child Right child

L R

P

key Satellite
data

Parent

12

Binary Tree ADT

 BinTree ADT:

 Accessor functions:
 key():int

 parent(): BinTree

 left(): BinTree

 right(): BinTree

 Modification procedures:

 setKey(k:int)

 setParent(T:BinTree)

 setLeft(T:BinTree)

 setRight(T:BinTree)

Root

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 3

13

Binary Search Trees (BSTs)

 A binary tree T in which:
 Each internal node stores an item (k,e) of a dictionary

 Keys stored at nodes in the left subtree of v are
smaller than or equal to k

 keys stored at nodes in the right subtree of v are
larger than or equal to k

 E.g.: BST for the sequence 2,3,5,5,7,8

© André de Carvalho - ICMC/USP 14

Tree Walks

 Allow print the Keys in a BST
 E.g.: inorder tree traversal

 Key of each node is printed between keys in the left
and right subtree

 Divide-and-conquer algorithm

 Prints elements in monotonically increasing order

 Running time O(n)

InorderTreeWalk(x)
01 if x NIL then
02 InorderTreeWalk(x.left())
03 print x.key()
04 InorderTreeWalk(x.right())

© André de Carvalho - ICMC/USP

15

Inorder Tree Walks

 Create a projection of the BST nodes onto
a 1-dimensional interval

2 3 4 5 5 7 10 11

© André de Carvalho - ICMC/USP 16

Other Tree Walks

 Preorder tree walk

 Processes each node before processing its
children

 Postorder tree walk

 Processes each node after processing its
children

© André de Carvalho - ICMC/USP

17

Divide-and-Conquer

 Natural approach for algorithms on trees

 Example: Find the height of the tree:

 If the tree is NIL the height is -1

 Else the height is the maximum of the heights
of the tree children + 1

© André de Carvalho - ICMC/USP 18

Searching a BST

 To find an element with key k in a tree T
 Compare k with T.key()

 If k < T.key(), search for k in T.left()

 Else search for k in T.right()

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 4

19

 Recursive version – divide-and-conquer algorithm

Pseudocode for BST Search

Search(T,k)
01 if T = NIL then return NIL
02 if k = T.key() then return T
03 if k < T.key()
04 then return Search(T.left(),k)
05 else return Search(T.right(),k)

Search(T,k)
01 x T
02 while x NIL and k x.key() do
03 if k < x.key()
04 then x x.left()
05 else x x.right()
06 return x

 Iterative version

© André de Carvalho - ICMC/USP 20

Search Examples

 Search(T, 11)

© André de Carvalho - ICMC/USP

5

4

72

3

5

11

10

21

Search Examples (2)

 Search(T, 6)

5

4

72

3

5

11

10

Nil

© André de Carvalho - ICMC/USP 22

Search Examples 2

 Search(T, 6)

5

4

72

3

5

11

10

Nil

© André de Carvalho - ICMC/USP

23

Analysis of Search

 Running time on tree of height h is O(h)

 After the insertion of n keys, the worst-case
search running time is O(n)

© André de Carvalho - ICMC/USP 24

BST Minimum (Maximum)

 Find the minimum key in a tree rooted at x
(compare to a solution for heaps)

 Running time O(h)

 Proportional to the height of the tree

TreeMinimum(x)
01 while x.left() NIL do
02 x x.left()
03 return x

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 5

25

Successor

 Given x, find the node with the smallest
key that is larger than x.key()

 There are two possible cases, depending
on the right subtree of x
 Case 1: the right subtree of x is nonempty

 Case 2: the right subtree of x is empty

© André de Carvalho - ICMC/USP 26

Successor

 Case 1: the right subtree of x is nonempty
 Successor is the leftmost node in the right

subtree
 Why?

 Can be found by returning
TreeMinimum(x.right())

© André de Carvalho - ICMC/USP

27

Successor (2)

 Case 2: the right subtree of x is empty

 Successor is the lowest ancestor of x whose
left child is also an ancestor of x

 Why?

© André de Carvalho - ICMC/USP 28

 For a tree of height h, the running time is
O(h)

Successor Pseudocode

TreeSuccessor(x)
01 if x.right() NIL
02 then return TreeMinimum(x.right())
03 y x.parent()
04 while y NIL and x = y.right()
05 x y
06 y y.parent()
03 return y

© André de Carvalho - ICMC/USP

29

BST Insertion

 The basic idea is similar to searching

 Take an element (tree) z (whose left and right
children are NIL) and insert it into T

 Find place in T where z belongs, as if
searching for z.key()), and add z there

 The running on a tree of height h is O(h)

© André de Carvalho - ICMC/USP 30

BST Insertion Pseudo Code

TreeInsert(T,z)
01 y NIL
02 x T
03 while x NIL
04 y x
05 if z.key() < x.key()
06 then x x.left()
07 else x x.right()
08 z.setParent(y)
09 if y NIL
10 then if z.key() < z.key()
11 then y.setLeft(z)
12 else y.setRight(z)
13 else T z

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 6

BST Insertion example

 Insert 8

© André de Carvalho - ICMC/USP 31

5

4

72

3

5

10

5

4

72

3

5

8

10

32

BST Insertion: Worst Case

 In what kind of sequence should the
insertions be made to produce a BST of
height n?

© André de Carvalho - ICMC/USP

33

BST Sorting

 Use TreeInsert and InorderTreeWalk to sort
a list of n elements, A

TreeSort(A)
01 T NIL
02 for i 1 to n
03 TreeInsert(T, BinTree(A[i]))
04 InorderTreeWalk(T)

© André de Carvalho - ICMC/USP 34

 Sort the following numbers 5 10 7 1 3 1 8

 Build a binary search tree

 Call InorderTreeWalk

1 1 3 5 7 8 10

BST Sorting example

© André de Carvalho - ICMC/USP

35

Deletion

 Delete node x from a tree T

 We can distinguish three cases

 x has no children

 x has one child

 x has two children

© André de Carvalho - ICMC/USP 36

Deletion Case 1

 If x has no children, just remove x

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 7

37

Deletion Case 2

 If x has exactly one child, then to delete x,
simply make x.parent() point to that child

© André de Carvalho - ICMC/USP 38

Deletion Case 3

 If x has two children, then
to delete it we have to:

 Find its successor (or
predecessor) y

 Remove y

 Note that y has at most one
child

 Why?

 Replace x with y

© André de Carvalho - ICMC/USP

39

Delete Pseudocode

TreeDelete(T,z)
01 if z.left() = NIL or z.right() = NIL
02 then y z
03 else y TreeSuccessor(z)
04 if y.left() NIL
05 then x y.left()
06 else x y.right()
07 if x NIL
08 then x.setParent(y.parent())
09 if y.parent() = NIL
10 then T x
11 else if y = y.parent().left()
12 then y.parent().setLeft(x)
13 else y.parent().setRight(x)
14 if y z
15 then z.setKey(y.key()) //copy all fileds of y
16 return y

© André de Carvalho - ICMC/USP 40

Balanced Search Trees

 Problem: worst-case execution time for
dynamic set operations is Q(n)

 Solution: balanced search trees guarantee
small height!

© André de Carvalho - ICMC/USP

41

Next Lecture

 Hashing

© André de Carvalho - ICMC/USP

Acknowledgement

 A large part of this material were adapted from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 42

CHOROCHRONOS Midter Review

Timos Sellis 8

Questions

43© André de Carvalho - ICMC/USP

