

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

Today

- Sorting algorithms
- Bubblesort
- Simple and similar to Mergesort
- Quicksort
- Popular algorithm, very fast on average
- Selection sort
- Simple algorithm, inefficient for large structures
- Heapsort
- Heap data structure

Importance of Sorting

- One of the principles of algorithm design . "When in doubt, sort"
- Sorting is used as a subroutine in many algorithms:
- Searching in databases, to allow binary search to be applied to sorted data
- Element uniqueness, by duplicate elimination
- Several computer graphics and computational geometry problems
- Find the closest pair
© André de Carvalho - ICMC/USP

Importance of Sorting

- A large number of sorting algorithms have been developed
- Representing different algorithm design techniques
- Lower bound for sorting, $\Omega(n \log n)$, is often used to prove lower bounds of other problems
© André de Carvalho - ICMC/USP

Definitions

- Input:
- A sequence of n items $a_{1}, a_{2}, \ldots, a_{n}$
- Output:
- A permutation (reordering) $a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}$ of the input sequence such that $a_{1}{ }^{\prime} \leq a_{2}{ }^{\prime} \leq \ldots \leq a_{n}{ }^{\prime}$
- The items to be sorted are usually part of a collection of data, named record
- Usually, a file store the records $R_{1} \ldots R_{n}$

Definitions

- Each record R_{i} has:
- A key K_{i}
- Possibly other (satellite) data
- Input: n records, $R_{1} \ldots R_{n}$, from a file
- Output: n records, $R_{1}{ }^{\prime} \ldots R_{n}{ }^{\prime}$, from a file ordered by the value of k_{i}

Key	Other data
Record	

Definitions

- Sorting: defines permutation $\Pi=\left(p_{1}, \ldots, p_{n}\right)$ of n records with the keys in non-decreasing order
- $K p_{1} \leq \ldots \leq K p_{n}$
- Permutation: a one-to-one function from $\{1, \ldots, n\}$ onto itself
- There are n ! distinct permutations of n items
- Rank. Given a collection of n keys, the rank of a key is the number of keys before it
- $\operatorname{Rank}\left(K_{j}\right)=\left|\left\{K_{j} K_{i}<K_{j}\right\}\right|$
- If the keys are distinct, the rank of a key gives its position in the sorted sequence

Bubblesort

- Repeatedly pass through the array to be sorted
- Swap adjacent elements that are not in the correct order

- Easier to implement, but usually slower than insertion sort

Sorting Algorithms so far

- Insertion sort, selection sort, bubble sort
- Worst-case running time $\Theta\left(n^{2}\right)$
- Sort in place
- Use a constant number of items outside the array
- Merge sort
- Worst-case running time $\Theta(n \log n)$, but requires additional memory $\Theta(n)$
- Does not sort in place

Quicksort

- Main characteristics
- Like insertion sort, sorts in-place
- Unlike merge sort
- Worst case $O\left(n^{2}\right)$
- But, on average, its complexity is $O(n \log n)$ - With small constant factors
- In practice, the best choice for sorting
- Works well in virtual memory environments

Quicksort

- A divide-and-conquer algorithm
- Divide: partition array into 2 subarrays with elements in the lower part <= elements in the higher part
- For such, uses a pivot
- Conquer: recursively sort the 2 subarrays
- Combine: trivial since sorting occurs in place

Quicksort Algorithm

```
Quicksort(A,P,r)
    if p<r
    then q \leftarrowPartition (A,p,r)
        Quicksort (A,p,q)
        Quicksort(A,q+1,r)
```

Initial call: Quicksort(A, 1, length[A])
Partitioning

- Linear time procedure

Analysis of Quicksort

- Assume that all input items are distinct
- Exchange items with the same value
- Running time depends on the distribution of array splits
- Whether they are balanced
- Which element (pivot) is used for partitioning

Best Case

- Partition splits the array evenly
$T(n)=2 T(n / 2)+\Theta(n)$

Worst Case

- One side of the partition has only one item

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ T(n-1)+\Theta(n) & \text { if } n>1\end{cases}
$$

$T(n)=T(n-1)+\Theta(n)$
$=\sum_{k=1}^{n} \Theta(k)$
$=\theta\left(\sum_{k=1}^{n} k\right)$
$=\theta\left(n^{2}\right)$

Worst Case

Worst Case

- Worst case appear when
- The input is sorted (Ex.: 1, 2, 3)
- The input is reverse sorted (Ex.: 3, 2, 1)
- Same recurrence for the worst case of insertion sort
- However, sorted input produces the best case for insertion sort: $\theta(n)$

Analysis of Quicksort

- Suppose the split is $1 / 10: 9 / 10$
$T(n)=T(n / 10)+T(9 n / 10)+\Theta(n)=\Theta(n \log n)$!

Average Case Scenario

- Suppose, we alternate best and worst cases to get an average behavior

$$
(\mathrm{n}-1) / 2 \quad(\mathrm{n}-1) / 2
$$

$L(n)=2 U(n / 2)+\Theta(n)$ Best $U(n)=2 L(n-1)+\Theta(n)$ Worst Substituting:
$L(n)=2(L(n / 2-1)+\Theta(n / 2))+\Theta(n)$
$=2 L(n / 2-1)+\Theta(n)$ $=\Theta(n \operatorname{lgn})$
© André de Carvalho - ICMC/USP

Average Case Scenario

- How to be sure that we are usually lucky?
- Partition around the "middle" ($\mathrm{n} / 2 \mathrm{th}$) element? - No difference
- Partition around a random element (works well in practice)
- Randomized algorithm
- Running time is independent of the input ordering
- No specific input triggers worst-case behaviour
- The worst-case is only determined by the output of the random-number generator

Randomized Quicksort

- Assume all elements are distinct
- Partition around a random element
- All splits (1:n-1, 2:n-2, ..., n-1:1) become equally likely with probability $1 / n$
- Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity

Randomized Quicksort

Randomized-Partition ($\boldsymbol{A}, \mathbf{p}, \boldsymbol{r}$)
$i \leftarrow \operatorname{Random}(p, r)$
exchange $A[r] \leftrightarrow A[i]$
return Partition (A, p, r)

Randomized-Quicksort(A, $P, r)$
if $p<r$ then
$q \leftarrow$ Randomized-Partition (A, p, r)
Randomized-Quicksort (A, p, q)
Randomized-Quicksort ($A, q+1, r$)
© André de Carvalho - ICMC/USP

Selection Sort

Selection-Sort (A[1..n]):
For $i \rightarrow n$ downto
A: Find the largest element in A[1..i]
B: Exchange it with A[i]

- A takes $\Theta(n)$ and B takes $\Theta(1): \Theta\left(n^{2}\right)$ in total
- Possibility of improvement:
- Use a smart data structure to do both A and B in $\Theta(1)$
- Spend only $O(\lg n)$ time in each iteration reorganizing the structure
- Result: total running time of $O(n \log n)$

Binary trees

- Binary tree: tree in which each node is either a leaf or has degree ≤ 2
- Full binary: a binary tree in which each node is either a leaf or has degree exactly 2
- Complete binary tree: a full binary tree in which all leaves are on the same level

Complete binary tree

Binary trees

- Height of a node: number of edges on the longest simple path from the node to a leaf
- Level of a node: length of a path from the root to the node
- Height of a tree: height of its root node

Heap Sort

- Uses an array A as a binary heap data structure
- Array A can be seen as a nearly complete binary tree - Each node in the tree is an item in A
- The value in the root is larger than or equal to all its children
- The left and right subtrees are again binary heaps
- Does sort in place
- Array A has two external attributes
- length[A]: number of items in A
- heap-size $[A]$: number of items in the heap stored in A
- No item after A[heap-size[A]] is an item of the heap

Heap Sort

- In a heap stored as an array A
- Root of tree is A[1]

Left child of $A[i]=A[2 i]$

- Right child of $A[i]=A[2 i+1]$

- Parent of $A[i]=A[L i / 2\rfloor]$
- Heapsize[A] \leq length $[A]$
- The elements in the subarray $\mathrm{A}[(\lfloor\mathrm{n} / 2\rfloor+1)$.. n$]$ are leaves

Heap Sort

- Implicit tree links:
- Children of node i are nodes $2 i$ and $2 i+1$
- Parent of node i is node Li/2」
- Why is this useful?
- In the binary representation
- Multiplication (division) by two is left (right) shift
- To add 1, just add to the lowest bit

Heap types

- Max-heaps
- Largest element at root, have the max-heap property:
- for all nodes i , excluding the root: A[PARENT(i)] \geq A[i]
- Min-heaps
- Smallest element at root, have the min-heap property:
- for all nodes i , excluding the root: A[PARENT(i)] \leq A[i]

Operations on heaps

- Adding nodes:
- New nodes are always inserted at the bottom level (left to right)
- Deleting nodes:
- Nodes are removed from the bottom level (right to left)

Operations on heaps

- Maintain/Restore the max-heap property - Max-Heapify
- Create a max-heap from an unordered array
- Build-Max-Heap
- Sort an array in place
- Heapsort

Maintaining heap properties

- Max-Heapify
- Binary trees rooted at Left(() and Right(I) are heaps
- However, $A[]$ may be smaller than its children, violating the max-heap property
- To eliminate the violation:

- Exchange $A[]$ with larger child
- Move down the tree until node is not smaller than its children

Max-Heapify running time

- Intuitively:
- Max-Heapify runs a path from the root to a leaf
- Longest path: h
- At each level, it makes exactly 2 comparisons
- Total number of comparisons: $2 h$
- Height of the heap (h) is $\lfloor\mathrm{lgn}$ /
- Running time: $O(h)=O$ (lgn)
- Running time of Max-Heapify: O(lgn)

Building a Heap

- Convert an array $A[1 . . . n]$ into a heap
- Consider $n=$ length[A]
- Elements in the subarray $\mathrm{A}[(\lfloor\mathrm{n} / 2\rfloor+1) \ldots n]$, which are leaves, are already 1-element heaps
- Apply Max-Heapify to elements from 1 to $\lfloor\mathrm{n} / 2\rfloor$

Build-Max-Heap (A) $n \leftarrow$ length (A)

Build-Max-Heap running time

```
Build-Max-Heap (A)
    n}\leftarrow\mathrm{ length(A)
    for }i\leftarrow\lfloor\mp@code{n/2] downto 1
                do Max-Heapify (A,i)}O(lgn)>O(n
```

- Running time: O (nlgn)
- As sometimes heaps are built for other reasons, it
would be nice to have a tight bound
- It is possible to derive a tighter bound
- Time for Max-Heapify to run at a node varies with the height of the node
. Heights of most nodes are small
© André de Carvalho - ICMC/USP

Heapsort

- Goal: sort an array using heap representations
- Procedure:

- Build a max-heap from the array
- Swap the root (the maximum element) with the last element in the array
- "Discard" this last node by decreasing the heap size
- Call Max-Heapfy on the new root
- Repeat process until only one node remains

Heapsort running time

Heapsort (A)
Build-Max-Heap (A)
for $i \leftarrow$ length $[A]$ downto 2 do exchange $A[1] \leftrightarrow A[i]$ heap-size[A] \leftarrow heap-size[A]-1 Max-Heapfy $(A, 1)$

- We discard the previous root when applying MaxHeap (to the remaining heap)
- Running time is $O(n \lg n)+$ Build-Heap (A) time, which is $O(n)$
© André de Carvalho - ICMC/USP

Summary

- Heapsort uses a heap data structure to improve selection sort and make the running time asymptotically optimal
- Running time is $O(n \log n)$
- Like merge sort, but unlike selection, insertion, or bubble sorts
- Sorts in place
- Like insertion, selection or bubble sorts, but unlike merge sort

Summary

- Why Max-Heapify instead of Min-Heapify
- It is not easy to recover the elements in increasing order if we use Min-Heapify - See heap below
- We could use Min-Heapify to sort in the decreasing order

Exercise

- Assuming the data in a max-heap are distinct, what are the possible locations of the second-largest element?

Exercise

Demonstrate, step by step, the operation of Build-Heap on the array
$A=[5,3,17,10,84,19,6,22,9]$

Exercise

- Let A be a heap of size n . Give the most efficient algorithm for the following tasks:
(a) Find the sum of all elements
(b) Find the sum of the largest Ign elements

