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Today

 Sorting algorithms

 Bubblesort

 Simple and similar to Mergesort

 Quicksort

 Popular algorithm, very fast on average

 Selection sort 

 Simple algorithm, inefficient for large structures

 Heapsort 

 Heap data structure
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Importance of Sorting

 One of the principles of algorithm design

 “When in doubt, sort”

 Sorting is used as a subroutine in many 
algorithms:

 Searching in databases, to allow binary search to be 
applied to sorted data

 Element uniqueness, by duplicate elimination

 Several computer graphics and computational 
geometry problems

 Find the closest pair
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Importance of Sorting

 A large number of sorting algorithms have 
been  developed 

 Representing different algorithm design 
techniques

 Lower bound for sorting, W(n log n), is 
often used to prove lower bounds of other 
problems
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Definitions

 Input: 

 A sequence of n items a1, a2,…, an

 Output: 

 A permutation (reordering) a1’, a2’, …, an’ of the 

input sequence such that  a1’ ≤ a2’ ≤ …≤ an’

 The items to be sorted are usually part of a 

collection of data, named record

 Usually, a file store the records R1 … Rn
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Definitions

 Each record Ri has:

 A key Ki

 Possibly other (satellite) data

 Input: n records, R1 … Rn , from a file

 Output: n records, R1’ … Rn’ , from a file 
ordered by the  value of ki
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Key Other data

Record



CHOROCHRONOS Midter Review

Timos Sellis 2

Definitions

 Sorting: defines permutation  = (p1, … , pn) of 
n records with the keys in non-decreasing order

 Kp1 < … < Kpn

 Permutation: a one-to-one function from 
{1, …, n} onto itself  
 There are n! distinct permutations of n items

 Rank:  Given a collection of n keys, the rank of a 
key is the number of keys before it

 Rank(Kj) = |{Ki| Ki < Kj}|

 If the keys are distinct, the rank of a key gives its 
position in the sorted sequence
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Definitions

 Internal Sort

 Data to be sorted are all stored in the main 
memory

 External Sort

 Some of the data to be sorted might be stored 
in an external, slower, device

 In Place Sort

 The amount of extra space required to sort the 
data is constant with the input size
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Bubblesort

 Repeatedly pass through the array to be 
sorted

 Swap adjacent elements that are not in the 
correct order

 Easier to implement, but usually slower 
than insertion sort
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Bubblesort

 What is the complexity of bubblesort?

 Exercise
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1329648

i = 1 j

i

Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

Bubblesort
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Bubblesort(A)
for i  1 to length[A]

do for j  length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]
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Sorting Algorithms so far

 Insertion sort, selection sort, bubble sort

 Worst-case running time Q(n2)

 Sort in place

 Use a constant number of items outside the array

 Merge sort

 Worst-case running time Q(n log n), but 
requires additional memory Q(n)

 Does not sort in place
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Quicksort

 Main characteristics

 Like insertion sort, sorts in-place 

 Unlike merge sort

 Worst case O(n2)

 But, on average, its complexity is O(n log n)
 With small constant factors

 In practice, the best choice for sorting

 Works well in virtual memory environments
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Quicksort

 A divide-and-conquer algorithm

 Divide: partition array into 2 subarrays with 
elements in the lower part <= elements in the 
higher part

 For such, uses a pivot

 Conquer: recursively sort the 2 subarrays

 Combine: trivial since sorting occurs in place
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Quicksort Algorithm

Initial call: Quicksort(A, 1, length[A])

Quicksort(A,p,r)
if p < r
then q  Partition(A,p,r)

Quicksort(A,p,q)
Quicksort(A,q+1,r)
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Partitioning

 Linear time procedure

Suppose array A[p..r]

Partition(A,p,r)
x  A[r] /* pivot */
i  p-1
j  r+1
while TRUE

repeat j  j-1
until A[j]  x

repeat i  i+1
until A[i]  x

if i<j
then exchange A[i] A[j]
else return j

17 12 6 19 23 8 5 10

i i j j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

x=a[8]=10 
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Analysis of Quicksort

 Assume that all input items are distinct

 Exchange items with the same value

 Running time depends on the distribution 
of array splits

 Whether they are balanced

 Which element (pivot) is used for partitioning
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Best Case

 Partition splits the array evenly
( ) 2 ( / 2) ( )T n T n n 
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Worst Case

 One side of the partition has only one item
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Worst Case

© André de Carvalho - ICMC/USP
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Worst Case

 Worst case appear when

 The input is sorted (Ex.: 1, 2, 3)

 The input is reverse sorted (Ex.: 3, 2, 1)

 Same recurrence for the worst case of 
insertion sort

 However, sorted input produces the best 
case for insertion sort: �(n)

© André de Carvalho - ICMC/USP 22

Analysis of Quicksort

 Suppose the split is 1/10 : 9/10
( ) ( /10) (9 /10) ( ) ( log )!T n T n T n n n n    
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Average Case Scenario

 Suppose, we alternate 
best and worst cases 
to get an average 
behavior

n

1 n-1

(n-1)/2 (n-1)/2

( )n
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L(n) = 2U(n/2) + Q(n)   Best
U(n) = 2L(n-1) + Q(n)  Worst
Substituting:
L(n) = 2(L(n/2-1) + Q(n/2)) + Q(n)

= 2L(n/2-1) + Q(n)
= Q(nlgn)
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Average Case Scenario

 How to be sure that we are usually lucky?

 Partition around the ”middle” (n/2th) element?
 No difference

 Partition around a random element (works well in 
practice)

 Randomized algorithm

 Running time is independent of the input ordering

 No specific input triggers worst-case behaviour

 The worst-case is only determined by the output of the 
random-number generator
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Randomized Quicksort

 Assume all elements are distinct

 Partition around a random element

 All splits (1:n-1, 2:n-2, ..., n-1:1) become 
equally likely with probability 1/n

 Randomization is a general tool to improve 
algorithms with bad worst-case but good 
average-case complexity
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Randomized Quicksort

Randomized-Partition(A,p,r)
i Random(p,r)
exchange A[r]A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p<r then

q  Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p,q)
Randomized-Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP
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Selection Sort

 A takes Q(n) and B takes Q(1): Q(n2) in total 

 Possibility of improvement: 

 Use a smart data structure to do both A and B in Q(1) 

 Spend only O(lg n) time in each iteration reorganizing 
the structure 

 Result: total running time of O(n log n)
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Selection-Sort(A[1..n]):
For i  n downto 2

A:    Find the largest element in A[1..i]   
B:    Exchange it with A[i]

Binary trees

 Binary tree: tree in which 
each node is either a leaf 
or has degree ≤ 2

 Full binary: a binary tree in 
which each node is either a 
leaf or has degree exactly 2

 Complete binary tree: a full 
binary tree in which all 
leaves are on the same level
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Full binary tree

2
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Complete binary tree

2

1

16

4

3

9 10

Binary trees

 Height of a node: number of edges on the 
longest simple path from the node to a leaf

 Level of a node: length of a path from the root to 
the node

 Height of a tree: height of its root node 
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Height of root = 3

Height of (2)= 1 Level of (10)= 2

30

Heap Sort

 Uses an array A as a binary heap data structure

 Array A can be seen as a nearly complete binary tree
 Each node in the tree is an item in A

 The value in the root is larger than or equal to all its 
children

 The left and right subtrees are again binary heaps

 Does sort in place

 Array A has two external attributes

 length[A]: number of items in A

 heap-size[A]: number of items in the heap stored in A

 No item after A[heap-size[A]] is an item of the heap

© André de Carvalho - ICMC/USP
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Heap Sort

 In a heap stored as an array A

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[ i/2 ]

 Heapsize[A] ≤ length[A]

 The elements in the subarray 

A[(n/2+1) .. n] are leaves

© André de Carvalho - ICMC/USP 31 32

Heap Sort

 Implicit tree links:

 Children of node i are nodes 2i and 2i+1

 Parent of node i is node i/2

 Why is this useful?

 In the binary representation

 Multiplication (division) by two is left (right) shift

 To add 1, just add to the lowest bit
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Heap types

 Max-heaps 
 Largest element at root, have the max-heap 

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≥ 

A[i]

 Min-heaps 
 Smallest element at root, have the min-heap 

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≤ 

A[i]
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Operations on heaps

 Adding nodes:
 New nodes are always inserted at the bottom 

level (left to right)

 Deleting nodes:
 Nodes are removed from the bottom level 

(right to left)
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Operations on heaps

 Maintain/Restore the max-heap property
 Max-Heapify

 Create a max-heap from an unordered 
array
 Build-Max-Heap

 Sort an array in place
 Heapsort
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Maintaining heap properties

 Max-Heapify
 Binary trees rooted at Left(i) 

and Right(i) are heaps
 However, A[i] may be smaller 

than its children, violating the 
max-heap property

 To eliminate the violation:
 Exchange A[i] with larger child
 Move down the tree until node 

is not smaller than its children

© André de Carvalho - ICMC/USP 36
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Maintaining heap properties
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 Assumptions:

 Left and Right 
subtrees of i are 
max-heaps

 A[i] may be smaller 
than its children

Max-Heapify(A, i)
n  ← heap-size(A)
l ← Left (i)
r ← Right(i)
if l ≤ n and A[l] > A[i]
then largest ←l
else largest ←i
if r ≤ n and A[r] > A[largest]
then largest ←r
if largest  i
then exchange A[i] ↔ A[largest]

Max-Heapify (A, largest)

Example
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Max-Heapify (A, 2)

A[2] violates the heap property

A[2]  A[4]

A[4] violates the heap property

A[4]  A[9]

Heap property restored

Max-Heapify running time

 Intuitively:
 Max-Heapify runs a path from the root to a 

leaf
 Longest path: h

 At each level, it makes exactly 2 comparisons
 Total number of comparisons: 2h

 Height of the heap (h) is lgn

 Running time: O(h) = O (lgn)

 Running time of Max-Heapify: O(lgn) 
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Building a Heap

 Convert an array A[1...n] into a heap

 Consider n = length[A]

 Elements in the subarray A[(n/2 + 1)...n], which are 
leaves, are already 1-element heaps

 Apply Max-Heapify to elements from 1 to n/2
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Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i) 2
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4 1 3 2 16 9 10 14 8 7A:

Building a Heap
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i = 5 i = 4 i = 3

i = 2 i = 1

4 1 3 2 16 9 10 14 8 7A:Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)

Build-Max-Heap running time

 Running time: O(nlgn)
 As sometimes heaps are built for other reasons, it 

would be nice to have a tight bound
 It is possible to derive a tighter bound

 Time for Max-Heapify to run at a node varies with the height 
of the node

 Heights of most nodes are small
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O(lgn) O(n)

Build-Max-Heap (A)
n  ← length(A)
for i  n/2 downto 1

do Max-Heapify (A,i)
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Build-Max-Heap running time

 Max-Heapify takes O(h)  Cost of Max-Heapfy
on a node i ~ the height of node i in the tree
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hi = h – i (height of the heap rooted at level i)
ni = 2i (number of nodes at level i)

Build-Max-Heap running time
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n The sum above is smaller than the sum of all elements 

to  and h = lgn

)(nO The sum above is smaller than 2

Running time of Build-Max-Heap : T(n) = O(n)

Heapsort

 Goal: sort an array using heap 
representations

 Procedure:
 Build a max-heap from the array
 Swap the root (the maximum element) with 

the last element in the array
 “Discard” this last node by decreasing the 

heap size
 Call Max-Heapfy on the new root
 Repeat process until only one node remains 
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Heapsort running time

 We discard the previous root when applying Max-
Heap (to the remaining heap)

 Running time is O(n lg n) + Build-Heap(A) time, 
which is O(n)

© André de Carvalho - ICMC/USP 46

Heapsort (A)
Build-Max-Heap (A)
for i ← length[A] downto 2

do exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A]-1 
Max-Heapfy (A,1)

O(n)
n-1 times

O(1)
O(1)
O(lgn)

O(n)

O(lgn)

n-1 times

Example 1

© André de Carvalho - ICMC/USP 47

Max-Heapify (A, 1) Max-Heapify (A, 1) Max-Heapify (A, 1)

Max-Heapify (A, 1)

A:

1 2 3 4 7

7 4 3 1 2

A:

1

2

4 5

3

Example 2
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16 14 10 9 8 7 4 3 2 1A:
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Summary

 Heapsort uses a heap data structure to 
improve selection sort and make the 
running time asymptotically optimal

 Running time is O(n log n) 
 Like merge sort, but unlike selection, insertion, 

or bubble sorts

 Sorts in place

 Like insertion, selection or bubble sorts, but 
unlike merge sort
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Summary

 Why Max-Heapify instead of Min-Heapify

 It is not easy to recover the elements in 
increasing order if we use Min-Heapify

 See heap below

 We could use Min-Heapify to sort in the 
decreasing order
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Exercise

 Assuming the data in a max-heap are 
distinct, what are the possible locations of 
the second-largest element?
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Exercise

1. Given a max heap B of height h 

a) What is the maximum number of nodes  in B?

b) What is the maximum number of leaves?

c) What is the maximum number of internal 

nodes?
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Exercise

 Demonstrate, step by step, the operation 
of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]
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Exercise

 Let A be a heap of size n. Give the most 
efficient algorithm for the following tasks:

(a) Find the sum of all elements

(b) Find the sum of the largest lgn elements
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Next Week

 Hashing
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Questions
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