
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Advanced Sort

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

2

Today

 Sorting algorithms

 Bubblesort

 Simple and similar to Mergesort

 Quicksort

 Popular algorithm, very fast on average

 Selection sort

 Simple algorithm, inefficient for large structures

 Heapsort

 Heap data structure

© André de Carvalho - ICMC/USP

3

Importance of Sorting

 One of the principles of algorithm design

 “When in doubt, sort”

 Sorting is used as a subroutine in many
algorithms:

 Searching in databases, to allow binary search to be
applied to sorted data

 Element uniqueness, by duplicate elimination

 Several computer graphics and computational
geometry problems

 Find the closest pair

© André de Carvalho - ICMC/USP 4

Importance of Sorting

 A large number of sorting algorithms have
been developed

 Representing different algorithm design
techniques

 Lower bound for sorting, W(n log n), is
often used to prove lower bounds of other
problems

© André de Carvalho - ICMC/USP

Definitions

 Input:

 A sequence of n items a1, a2,…, an

 Output:

 A permutation (reordering) a1’, a2’, …, an’ of the

input sequence such that a1’ ≤ a2’ ≤ …≤ an’

 The items to be sorted are usually part of a

collection of data, named record

 Usually, a file store the records R1 … Rn

© André de Carvalho - ICMC/USP 5

Definitions

 Each record Ri has:

 A key Ki

 Possibly other (satellite) data

 Input: n records, R1 … Rn , from a file

 Output: n records, R1’ … Rn’ , from a file
ordered by the value of ki

© André de Carvalho - ICMC/USP 6

Key Other data

Record

CHOROCHRONOS Midter Review

Timos Sellis 2

Definitions

 Sorting: defines permutation = (p1, … , pn) of
n records with the keys in non-decreasing order

 Kp1 < … < Kpn

 Permutation: a one-to-one function from
{1, …, n} onto itself
 There are n! distinct permutations of n items

 Rank: Given a collection of n keys, the rank of a
key is the number of keys before it

 Rank(Kj) = |{Ki| Ki < Kj}|

 If the keys are distinct, the rank of a key gives its
position in the sorted sequence

© André de Carvalho - ICMC/USP 7

Definitions

 Internal Sort

 Data to be sorted are all stored in the main
memory

 External Sort

 Some of the data to be sorted might be stored
in an external, slower, device

 In Place Sort

 The amount of extra space required to sort the
data is constant with the input size

© André de Carvalho - ICMC/USP 8

Bubblesort

 Repeatedly pass through the array to be
sorted

 Swap adjacent elements that are not in the
correct order

 Easier to implement, but usually slower
than insertion sort

© André de Carvalho - ICMC/USP 9

1 2 3 n

i

1329648

j

Bubblesort

 What is the complexity of bubblesort?

 Exercise

© André de Carvalho - ICMC/USP 10

1329648

i = 1 j

i

Bubblesort(A)
for i 1 to length[A]

do for j length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

Bubblesort

© André de Carvalho - ICMC/USP 11

1329648

i = 1 j

3129648

i = 1 j

3219648

i = 1 j

3291648

i = 1 j

3296148

i = 1 j

3296418

i = 1 j

3296481

i = 1 j

3296481

i = 2 j

3964821

i = 3 j

9648321

i = 4 j

9684321

i = 5 j

9864321

i = 6 j

9864321

i = 7
j

Bubblesort(A)
for i 1 to length[A]

do for j length[A] downto i + 1
do if A[j] < A[j-1]

then exchange A[j] ⟷ A[j-1]

12

Sorting Algorithms so far

 Insertion sort, selection sort, bubble sort

 Worst-case running time Q(n2)

 Sort in place

 Use a constant number of items outside the array

 Merge sort

 Worst-case running time Q(n log n), but
requires additional memory Q(n)

 Does not sort in place

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 3

13

Quicksort

 Main characteristics

 Like insertion sort, sorts in-place

 Unlike merge sort

 Worst case O(n2)

 But, on average, its complexity is O(n log n)
 With small constant factors

 In practice, the best choice for sorting

 Works well in virtual memory environments

© André de Carvalho - ICMC/USP 14

Quicksort

 A divide-and-conquer algorithm

 Divide: partition array into 2 subarrays with
elements in the lower part <= elements in the
higher part

 For such, uses a pivot

 Conquer: recursively sort the 2 subarrays

 Combine: trivial since sorting occurs in place

© André de Carvalho - ICMC/USP

15

Quicksort Algorithm

Initial call: Quicksort(A, 1, length[A])

Quicksort(A,p,r)
if p < r
then q Partition(A,p,r)

Quicksort(A,p,q)
Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP 16

Partitioning

 Linear time procedure

Suppose array A[p..r]

Partition(A,p,r)
x A[r] /* pivot */
i p-1
j r+1
while TRUE

repeat j j-1
until A[j] x

repeat i i+1
until A[i] x

if i<j
then exchange A[i] A[j]
else return j

17 12 6 19 23 8 5 10

i i j j

10 12 6 19 23 8 5 17

ji

10 5 6 19 23 8 12 17

ji

10 5 6 8 23 19 12 17

ij

10 5 6 8 23 19 12 17

x=a[8]=10

© André de Carvalho - ICMC/USP

1 2 3 4 5 6 7 8

17

Analysis of Quicksort

 Assume that all input items are distinct

 Exchange items with the same value

 Running time depends on the distribution
of array splits

 Whether they are balanced

 Which element (pivot) is used for partitioning

© André de Carvalho - ICMC/USP 18

Best Case

 Partition splits the array evenly
() 2 (/ 2) ()T n T n n

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 4

19

Worst Case

 One side of the partition has only one item

© André de Carvalho - ICMC/USP

� � = �
1 �� � = 1

� � − 1 + Q � �� � > 1

T(n) = � � − 1 + Q �
= ∑ Q ��

���

= Q (∑ �)�
���

= Q (�2)

20

Worst Case

© André de Carvalho - ICMC/USP

21

Worst Case

 Worst case appear when

 The input is sorted (Ex.: 1, 2, 3)

 The input is reverse sorted (Ex.: 3, 2, 1)

 Same recurrence for the worst case of
insertion sort

 However, sorted input produces the best
case for insertion sort: �(n)

© André de Carvalho - ICMC/USP 22

Analysis of Quicksort

 Suppose the split is 1/10 : 9/10
() (/10) (9 /10) () (log)!T n T n T n n n n

© André de Carvalho - ICMC/USP

23

Average Case Scenario

 Suppose, we alternate
best and worst cases
to get an average
behavior

n

1 n-1

(n-1)/2 (n-1)/2

()n

© André de Carvalho - ICMC/USP

L(n) = 2U(n/2) + Q(n) Best
U(n) = 2L(n-1) + Q(n) Worst
Substituting:
L(n) = 2(L(n/2-1) + Q(n/2)) + Q(n)

= 2L(n/2-1) + Q(n)
= Q(nlgn)

24

Average Case Scenario

 How to be sure that we are usually lucky?

 Partition around the ”middle” (n/2th) element?
 No difference

 Partition around a random element (works well in
practice)

 Randomized algorithm

 Running time is independent of the input ordering

 No specific input triggers worst-case behaviour

 The worst-case is only determined by the output of the
random-number generator

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 5

25

Randomized Quicksort

 Assume all elements are distinct

 Partition around a random element

 All splits (1:n-1, 2:n-2, ..., n-1:1) become
equally likely with probability 1/n

 Randomization is a general tool to improve
algorithms with bad worst-case but good
average-case complexity

© André de Carvalho - ICMC/USP 26

Randomized Quicksort

Randomized-Partition(A,p,r)
i Random(p,r)
exchange A[r]A[i]
return Partition(A,p,r)

Randomized-Quicksort(A,p,r)
if p<r then

q Randomized-Partition(A,p,r)
Randomized-Quicksort(A,p,q)
Randomized-Quicksort(A,q+1,r)

© André de Carvalho - ICMC/USP

27

Selection Sort

 A takes Q(n) and B takes Q(1): Q(n2) in total

 Possibility of improvement:

 Use a smart data structure to do both A and B in Q(1)

 Spend only O(lg n) time in each iteration reorganizing
the structure

 Result: total running time of O(n log n)

© André de Carvalho - ICMC/USP

Selection-Sort(A[1..n]):
For i n downto 2

A: Find the largest element in A[1..i]
B: Exchange it with A[i]

Binary trees

 Binary tree: tree in which
each node is either a leaf
or has degree ≤ 2

 Full binary: a binary tree in
which each node is either a
leaf or has degree exactly 2

 Complete binary tree: a full
binary tree in which all
leaves are on the same level

© André de Carvalho - ICMC/USP 28

Full binary tree

2

14 8

1

16

7

4

3

9 10

12

Complete binary tree

2

1

16

4

3

9 10

Binary trees

 Height of a node: number of edges on the
longest simple path from the node to a leaf

 Level of a node: length of a path from the root to
the node

 Height of a tree: height of its root node

© André de Carvalho - ICMC/USP 29

2

14 8

1

16

4

3

9 10

Height of root = 3

Height of (2)= 1 Level of (10)= 2

30

Heap Sort

 Uses an array A as a binary heap data structure

 Array A can be seen as a nearly complete binary tree
 Each node in the tree is an item in A

 The value in the root is larger than or equal to all its
children

 The left and right subtrees are again binary heaps

 Does sort in place

 Array A has two external attributes

 length[A]: number of items in A

 heap-size[A]: number of items in the heap stored in A

 No item after A[heap-size[A]] is an item of the heap

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 6

Heap Sort

 In a heap stored as an array A

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[i/2]

 Heapsize[A] ≤ length[A]

 The elements in the subarray

A[(n/2+1) .. n] are leaves

© André de Carvalho - ICMC/USP 31 32

Heap Sort

 Implicit tree links:

 Children of node i are nodes 2i and 2i+1

 Parent of node i is node i/2

 Why is this useful?

 In the binary representation

 Multiplication (division) by two is left (right) shift

 To add 1, just add to the lowest bit

© André de Carvalho - ICMC/USP

Heap types

 Max-heaps
 Largest element at root, have the max-heap

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≥

A[i]

 Min-heaps
 Smallest element at root, have the min-heap

property:
 for all nodes i, excluding the root: A[PARENT(i)] ≤

A[i]

© André de Carvalho - ICMC/USP 33

Operations on heaps

 Adding nodes:
 New nodes are always inserted at the bottom

level (left to right)

 Deleting nodes:
 Nodes are removed from the bottom level

(right to left)

© André de Carvalho - ICMC/USP 34

8

2 4

14

7

1

16

10

9 3

Operations on heaps

 Maintain/Restore the max-heap property
 Max-Heapify

 Create a max-heap from an unordered
array
 Build-Max-Heap

 Sort an array in place
 Heapsort

© André de Carvalho - ICMC/USP 35

Maintaining heap properties

 Max-Heapify
 Binary trees rooted at Left(i)

and Right(i) are heaps
 However, A[i] may be smaller

than its children, violating the
max-heap property

 To eliminate the violation:
 Exchange A[i] with larger child
 Move down the tree until node

is not smaller than its children

© André de Carvalho - ICMC/USP 36

CHOROCHRONOS Midter Review

Timos Sellis 7

Maintaining heap properties

© André de Carvalho - ICMC/USP 37

 Assumptions:

 Left and Right
subtrees of i are
max-heaps

 A[i] may be smaller
than its children

Max-Heapify(A, i)
n ← heap-size(A)
l ← Left (i)
r ← Right(i)
if l ≤ n and A[l] > A[i]
then largest ←l
else largest ←i
if r ≤ n and A[r] > A[largest]
then largest ←r
if largest i
then exchange A[i] ↔ A[largest]

Max-Heapify (A, largest)

Example

© André de Carvalho - ICMC/USP 38

Max-Heapify (A, 2)

A[2] violates the heap property

A[2] A[4]

A[4] violates the heap property

A[4] A[9]

Heap property restored

Max-Heapify running time

 Intuitively:
 Max-Heapify runs a path from the root to a

leaf
 Longest path: h

 At each level, it makes exactly 2 comparisons
 Total number of comparisons: 2h

 Height of the heap (h) is lgn

 Running time: O(h) = O (lgn)

 Running time of Max-Heapify: O(lgn)

© André de Carvalho - ICMC/USP 39 40

Building a Heap

 Convert an array A[1...n] into a heap

 Consider n = length[A]

 Elements in the subarray A[(n/2 + 1)...n], which are
leaves, are already 1-element heaps

 Apply Max-Heapify to elements from 1 to n/2

© André de Carvalho - ICMC/USP

Build-Max-Heap (A)
n ← length(A)
for i n/2 downto 1

do Max-Heapify (A,i) 2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

Building a Heap

© André de Carvalho - ICMC/USP 41

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

1

16

7

4

10

9 3

1

2 3

4 5 6 7

8 9 10

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10
14

2 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

16

7

1

4

10

9 3

1

2 3

4 5 6 7

8 9 10
8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

i = 5 i = 4 i = 3

i = 2 i = 1

4 1 3 2 16 9 10 14 8 7A:Build-Max-Heap (A)
n ← length(A)
for i n/2 downto 1

do Max-Heapify (A,i)

Build-Max-Heap running time

 Running time: O(nlgn)
 As sometimes heaps are built for other reasons, it

would be nice to have a tight bound
 It is possible to derive a tighter bound

 Time for Max-Heapify to run at a node varies with the height
of the node

 Heights of most nodes are small

© André de Carvalho - ICMC/USP 42

O(lgn) O(n)

Build-Max-Heap (A)
n ← length(A)
for i n/2 downto 1

do Max-Heapify (A,i)

CHOROCHRONOS Midter Review

Timos Sellis 8

Build-Max-Heap running time

 Max-Heapify takes O(h) Cost of Max-Heapfy
on a node i ~ the height of node i in the tree

© André de Carvalho - ICMC/USP 43

i

h

i
ihnnT

0

)(ih
h

i

i
0

2)(nO
Height Level

h0 = 3 (lgn)

h1 = 2

h2 = 1

h3 = 0

i = 0

i = 1

i = 2

i = 3 (lgn)

No. of nodes

20

21

22

23

hi = h – i (height of the heap rooted at level i)
ni = 2i (number of nodes at level i)

Build-Max-Heap running time

© André de Carvalho - ICMC/USP 44

i

h

i
ihnnT

0

)(Cost of Max-Heapfy at level i number of nodes at that
level

 ih
h

i

i
0

2 Replace the values of ni and hi computed before

h
h

i
ih

ih
2

20

 Multiply by 2h both at the nominator and denominator

and write 2i as
i2

1

h

k
k

h k

0 2
2 Change variables: k = h - i

0 2k

k

k
n The sum above is smaller than the sum of all elements

to and h = lgn

)(nO The sum above is smaller than 2

Running time of Build-Max-Heap : T(n) = O(n)

Heapsort

 Goal: sort an array using heap
representations

 Procedure:
 Build a max-heap from the array
 Swap the root (the maximum element) with

the last element in the array
 “Discard” this last node by decreasing the

heap size
 Call Max-Heapfy on the new root
 Repeat process until only one node remains

© André de Carvalho - ICMC/USP 45

Heapsort running time

 We discard the previous root when applying Max-
Heap (to the remaining heap)

 Running time is O(n lg n) + Build-Heap(A) time,
which is O(n)

© André de Carvalho - ICMC/USP 46

Heapsort (A)
Build-Max-Heap (A)
for i ← length[A] downto 2

do exchange A[1] ↔ A[i]
heap-size[A] ← heap-size[A]-1
Max-Heapfy (A,1)

O(n)
n-1 times

O(1)
O(1)
O(lgn)

O(n)

O(lgn)

n-1 times

Example 1

© André de Carvalho - ICMC/USP 47

Max-Heapify (A, 1) Max-Heapify (A, 1) Max-Heapify (A, 1)

Max-Heapify (A, 1)

A:

1 2 3 4 7

7 4 3 1 2

A:

1

2

4 5

3

Example 2

© André de Carvalho - ICMC/USP 48

16 14 10 9 8 7 4 3 2 1A:

CHOROCHRONOS Midter Review

Timos Sellis 9

49

Summary

 Heapsort uses a heap data structure to
improve selection sort and make the
running time asymptotically optimal

 Running time is O(n log n)
 Like merge sort, but unlike selection, insertion,

or bubble sorts

 Sorts in place

 Like insertion, selection or bubble sorts, but
unlike merge sort

© André de Carvalho - ICMC/USP 50

Summary

 Why Max-Heapify instead of Min-Heapify

 It is not easy to recover the elements in
increasing order if we use Min-Heapify

 See heap below

 We could use Min-Heapify to sort in the
decreasing order

© André de Carvalho - ICMC/USP

8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

Exercise

 Assuming the data in a max-heap are
distinct, what are the possible locations of
the second-largest element?

© André de Carvalho - ICMC/USP 51

8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

Exercise

1. Given a max heap B of height h

a) What is the maximum number of nodes in B?

b) What is the maximum number of leaves?

c) What is the maximum number of internal

nodes?

© André de Carvalho - ICMC/USP 52

Exercise

 Demonstrate, step by step, the operation
of Build-Heap on the array

A=[5, 3, 17, 10, 84, 19, 6, 22, 9]

© André de Carvalho - ICMC/USP 53

Exercise

 Let A be a heap of size n. Give the most
efficient algorithm for the following tasks:

(a) Find the sum of all elements

(b) Find the sum of the largest lgn elements

© André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

55

Next Week

 Hashing

© André de Carvalho - ICMC/USP

Acknowledgement

 A large part of this material were adapted from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 56

Questions

57© André de Carvalho - ICMC/USP

