PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 3 - 19/06/2017 - Duração: 120 minutos

Questão 1 – Engenharia da Qualidade (2,0 pontos)

Construir um diagrama de relações para organizar as diversas filosofias e estratégias da *Engenharia da Qualidade*, indicando o parentesco entre elas e suas principais características.

Questão 2 – Filosofias da Qualidade (2,0 pontos)

Escolha um dos conceitos a seguir e explique-o (defina, exemplifique, descreva, contextualize, apresente suas principais características):

- (i) Gestão da qualidade
- (ii) Poka-yoke
- (iii) Qualidade Total
- (iv) Seis Sigma
- (v) FMEA

Questão 3 – Incerteza de Medição (2 pontos)

Para avaliar a incerteza de medição de um mensurando foi realizada uma série de medidas cujos resultados são apresentados abaixo:

1ª medida	2ª medida	3ª medida	4ª medida	5ª medida	6ª medida
19,4 mm	20,1 mm	20,3 mm	19,6 mm	19,9 mm	20,7 mm

Com base nos registro de medição pede-se:

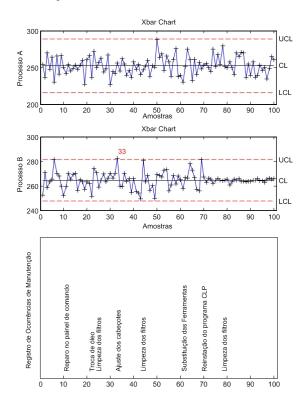
- a) Com base na informação fornecida, qual tipo de incerteza de medição é possível estimar, i.e., estimação de incerteza tipo A ou tipo B? Justifique!
- b) Qual é a contribuição dessa fonte de incerteza para a incerteza de medição? Calcule a incerteza padrão dessa fonte de incerteza.
- c) Considerando somente essa fonte de incerteza, quanto vale o coeficiente de abrangência *k* para um nível de confiança de 95% e quanto vale a incerteza expandida.
- d) Exprima o valor da medida e sua incerteza de medição conforme ISO GUM.

Distribuição t-Student com 95% de grau de confinaça

v = n-1	1	2	3	4	5	6
k	12,71	4,30	3,18	2,78	2,57	2,45

Questão 4 – Controle Estatístico de Processo (2 pontos)

As cartas de controle da média de duas linhas de produção são apresentadas a seguir. São apresentadas as cartas de controle da média \overline{X} e o registro de ocorrências das manutenções realizadas nas duas linhas de produção.


PARA DIVULGAÇÃO PÚBLICA

PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 3 - 19/06/2017 - Duração: 120 minutos

- a) Qual processo é capaz de atender à especificação de fabricação de 270 ± 25 mm? Isso garante que o processo esteja operando em condições de controle estatístico? Justifique!
- b) Há indícios de que um dos processos saiu de controle? Justifique a resposta.
- c) Quais são as ocorrências que devem ser investigadas na tentativa de averiguar uma causa especial que tenha interferido no processo? Justifique a resposta.
- d) Verifica-se que a dispersão do processo B diminuiu significativamente nas últimas amostras. Isso indica que o processo ficou mais bem controlado? A carta de controle desse processo continua adequada para monitorar a estabilidade desse processo? Justifique.

Questão 5 – Inspeção por amostragem (2 pontos)

Um lote de N = 10.000 peças é adquirido de um produtor de parafusos que produz parafusos com desvio-padrão da carga de ruptura igual a $\sigma = 40$ N. Deseja-se que:

- i. A carga de ruptura dos parafusos seja $\mu_0 = 500 \text{ N}$.
- ii. Se o lote satisfaz à especificação, o comprado deseja limitar a 5% a probabilidade de concluir que o lote é insatisfatório.
- iii. Se o lote tiver uma resistência média ligeiramente menor que 500 N, tal fato não causa preocupação, porém deseja-se que, se a verdadeira resistência média for inferior a 480 N, tal fato seja identificado com pelo menos 90% de probabilidade.

A fim de avaliar o lote deseja-se realizar uma inspeção por amostragem da resistência média de uma amostra de tamanho igual a n = 36 peças. Considere que a distribuição de probabilidade da resistência obedeça a distribuição normal. Pede-se:

- a) Para as condições propostas, quanto valem o risco do produtor α e risco do consumidor β ?
- b) Qual é o valor crítico do diâmetro médio da amostra que limita a faixa de rejeição do lote? Qual é a probabilidade de aceitação de um lote cuja resistência média seja igual ao valor crítico?
- c) Esboçar a Curva Característica de Operação CCO, i.e., a probabilidade de aceitação do lote em função do desvio da resistência em relação ao valor desejado. Indique o nível de qualidade aceitável AQL e o nível de qualidade inaceitável QL.
- d) Analisando a Curva Característica de Operação, verifique se o tamanho da amostra é adequado para atender aos critérios de decisão pretendidos. Caso não seja adequado, deve-se aumentar ou reduzir o tamanho da amostra?

PARA DIVULGAÇÃO PÚBLICA

PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 3 - 19/06/2017 - Duração: 120 minutos

Distribuição Norma Padrão x~N(0,1): $P(0 \le Z \le Z_0)$

Z ₀	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000

PARA DIVULGAÇÃO PÚBLICA