PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 01 - 26/06/2017 - Duração: 120 minutos

Questão 1 – Engenharia da Qualidade (2 pontos)

Construir um diagrama de relações para organizar as diversas filosofias e estratégias da *Engenharia da Qualidade*, indicando o parentesco entre elas e suas principais características.

Questão 2 – Filosofias da Qualidade (2 pontos)

Escolha um dos conceitos a seguir e explique-o (defina, exemplifique, descreva, contextualize, apresente suas principais características):

- (i) Ferramenta Poka-Yoke
- (ii) Qualidade na Indústria 4.0
- (iii) Metodologia 5S
- (iv) Visão da Qualidade de Walter A. Shewhart
- (v) Ciclo de Shewhart

Questão 3 – Incerteza de Medição (2 pontos)

Para avaliar a incerteza de medição de um mensurando segundo procedimento do ISO GUM foi realizada uma série de n = 6 medidas com um paquímetro cujos resultados são apresentados na tabala abaixo.

#	Medida	Fonte de	Valor	Unidade	Tipo de	Distribuição de	Incerteza Padrão	Coeficiente de	Contribuição	Número de Graus
		Incerteza	Medido		Incerteza	Probabilidade	da Componente	Sensibilidade	para Incerteza	de Liberdade
i	Designação	Descrição	Xi	[x _i]	(A B)	Pdf	U(x _i)	Ci	U _i (y)	ν_{i}
1	diâmetro	repetição	20,2	mm		Normal	0,3	1		
2	diâmetro	calibração	20,2	mm		Retangular	0,02	1		
3	diâmetro	resolução	20,2	mm		Retantular	0,05	1		
4	termperatura	dilatação	24,2	°C		normal	0,5	0,0004		

Pede-se:

- a) Completar a tabela de cálculo de incerteza de medição com o tipo de estimativa de incerteza (A ou B), a contribuição para incerteza do mensurando e o número de graus de liberdade de cada fonte de incerteza.
- b) Calcular a incerteza combinada e o número de graus de liberdade efetivo.
- c) Calcular o coeficiente de abrangência e a incerteza combinada expandida para um nível de confiança de 95%.
- d) Expressar a grandeza e sua incerteza de medição segundo recomendação do ISO GUM.

Distribuição t-Student com 95% de grau de confiança

v = n-1	1	2	3	4	5	6	7	8	9	10	20	30	50	80	∞
k	12,71	4,30	3,18	2,78	2,57	2,45	2,37	2,31	2,26	2,23	2,09	2,04	2,01	1,99	1,96

São dadas as seguintes expressões:

$$U_{y} = \sqrt{\sum_{i=1}^{m} \left(\frac{\partial f}{\partial x_{i}} \cdot U_{x_{i}}\right)^{2}} \qquad \frac{U_{y}^{4}}{v_{ef}} = \sum_{i=1}^{m} \frac{U_{x_{i}}^{4}}{v_{i}} \qquad \sigma^{2} = \frac{(2a)^{2}}{12}$$

PARA DIVULGAÇÃO PÚBLICA

PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 01 - 26/06/2017 - Duração: 120 minutos

Questão 4 – Desempenho e Capacidade de Processo (2 pontos)

Deve-se determinar o desempenho e a capacidade de um processo de produção de bolinhas de acrílico para $Jogo\ de\ Bingo\ de\ tamanho\ n^{\circ}\ 2$. As bolinhas devem ter diâmetro $\varnothing\ 21,0^{\pm0,4}$ mm. Foram realizadas 6 amostras consecutivas de 4 bolinhas da produção de um processo cujo desvio padrão vale $\sigma=0.0780\ mm$, conforme mostrado na tabala abaixo.

amostra	medida							
	1	2	3	4				
1	21,150	21,094	21,135	21,247				
2	21,272	21,214	21,191	21,288				
3	21,246	21,272	21,272	21,063				
4	21,213	21,237	21,194	21,198				
5	21,261	21,194	20,964	21,128				
6	21,233	21,066	21,249	21,241				

Pede-se:

- a) Determinar os limites de especificação, USL e LSL, para o diâmetro das bolinhas.
- b) Qual é a proporção de bolinhas que atende à especificação (process yield).
- c) Estimar os índices de desempenho do processo P_p e P_{pk}.
- d) Estimar os índices de capacidade do processo C_p e C_{pk} .

São fornecidas as seguintes expressões:

$$\hat{p} = \frac{n_C}{n} = 1 - \frac{n_{NC}}{n}$$

$$\hat{\sigma}_{LT} = s = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}$$

$$\hat{\sigma}_{ST} = \frac{\bar{S}}{c_4}$$

$$\hat{P}_{p} = \frac{USL - LSL}{6\hat{\sigma}_{LT}}$$

$$\hat{P}_{pkU} = \frac{USL - \hat{\mu}}{3\hat{\sigma}_{LT}}$$

$$\hat{P}_{pkU} = \frac{\hat{\mu} - LSL}{3\hat{\sigma}_{LT}}$$

$$\hat{C}_{p} = \frac{USL - LSL}{6\hat{\sigma}_{ST}}$$

$$\hat{C}_{pkU} = \frac{USL - \bar{x}}{3\hat{\sigma}_{ST}}$$

$$\hat{C}_{pkU} = \frac{\bar{x} - LSL}{3\hat{\sigma}_{ST}}$$

e a seguinte tabela:

n	2	3	4	5	6	7	8	9	10
c_4	0,7979	0,8862	0,9213	0,9400	0,9515	0,9594	0,9650	0,9693	0,9727

PARA DIVULGAÇÃO PÚBLICA

PME-3463 ENGENHARIA DA QUALIDADE

Prof. Walter Ponge-Ferreira

1ª Prova – Turma 01 - 26/06/2017 - Duração: 120 minutos

Questão 5 – Inspeção por amostragem (2 pontos)

Uma bobina de 3.000 m de comprimento é adquirido de um produtor de chapa finas de alumínio cuja média de defeitos por metro é de $\mu = 0,05$. Dessa bobina são extraídas chapas de comprimento L = 1 m. Deseja-se que:

- i. As chapas tenham no máximo um defeito por peça.
- ii. Se o lote satisfaz à especificação, o comprador deseja limitar a 5% a probabilidade de concluir que o lote é insatisfatório.
- iii. Se o lote tiver até três defeitos por peça, tal fato não causa grande preocupação, porém deseja-se que tal fato seja identificado com pelo menos 90% de probabilidade.

A fim de avaliar o lote deseja-se realizar uma inspeção por amostragem pela avaliação visual do número de defeitos por chapa com uma amostra de uma única chapa. Considere que a distribuição de probabilidade do número de defeitos obedeça a distribuição de Poisson.

Pede-se:

- a) Para as condições propostas, quanto valem o risco do produtor α e o risco do consumidor β ?
- b) Qual é a probabilidade de aceitação de um lote que tenha até 0,05 defeitos por metro?
- c) Esboçar a Curva Característica de Operação CCO, i.e., a probabilidade de aceitação do lote em função do número de defeitos por peça. Indique o nível de qualidade aceitável AQL e o tolerância da percentagem de defeitos do lote LTPD.
- d) Analisando a Curva Característica de Operação, verifique se o plano de amostragem consegue atender ao critério de aceitação proposto?

Obs.: A distribuição de Poisson é dada por:

$$P(X=k) = \frac{\mu^k e^{-\mu}}{k!}$$

com média µ.

PARA DIVULGAÇÃO PÚBLICA