

First-principles calculations of Fischer-Tropsch processes catalyzed by nitrogenase enzymes v v v v

Joel B. Varley and Jens K. Nørskov

The Fe(Mo/V)co Nitrogenase

Summary

We have investigated the chemical pathways describing CO and CNreduction by nitrogenases. We find that the potential-limiting step of the (electro)reduction of CO into hydrocarbons is the protonation of CO to CHO*. CN- reduction is instead limited by the further reduction of HCN to CHNH*.These steps become much more favorable if the under-coordinated bridging μ_2 S atoms are available as adsorption sites. Our calculated pathways can account for the observed CO and CN- reduction trends in both isolated cofactor variants, and suggest CH₂* as the primary building block of C-C species. Furthermore, the nitrogenases compare favorably to the best known metal surfaces CO electroreduction catalysts.

for NH₃ synthesis, requiring only one H₂ per N₂ reduced.[1]

Not just N₂ reduction

Recent experiments have shown FeMoco and FeVco

can also reduce CO and CN^{-} into higher-order hydrocarbons,[2] indicating they may be suitable catalysts for Fischer-Tropsch synthesis, i.e. the conversion of CO and H₂ into liquid fuels.

Protonation of the cofactor

CO/CN-

reduction pathways

We find that the reduction pathways are qualitatively and quantitatively similar for the isolated cofactors, consistent with experiment.[2]

For CO, the potential-limiting step is the initial protonation to CHO*, which becomes much more favorable when one of the μ_2 atoms _is available as an adsorption site.

This same potential limiting= step compares favorably $t\bar{0}$ Cu, currently the best known metal surface for the electroreduction of CO.[3,4]

For CN⁻, the potentiallimiting step is the second_ protonation and adsorption of HCN to CHNH*. We

Calculated free energy diagrams for protonating the 3 bridging μ_2 S atoms of the cofactors containing Mo (blue) and V (grey). The black pathways represent the free energy at 0 V vs. RHE and the red pathways at the labeled potential.

Acknowledgements

Support from the Global Climate and Energy Project (GCEP) at Stanford University is gratefully acknowledged.

References

- [1] B. Hinneman and J.K. Nørskov, *Top. Catal.* **37**, 55 (2006).
- [2] Y. Hu, C.C. Lee, M.W. Ribbe, Science **333**, 753 (2011); C.C. Lee, Y. Hu,
 M.W. Ribbe, Angew. Chem. Int. Ed. **51**, 1947–1949 (2012).
- [3] A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov,
 - Energy Environ. Sci. **3**, 1311 (2010).

find CN^{-} reduction on non- μ_{2} sites requires a much smaller overpotential than for CO reduction, making CN^{-} reduction more facile for both cofactors.

Adjacent CH_2^* can favorably couple to form C_2H_4 and higherorder hydrocarbons.

Free energy diagrams

for the reduction of CO and CN to CH₄ by the isolated nitrogenase cofactors. The pathways are shown for adsorbates binding to an unprotonated μ_2 site. The cartoon insets of the CH₂* intermediates are highlighted in bold, as they are believed to be the bifurcation of the methanation and hydrocarbon formation

