Leishmania and the macrophage: a multifaceted interaction

Maria Podinovskaia* & Albert Descoteaux

ABSTRACT Leishmania, the causative agent of leishmaniasis, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
composed of proteophosphoglycans, which promotes regurgitation by the sand fly during feeding [2]. Delivery of infectious promastigotes into the vertebrate host occurs when an infected sand fly takes a bloodmeal. The vertebrate hosts of *Leishmania* parasites parallel those on which the sand fly relies for feeding, and range from wild rodents and canids to humans. Promastigotes are rapidly internalized by phagocytes, where they transform into nonmotile amastigotes, which proliferate within the acidic and hydrolase-rich phagolysosomal compartment.

To persevere within the hostile environment of the macrophage, *Leishmania* evolved various strategies aimed at countering the microbicidal power of the macrophage and the mounting of an effective immune response. In this review, we will discuss the latest research findings in the mechanisms used by *Leishmania* to establish infection and survive within macrophages. In the broad overview of various aspects of *Leishmania* infection of macrophages, the latest studies are comprehensively described and highlight the complexity of *Leishmania*–macrophage interactions in different settings for a range of *Leishmania* species. Consideration is given to the *Leishmania*–macrophage relationship as a multifaceted interaction. Better knowledge of *Leishmania*–macrophage interactions will further our understanding of the key stages in the parasite life cycle and the disease pathogenesis.

Initial events in parasite uptake by the macrophage

- **Recognition & uptake**

 During transmission of the parasite from its vector to the vertebrate host, macrophages and neutrophils are rapidly recruited to the site of the sand fly bite [3]. Proteophosphoglycans secreted by the parasite in the sand fly’s midgut and inoculated into the host during blood meal are powerful stimulators of macrophage recruitment, as shown in studies with *L. mexicana* and *L. infantum* [4,5]. Initially, the parasites are mainly found in neutrophils and later in macrophages. Promastigotes survive in neutrophils but they do not differentiate into amastigotes. Thus, neutrophil infection is transient and following neutrophil apoptosis, the parasites may subsequently infect macrophages [6–8]. Thus, the macrophage is an important host cell for the establishment of infection and persistence of the parasite.

 Initial interaction of the promastigote with the macrophage occurs via the parasite flagellum. This may trigger release of intracellular survival factors by the parasite and subsequent modulation of macrophage phagocytic activity [9]. *L. donovani* promastigotes killed by glutaraldehyde fixation or parasites with pharmacologically inhibited motility did not get internalized by murine bone marrow-derived macrophages [10], highlighting the importance of the parasite flagellum in the initial stages of macrophage parasitism.

 Different species of *Leishmania* rely on a range of macrophage receptors, including complement receptors (CRs), mannose receptors, fibronectin receptors and Fcγ receptors (FcγRs) [11]. The choice of receptor may impact the course of infection. CR-mediated uptake via CR3 and CR1 inhibits inflammation and superoxide burst, as well as accumulation of the lysosomal markers LAMP1 and Cathepsin D. This may create more favorable conditions for the parasite within the macrophage phagosome. However, in conjunction with fibronectin receptors, more inflammatory conditions may result in parasite clearance. Mannose receptor signaling may trigger inflammatory pathways and more efficient delivery of hydrolytic enzymes into the phagolysosome. FcγR-mediated phagocytosis leads to enhanced activation of NADPH oxidase on the newly formed phagosome [11].

 Whereas phagocytosis of infective metacyclic *L. donovani* promastigotes by murine bone marrow-derived macrophages occurred within 10–20 min after parasite attachment [10], the downstream events in phagosome biogenesis depended on the macrophage receptors used in the recognition of the parasite. In CR3 (CD11b+) and FcγR (common chain -/-) deficient macrophages, phagosome fusion with lysosomes occurred significantly faster following *Leishmania* phagocytosis than in wild-type macrophages (1 vs 5 h, respectively), as assessed by recruitment of lysosome-associated proteins. Interestingly, uptake or viability of the *L. donovani* or *L. major* parasites by murine bone marrow-derived macrophages were not affected by the receptor choice [12], pointing to the complexity of *Leishmania*–macrophage interactions.

 Following recognition at host cell surface, promastigotes can be internalized via caveolae that are composed of cholesterol-rich membrane lipid microdomains, as shown for *L. chagasi*
infection of murine bone marrow-derived macrophages [13]. Indeed, it has been recently shown that membrane cholesterol is required for *L. donovani* uptake by J774A.1 macrophage-like cell line [14,15]. Cholesterol depletion and subsequent lipid microdomain disruption by methyl-β-cyclodextrin compromised *Leishmania* promastigote uptake via nonopsonic pathways. Uptake of opsonized *Leishmania*, however, was not affected. Interestingly, phagocytosis of amastigotes proceeded independently of lipid microdomains [13]. Likewise, internalization of *Escherichia coli* was not affected by cholesterol depletion, highlighting the significance of the lipid microdomain-mediated pathway for *Leishmania* promastigote internalization [16,17].

The significance of lipid microdomains in *Leishmania* infection is also emphasized in recent studies, which demonstrate that infective *Leishmania* promastigotes promote lipid microdomain formation through activation of host acid sphingomyelinase. This enzyme converts sphingomyelin to ceramide, which is a key component of lipid microdomains [18]. Translocation of acid sphingomyelinase to the cell membrane led to ceramide generation and enhanced parasite uptake. However, at later stages of infection, the parasite also induced de novo ceramide synthesis, which in excess might displace cholesterol, disrupt lipid microdomains and impair antigen presentation [18]. Hence, the fine tuning of lipid microdomains is likely to be one of the key players in host–parasite interactions in *Leishmania* infection.

In addition to receptor- and lipid microdomain-regulated uptake, *Leishmania* infection also depends on actin-mediated uptake, and the integrity of the actin cytoskeleton of the host macrophage has recently been shown to be essential for *L. donovani* infectivity [15]. Actin cytoskeleton destabilization induced by cytochalasin D treatment led to a reduction in promastigote attachment to macrophages and the concomitant reduction in intracellular amastigote load. Cellular F-actin levels strongly correlated with the reduction in *Leishmania* attachment and load in macrophages. In contrast, uptake of *E. coli* was unaffected following actin disruption [15].

Phagosome maturation & parasite differentiation

Following phagocytosis, *L. donovani* promastigote-containing phagosomes of murine bone marrow-derived macrophages failed to acidify and were characterized by a reduced fusogenicity towards late endosomes and lysosomes [19,20]. LAMP1 was recruited to the parasitophorous vacuole (PV) with delayed kinetics [19]. The parasite was shown to subsequently reorient itself with the cell body pointing towards the cell nucleus and the flagellum towards the cell periphery. The parasite promoted outward movement of the PV, opposite to the inward cellular forces. Such opposing motions resulted in cell injury and prompted lysosome docking and exocytosis. The authors proposed that, at this stage, some lysosomes may fuse with the PV and promote promastigote-to-amastigote differentiation, whereas cellular injury may impact plasma membrane integrity and host capacity to combat infection [20].

Promastigote-to-amastigote differentiation is believed to be triggered by the increase in temperature and a decrease in pH. Additionally, iron uptake and subsequent generation of hydrogen peroxide by *L. amazonensis* has been shown to be a major trigger in parasite differentiation [21,22]. Iron mediates generation of reactive oxygen species (ROS), which are normally deleterious for pathogens, but were proposed to act as a signaling molecules regulating parasite differentiation. The *Leishmania* iron transporter LIT1 mediated iron acquisition by the parasite, which led to parasite growth arrest and differentiation. In contrast, LIT1-deficient promastigotes had reduced iron levels, sustained their growth, but eventually died in iron-poor medium. Importantly, LIT1 triggered iron superoxide dismutase to convert ROS to hydrogen peroxide, the presence of which alone was sufficient to trigger differentiation in both wild-type and LIT1-deficient promastigotes. In contrast, the ROS-generating drug menadione could only trigger differentiation in wild-type but not LIT1-deficient cells, implicating LIT1 in the ability of the parasite to generate hydrogen peroxide and the role of the latter in parasite differentiation [21,22]. Interestingly, iron uptake by the parasite was upregulated in iron-deficient conditions, consistent with the low iron levels that the parasite encounters in PVs, where differentiation takes place [23].

Promastigote-to-amastigote differentiation is associated with a reduction in growth rate and the induction of a distinct metabolic state characterized by a decrease in uptake and utilization of glucose and amino acids, reduced
organic acid secretion and increased fatty acid beta-oxidation. Catabolism of hexose and fatty acids provide substrates for glutamate synthesis, which is essential for amastigote growth and survival. Notably, in vitro differentiated amastigotes displayed a metabolic profile similar to that of lesion-derived amastigotes, suggesting its coupling to differentiation signals rather than nutrient availability [24]. Such changes likely facilitate amastigote survival in the nutrient-poor intracellular niche.

Both promastigotes and amastigotes are able to divert the classical phagosome maturation pathway, which occurs via a set of highly regulated fusion and fission events with vesicles including endosomes and lysosomes, and form PVs of very specific phenotypes. Fusion is strictly species- and stage-dependent. This is neatly demonstrated in a recent study by Real and colleagues, in which PVs containing L. major promastigotes, but not L. major amastigotes, could fuse with pre-established L. amazonensis amastigote PVs in murine bone marrow-derived macrophages [8,25]. Furthermore, the L. major promastigotes within the pre-established L. amazonensis amastigote-harbor PVs failed to differentiate, suggesting that L. amazonensis niche may not provide an appropriate environment for L. major differentiation. L. amazonensis differentiation in dendritic cells correlated with an increase in ERK1/2 phosphorylation, the levels of which remained low in L. major infection [26], suggesting important differences in key cellular events during differentiation of the two parasite species. These observations signify the unique nature of host–parasite interactions for different parasite species and their vulnerability to perturbations. Major events in Leishmania PV formation are depicted in Figure 1 and are discussed in more detail below.

The PVs of L. amazonensis and L. major amastigotes show distinct dynamics with the former favoring fusion of individual PVs to form spacious communal vacuoles and the latter promoting fission of the PVs of dividing parasites. These differences are only recently being investigated in greater detail and highlight the complexity in PVs formation and maintenance [27].

Intracellular parasite growth
- **Membrane contribution from the endoplasmic reticulum**

Once Leishmania establish infection within macrophages, their subsequent multiplication requires a source of nutrients and additional membrane for phagosome expansion. For this, the amastigote PV remains a highly dynamic organelle and interacts with the secretory pathway, which contains endoplasmic reticulum (ER) proteins destined for other organelles [28]. RAW 264.7 macrophages infected with L. donovani or L. pifanoi axenic amastigotes for 6 h to establish PVs and incubated with ricin were able to deliver ricin to Leishmania PVs, and this activity was abolished following brefeldin A treatment, which blocks transport from the ER to the Golgi [29]. Importantly, recent studies by Canton et al. demonstrated that disruption of Leishmania PV fusion with ER vesicles resulted in control of L. amazonensis infection of RAW 264.7 macrophages [30]. Lysosome recruitment to PVs has been implicated in recent findings [10], and warrants further studies to address membrane contribution from lysosomes to Leishmania PVs.

Further characterization of Leishmania PVs in RAW 264.7 macrophages revealed that phagosomes containing L. donovani and L. pifanoi promastigotes recruit the ER proteins calnexin and Sec22b very early during PV maturation, whereas zymosan-containing phagosomes do not [29]. Loss of the ER SNAREs Sec22b or its cognate partners D12 or Syntaxin 18 or knock-down of Syntaxin 5 had very little effect on the ER or secretion but led to a significant reduction in PV size, as well as a reduction in parasite replication [31]. A similar effect was achieved upon disruption and redistribution of Syntaxin 5 following treatment with the small organic molecule Retro-2 [31,32]. These findings highlight the role of the ER SNAREs Sec22b and Syntaxin 5 in the delivery of ER content to Leishmania PVs that supports the infection. Interestingly, Sec22b was also required for cross-presentation and its presence in the phagosome may play a role in parasite control [33].

- **Nutrient acquisition**

Intracellular Leishmania parasites have complex nutritional requirements, with amino acids and polyamines being important carbon sources and growth-limiting nutrients. Long-term survival of the parasite within macrophages requires nutrient availability within the intracellular niche. The parasite may achieve some of its nutrient requirements through parasite-driven PV fusion with endosomes and ER-derived Sec22b- and calnexin-positive vacuoles [29]. Actively scavenged metabolites include hexoses, amino acids,
Figure 1. Formation of the Leishmania parasitophorous vacuole in macrophages. Leishmania promastigote interacts with the macrophage via its flagellum and a number of macrophage receptors. This interaction triggers parasite phagocytosis and the release of Leishmania intracellular survival factors, which modify phagosome biogenesis and inhibit induction of proinflammatory pathways. F-actin assembly around the phagosome and the disruption of lipid rafts inhibit recruitment of SNAREs Synaptotagmin V, VAMP8, VAMP3 and SNAP23, and assembly of NADPH oxidase and V-ATPase. The PV is positive for the endoplasmic reticulum markers Calnexin and Sec22b and for the lysosomal marker LAMP1, suggesting that it interacts with the endoplasmic reticulum secretory pathway and selective endolysosomal vesicles. Lipid bodies are present around the PV, although the extent of this interaction is unknown. Low pH, increase in temperature and increase in ferrous iron uptake trigger promastigote-to-amastigote differentiation and acidification of the PV. The amastigote PV remains a highly interactive and dynamic organelle, in order to acquire nutrients and additional membrane from the host cell, to allow for parasite replication.

PV: Parasitophorous vacuole.

Polyamines, purines, vitamins, sphingolipids, heme and cations Fe^{2+}, Mg^{2+}, among others. Amastigotes also produce amino acid permeases and cysteine proteases to generate alternative sources of amino acids [34]. Interestingly, classically activated macrophages may have depleted sources of arginine, as it is used in nitric oxide (NO) production, as well as other amino acids that are essential for Leishmania, such as tryptophan [35]. Such nutrient limitations may contribute to the infection control by the classically activated macrophage. Conversely, alternatively activated macrophages have increased availability of ornithine and urea for polyamine biosynthesis and hence may promote amastigote growth [35]. Additionally, lipid bodies (LBs) in the macrophage may fulfill some of the parasite’s nutrient requirements. LBs are organelles with a core of neutral lipids mainly triacylglycerol and sterol esters, which may act as nutrient sources for parasites. LBs have been shown to be induced in murine thioglycollate-elicited peritoneal macrophages infected with L. amazonensis stationary-phase promastigotes [36]. Transcriptomic changes in murine bone marrow-derived macrophages following L. major promastigote infection point to highly perturbed carbohydrate and lipid metabolic pathways. The reduced cholesterol efflux and enhanced triacylglycerol synthesis may increase intracellular lipid availability.
and hence facilitate foamy macrophage formation [37]. The LB profile of dendritic leukocytes infected with *L. amazonensis* amastigotes was transcriptionally distinct from that of lipid overloaded cells following oleate treatment and presented with larger and more numerous LBs [38]. Interestingly, LB accumulation in peritoneal macrophages was enhanced by the saliva of the sand fly *Lutzomyia longipalpis*, the vector of *L. chagasi*, further promoting foamy cell generation [39]. The LBs interact, associate and sometimes fuse with phagosomes containing zymosan, silica beads or pathogens [40,41]. As well as containing energy-rich nutrients, LBs also bear Rab GTPases, ER proteins and molecular chaperones, and may provide means for acquisition of phagosomal proteins such as Rab5 and Rab7. Thus, LB interaction with parasite PVs may play a role in phagosome maturation [41] and fusion with other organelles, potentially providing additional nutrient sources. Indeed, LBs induced by *L. amazonensis* amastigote infection of dendritic leukocytes were observed to be in close apposition to the PV membrane [38]. The extent of interaction of LBs with *Leishmania* PVs in macrophages has not yet been determined, and the contribution of LBs to *Leishmania* phagosome biogenesis and to host–parasite interactions remains to be explored.

- **Iron acquisition**

Iron is an essential element for most organisms, including parasites such as *Leishmania*. This nutrient is required for *Leishmania* growth and survival. Iron acquisition by *Leishmania* is facilitated via the parasite ferric iron reductase LFR1, ferrous iron transporter LIT1 and heme transporter LHR1. The three mediators of iron uptake are upregulated in response to low iron. LHR1 is essential for *Leishmania* viability whereas LFR1 and LIT1 are required for intracellular survival [42]. *LHR1*-null mutants have disrupted heme uptake and are nonviable. Heterozygous mutants (*LHR1*+/−) were attenuated in heme-deficient medium, however differentiated normally into amastigotes but did not replicate in macrophages, unless under iron overload conditions [43]. This suggests that iron availability is essential for parasite growth in the form of heme or high concentrations of labile iron. The host responds by restricting iron availability to intracellular *Leishmania* by expressing the NRAMP1 iron efflux pump in maturing phagosomes and lysosomes. The parasite responds by upregulating LIT1 to counter diminishing phagosomal iron availability in the presence of NRAMP1, as observed in infection of murine bone marrow-derived macrophages by *L. amazonensis* amastigotes [44,45], highlighting the importance of iron availability to *Leishmania*.

The host has a complex set of iron homeostatic pathways to maximize iron availability to metabolizing cells and at the same time minimize the undesired oxidative properties of excess iron. During infection, macrophages play a central role in withdrawing iron from the circulation and limiting iron to infectious agents. The systemic iron regulator, hepcidin, facilitates iron sequestration within macrophages by mediating cell surface degradation of the iron exporter ferroportin. Such host defense tactics may actually benefit *Leishmania* as an intracellular parasite of macrophages. Indeed, it has recently been demonstrated that *L. amazonensis* axenic amastigotes causes TLR4-dependent hepcidin upregulation, which triggers ferroportin degradation in murine bone marrow-derived macrophages. Hepcidin deficiency or overexpression of mutant ferroportin that is resistant to hepcidin-induced degradation inhibited parasite replication. Exogenous hepcidin or expression of dominant-negative ferroportin enhanced parasite growth and restored growth of parasites defective in iron acquisition [46], highlighting the role of the hepcidin–ferroportin axis in macrophage–*Leishmania* interactions and the infection outcome.

Alongside promoting iron uptake by the macrophage, *L. donovani* stationary phase promastigotes depleted labile iron to activate iron regulatory proteins IRP1 and IRP2 in primary murine splenic macrophages [47]. These transcription factors promote increased iron uptake in macrophages through increased expression of the transferrin receptor TfR1. Holotransferrin (TF-Fe) supplementation increased and iron chelation decreased intracellular *Leishmania* growth in J774A.1 macrophage-like cells, signifying the importance of transferrin receptor-mediated iron uptake into macrophages for *Leishmania* survival [47]. Iron acquisition by intracellular *Leishmania* is summarized in Figure 2.

Macrophage defenses

- **Oxidative damage**

One of the major tactics used by macrophages to incapacitate pathogens is the generation of ROS and reactive nitrogen intermediates (RNI). Multiple approaches are used by the macrophage...
Figure 2. Iron acquisition by *Leishmania* within macrophages. *Leishmania* expresses the heme transporter LHR and ferrous iron transporter LIT to scavenge iron inside the PV within macrophages. Additionally, *Leishmania* ferric reductase LFR converts ferric iron to ferrous iron to facilitate its transport by LIT. *Leishmania* also produces TXNPx, which inhibits iron export out of the PV by the cation transporter NRAMP-1, thereby augmenting phagosomal iron availability to the parasite and depleting cytosolic iron stores. Depleted intracellular iron triggers upregulation of TFRs and enhances uptake of Tf-bound ferric iron via the endosomal network, with which the PV interacts. Furthermore, elevated expression of the iron regulator hepcidin in infected macrophages causes degradation of the iron exporter ferroportin and leads to iron retention inside the macrophage, increasing iron availability to *Leishmania*. PV: Parasitophorous vacuole; Tf: Transferrin; TFR: Transferrin receptor; TXNPx: Tryparedoxin peroxidase.

peroxidase.

Macrophages Promastigote

Figure 2. Iron acquisition by *Leishmania* within macrophages. *Leishmania* expresses the heme transporter LHR and ferrous iron transporter LIT to scavenge iron inside the PV within macrophages. Additionally, the *Leishmania* ferric reductase LFR converts ferric iron to ferrous iron to facilitate its transport by LIT. *Leishmania* also produces TXNPx, which inhibits iron export out of the PV by the cation transporter NRAMP-1, thereby augmenting phagosomal iron availability to the parasite and depleting cytosolic iron stores. Depleted intracellular iron triggers upregulation of TFRs and enhances uptake of Tf-bound ferric iron via the endosomal network, with which the PV interacts. Furthermore, elevated expression of the iron regulator hepcidin in infected macrophages causes degradation of the iron exporter ferroportin and leads to iron retention inside the macrophage, increasing iron availability to *Leishmania*. PV: Parasitophorous vacuole; Tf: Transferrin; TFR: Transferrin receptor; TXNPx: Tryparedoxin peroxidase.

Peritoneal resident and inflammatory macrophages infected with *L. major* promastigotes to tightly control production and elimination of these deleterious species, from global macrophage activation to responses localized to pathogen-containing phagosomes. As discussed previously, NADPH oxidase assembly at *Leishmania*-containing phagosome stimulates ROS production and superoxide burst localized to the phagosomal lumen. Additionally, recent findings have demonstrated that NO was produced following Nlrp3 inflammasome assembly in murine bone marrow-derived macrophages infected with *L. amazonensis* metacyclic promastigotes and helped control the infection [48]. Activated Nlrp3 drove IL-1β production, which through IL-1R and MyD88 induced NOS2 to produce NO [48]. ATP-activated purinergic receptor P2X7 induced inflammasome assembly and participated in the subsequent restriction of *L. amazonensis* promastigote growth in bone marrow-derived macrophages. Interestingly, P2X7 was also able to induce leukotriene B4 production, which led to a reduction in parasite load [49]. Overall, these findings indicate a concerted effort by multiple macrophage defense mechanisms to induce oxidative damage to the parasite and compromise its ability to survive.

- **Macrophage activation**
 The macrophage is an extremely plastic cell equipped with homeostatic functions of clearing dead cells and debris in its resting state and microbiocidal and antigen presentation tasks following its activation. Classical activation by IFN-γ leads to inflammatory responses and inhibits *Leishmania* growth, whereas alternative activation by IL-4 inhibits inflammation through IL-10 production and stimulates *Leishmania* growth [50]. The latest studies addressing macrophage activation following *Leishmania* infection and its effect on *Leishmania* growth are discussed below. Peritoneal resident and inflammatory macrophages infected with *L. major* promastigotes...
showed increased expression of FasL, TNF, IL-6, and other proinflammatory markers following induction of a cellular stress response in macrophages, via the SAPK/JNK activation [51]. Interestingly, the cellular stress response also promoted parasite survival and replication in macrophages [51]. Inflammation-induced IFN-γ led to the activation of members of the PKC family of protein kinases, which were critical for macrophage activation and parasite killing [50,52].

Induction of proinflammatory functions could be further stimulated by NRAMP-1-mediated cation transport, which led to a reversible inhibition of protein tyrosine phosphatases (PTPs), via direct PTP-metal interaction and/or ROS-dependent PTP oxidation. The resulting lower PTP activity led to induction of proinflammatory pathways and lower survival of *L. donovani* stationary phase promastigotes in RAW 264.7 macrophages [53]. In the absence of the PTP SHP-1, phagosome acidification was impaired, and pro-Cathepsin D was not processed to the active enzyme [54]. This is consistent with the phagosomal profile of activated macrophages, in which phagosomal degradative capacity is decreased to promote more efficient antigen presentation [55].

Recently, IGF-1, negatively regulated by IFN-γ and macrophage activation, has been implicated in the control of *L. major* promastigote infection in RAW 264.7 macrophages. IGF-1 was expressed in macrophages and colocalized with parasites. IGF-1 production was inhibited by IFN-γ stimulation, which led to a reduced parasite load. Addition of extrinsic IGF-1 reversed the reduction in parasite load completely [56]. IGF-1-mediated mechanisms of parasite growth control remain to be explored.

Foamy cell formation

As discussed above, *Leishmania* infection of macrophages is frequently associated with an increase in LBs in infected macrophages and foamy cell formation. Although from the nutrient perspective, LB induction may potentially be beneficial to the parasites, foamy cells may also form part of host defense against the parasite. LBs are the principal storage organelle for arachidonic acid, which is a paracrine mediator of cell activation. Arachidonic acid can promote phagosome maturation and pathogen killing through ROS production and phagosome–lysosome fusion [41]. Also present in LBs are proinflammatory mediators such as cyclooxygenases, lipooxygenases, leukotriene C4 and MAPK (ERK1, ERK2, p85 and p38) [41]. Irgm, the ER protein involved in phagocytic MHC class I presentation is also present in LBs and may facilitate cross-presentation to other immune cells [57].

Interestingly, the high concentration of prostaglandin E2 (PGE2) as a product of eicosanoid production within LBs in macrophages acts as a potent inhibitor of NO production, and exogenous PGE2 increased parasite load in peritoneal inflammatory macrophages infected with stationary phase *L. amazonensis* promastigotes [36,41]. Hence, the exact contribution of the presence of LBs in macrophages to *Leishmania* intracellular survival may rest on the composition of the LBs, which in turn may be governed by additional factors, such as activation status of the macrophage.

Leishmania evasion of host defenses

- **Curbing inflammation**

Leishmania employs a number of intervention mechanisms to counter host defenses. Molecular targets and mechanisms for the evasion of macrophage defenses by *Leishmania* are summarized in Table 1. *Leishmania* targets multiple signaling pathways in the macrophage to reduce infection-induced inflammation. Even as early as during inoculation of the parasites by the sand fly vector, the parasite-produced proteophosphoglycan-rich secretory gel enhances alternative activation and arginase activity of host macrophages to promote *L. mexicana* survival [4]. Infection of murine peritoneal macrophages with *L. amazonensis* stationary phase promastigotes led to suppressed LPS-induced inflammatory responses, such as the production of IL-12, IL-17 and IL-6. Interestingly, *Leishmania* also augmented LPS-induced proinflammatory cytokines IL-1α, TNF, MIP-1α and MCP-1 and the anti-inflammatory cytokine IL-10 [58]. Hence, *Leishmania* may possess selectivity over manipulation of certain cytokines in order to stimulate a unique activation state in the macrophage suitable for the parasite survival.

Recently, *L. donovani* promastigote infection of murine peritoneal macrophages was shown to induce expression of host PPARγ, which is known to curb inflammation and protect the host from excessive injury. Inhibition of PPARγ facilitated removal of the parasite [60]. *Leishmania* also induced host PTP activation, including PTP1B, TC-PTP, PTP-PEST and SHP-1. Activation of PTPs leads to a number of events...
favorable for the parasite, such as the reduction of proinflammatory processes, a reduction in IL-12, NO, TNF, phagolysosomal maturation and MHC class II antigen presentation [50, 59]. TRAF3 is yet another recently identified target of *L. donovani* promastigotes. The parasite inhibited TRAF3 degradation in order to impair TLR4-mediated inflammatory host response in RAW 264.7 cells and in bone marrow-derived macrophages. TRAF3 degradative ubiquitination is required for TLR4 activation. Reduction in TRAF3 by shRNA decreased parasite burden [62]. The above studies reveal the multitude of host targets that *Leishmania* exploits in order to evade macrophage activation and the accompanying proinflammatory response.

As *Leishmania* establishes infection inside the macrophage and proliferates, the macrophage may eventually undergo apoptosis. The parasite delays macrophage apoptosis but ultimately exploits the apoptotic host cell to spread to neighboring uninfected macrophages, with minimal exposure to extracellular immune recognition systems. Cell-to-cell transfer of *L. amazonensis* amastigotes, which were isolated from BALB/c mice and used to infect bone marrow derived macrophages, was mediated by parasitophorous extrusions, enriched in lysosomal enzymes. The PV components such as LAMP1/2 and Rab7 were shown to be internalized by recipient macrophages together with the rescued parasite and stimulate production of the anti-inflammatory cytokine IL-10 by the recipient macrophage [74]. Thus, even at the most vulnerable stages of its life cycle, *Leishmania* successfully manipulates its host to avoid immune recognition and subsequent inflammation.

- **Interfering with host cell signaling**

Macrophages infected with *Leishmania* are defective in the expression of activation-associated functions and are unresponsive to IFN-γ [75]. Studies with *L. donovani* revealed that this parasite targets distinct steps along the JAK-STAT pathway. Upon contact with macrophages, *L. donovani* promastigotes activated the PTP SHP-1, which dephosphorylated JAK2. In addition, proteasome-mediated degradation of STAT1 was rapidly induced, preventing its nuclear translocation. *L. donovani* promastigotes were also reported to downregulate the IFN-γ receptor and to induce the expression of the

Table 1. Macrophage defenses against *Leishmania* infection and *Leishmania* evasion mechanisms and intracellular survival factors that counter them.

<table>
<thead>
<tr>
<th>Macrophage defense</th>
<th>Molecular mediators targeted for evasion</th>
<th>Mechanism(s)</th>
<th>Leishmania factor(s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>IL-12</td>
<td>Activation of PTPs (PTP1B, TC-PTP, PTP-PEST, SHP-1)</td>
<td>GP63, CPB, LPG</td>
<td>[50, 58, 59, 60, 61]</td>
</tr>
<tr>
<td></td>
<td>TNF</td>
<td>Phagolysosomal maturation</td>
<td>MHC II presentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLR4 signaling</td>
<td>↓ TRAF3 ↓ neutrophil elastase</td>
<td>ISP</td>
<td>[62, 63]</td>
</tr>
<tr>
<td></td>
<td>IL-17</td>
<td>Unknown</td>
<td>Unknown</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td>IL-6</td>
<td>↓ Protein Kinase R</td>
<td>ISP</td>
<td>[58, 64]</td>
</tr>
<tr>
<td>Classical activation</td>
<td>iNOS</td>
<td>↑ PPAR-γ</td>
<td>Unknown</td>
<td>[65]</td>
</tr>
<tr>
<td>Oxidative damage</td>
<td>ROS</td>
<td>↓ mitochondrial UCP-2</td>
<td>Unknown</td>
<td>[66]</td>
</tr>
<tr>
<td></td>
<td>ROS</td>
<td>↓ NADPH oxidase assembly</td>
<td>LPG, GP63</td>
<td>[19, 67, 68]</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>↑ autophagy, ↑ PPAR-γ</td>
<td>Unknown</td>
<td>[36, 69]</td>
</tr>
<tr>
<td>Immune recognition</td>
<td>MHC II presentation</td>
<td>lipid microdomain disruption</td>
<td>GP63, LPG</td>
<td>[20, 67, 70, 71]</td>
</tr>
<tr>
<td></td>
<td>MHC I presentation</td>
<td>↓ VAMP8 ↓ NADPH oxidase</td>
<td>GP63</td>
<td>[67, 72, 73]</td>
</tr>
</tbody>
</table>

For each macrophage defense, the upstream molecular pathways known to be perturbed in *Leishmania* infection are identified. Mechanisms of disruption of these pathways are described, including participating *Leishmania* defense factors where known. CPB: Cysteine protease b; ISP: Inhibitor of serine peptidase; LPG: Lipophosphoglycan; NO: Nitric oxide; PTP: Protein tyrosine phosphatase; ROS: Reactive oxygen species.
suppressor of cytokine signaling SOCS3 [76]. *L. donovani* promastigotes can thus efficiently shut off the predominant signaling cascade of one of the most important macrophage activators. Similar to promastigotes, *L. donovani* amastigotes inhibited IFN-γ-induced expression of MHC class II and iNOS. However, infection with *L. donovani* amastigotes downregulated IFN-γ-induced gene expression without affecting STAT1 activation. Rather, amastigotes inhibited IFN-γ-induced STAT1 nuclear translocation by blocking the interaction of STAT1 with the karyopherin importin-α5 [77]. The underlying mechanisms remain to be elucidated.

- **Avoiding oxidative damage**

Leishmania responses to oxidative stress vary greatly depending on *Leishmania* species and host cell type [78]. For example, *L. major*-infected thioglycolate-elicited peritoneal macrophages infected with *L. major* stationary phase promastigotes produced ROS, whereas in *L. amazonensis*-infected cells ROS production was inhibited [79]. Various approaches are used by different *Leishmania* species to counter oxidative stress. For example, *L. donovani* axenic amastigotes were able to impair cellular and mitochondrial ROS via the induction of mitochondrial uncoupling protein 2 (UCP2). *L. donovani* degraded the transcription factor USF-1, hence facilitating recruitment of the transcription factors SREBP2 and Sp1 to the UCP2 promoter, UPC2 upregulation and inhibition of ROS [66].

Leishmania is also able to avoid oxidative damage by preventing NADPH oxidase assembly at the phagosomal membrane and generation of ROS within the PV. A recent study by Mathoud and colleagues has demonstrated that *L. donovani* and *L. major* stationary phase promastigotes achieve this by cleaving the host SNARE VAMP8, which was necessary for NADPH oxidase recruitment to the phagosome of bone marrow-derived macrophages [67]. Disruption of lipid microdomains by insertion of the surface glycolipid lipophosphoglycan (LPG) in the phagosomal membrane by the parasite may also inhibit recruitment of the cytosolic components of the NADPH oxidase to the PV [19]. In a different approach, *L. mexicana pifanoi* axenic amastigotes recruited the immature 65-kDa form, but not the mature 91-kDa form, of the gp91phox subunit of the NADPH oxidase complex to the PVs by disrupting gp61phox maturation in RAW 264.7 macrophages. Heme-dependent maturation of gp91phox was inhibited by the parasite through upregulation of host heme oxygenase 1 and heme degradation [80].

As well as harming the parasite directly, oxidative damage by ROS induces apoptosis in macrophages, which destroys the replicative niche of the parasite. Apoptosis was suppressed by *L. donovani* stationary phase promastigote infection of RAW 264.7 macrophages via the induction of the suppressors of cytokine signaling SOCS1 and SOCS3, which enhanced parasite survival [81].

- **Countering antigen presentation**

Antigen cross-presentation is a critical process for immunity against pathogens. It involves presentation of foreign proteins derived from phagocytosed cargo on MHC class I for detection by cytotoxic CD8+ T cells and for orchestration of a systemic immune response. As a professional antigen presenting cell (APC), the macrophage participates in cross-presentation of *Leishmania*-derived proteins. *Leishmania* evades host immunity by inhibiting antigen cross-presentation through cleavage of the SNARE VAMP8 in murine bone marrow derived macrophages infected with *L. major* or *L. donovani* stationary phase promastigotes but not *L. donovani* amastigotes isolated from spleens of infected hamsters. Disruption of VAMP8 prevented NADPH oxidase assembly which led to more efficient phagosomal acidification and proteolysis, thereby inhibiting MHC class I presentation and T cell activation [67,72,73]. Both VAMP8 and VAMP3 were excluded from *Leishmania* PVs. The consequences of VAMP3 exclusion from *Leishmania* PVs are unknown. Interestingly, MHC class II-dependent antigen presentation was also compromised in *Leishmania* infection but in VAMP8-independent manner [67,70].

Inhibition of antigen cross-presentation was also achieved via disruption of membrane lipid microdomains by the parasite [71]. Indeed, membrane cholesterol levels were found to be reduced in infected cells and the antigen presentation defect could be corrected with liposomal delivery of exogenous cholesterol. Liposomal cholesterol was also found to promote ROS and RNI, proinflammatory cytokine expression and intracellular parasite killing, and was implicated in cellular stress and ROS-induced apoptosis of peritoneal exudate cells infected with *L. donovani* promastigotes [82]. Hence, lower cholesterol levels, whether through dysregulated macrophage
lipid metabolism or Leishmania-driven cholesterol displacement or depletion, may favor Leishmania survival.

- **Induction of autophagy**
 Induction of autophagy in bone marrow-derived macrophages or peritoneal exudate cells by *L. amazonensis* amastigotes isolated from mouse footpad and stationary phase promastigotes, respectively, enhanced intracellular parasite survival. Autophagy inhibitors, such as 3-methyladenine (3MA) or wortmannin, reduced parasite load whereas autophagy inducers such as rapamycin or starvation did not alter or increased parasite load [36,69]. Induction of autophagy was associated with NO reduction and highlights the role of this pathway in the outcome of infection [36].

Leishmania intracellular survival factors
A number of essential surface molecules protect the parasite from oxidative damage and hydrolytic activity within the phagolysosome. Other survival factors are secreted and directly interact with macrophage proteins within specific signaling pathways to modulate phagosome biogenesis, macrophage defense mechanisms, and systemic inflammation. Among others, the most studied *Leishmania* factors that modulate host cell physiology include LPG, glycosylinositol phospholipids, proteophosphoglycans, cysteine proteases, secreted acid phosphatases and the zinc-dependent metalloprotease GP63 [19,78]. The better studied *Leishmania* factors are discussed below, and their role in host–parasite interactions summarized in Table 2.

Leishmania expresses multiple intracellular survival factors, which vary according to the species and life cycle stage. For example, amastigotes lack LPG but retain a glycosylalix of parasite-synthesized glycosylinositol phospholipids and host-derived glycosphingolipids, which may protect the parasite from hydrolases and MHC class II presentation [35]. Promastigotes can release microvesicles, or exosomes, into the extracellular milieu to deliver macrophage-modulating molecules into nearby cells before internalization of the parasite. Exposure of macrophages to exosomes induced IL–8 secretion but not TNF. This may modify parasite uptake by the macrophage as well as further downstream events during established infection [104–80].

Exosome-based secretion pathway is responsible for *Leishmania* protein export into macrophage cytosol. Exosome composition is governed by external cues such as temperature and pH. Exosome release is upregulated at 37°C and low pH, the conditions the parasite encounters

Table 2. *Leishmania* intracellular survival factors and their role in *Leishmania*–macrophage interactions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Role in host–parasite interactions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPG</td>
<td>Lipophosphoglycan</td>
<td>Activates MAPK, disrupts lipid rafts, ↑ TNF, ↑ IL-1β, ↑ IL-6, ↓ TLR9, ↓ recruitment of Syntaptotagmin V, NADPH oxidase and V-ATPase to PV, scavenges ROS, ↑ HO-1</td>
<td>[19–20,60,68,83–88]</td>
</tr>
<tr>
<td>GP63</td>
<td>Zinc-dependent metalloprotease</td>
<td>Activates PTTPs, p130CAs, Cortactin, Caspase 3 ↓ miRNA-122, ↓ TNF, ↓ IL-12, ↓ NO, ↓ mTOR, ↓ AP-1</td>
<td>[50,61,67,89–92]</td>
</tr>
<tr>
<td>ISP</td>
<td>Inhibitor of serine peptidase</td>
<td>↓ Neutrophil elastase, ↓ trypsin, ↓ chymotrypsin, ↓ TLR4 activation, ↓ Protein kinase R activation</td>
<td>[63–64,93]</td>
</tr>
<tr>
<td>Prohibitin</td>
<td>Prohibitin ortholog</td>
<td>Interacts with host HSP70, ↑ parasite uptake</td>
<td>[94]</td>
</tr>
<tr>
<td>PKC-like</td>
<td>Protein Kinase C Ortholog</td>
<td>↑ Parasite phagocytosis</td>
<td>[95]</td>
</tr>
<tr>
<td>ISCL</td>
<td>Inositol phosphophingolipid</td>
<td>↑ Survival and replication</td>
<td>[96]</td>
</tr>
<tr>
<td>Aldolase</td>
<td>Fructose-bisphosphate aldolase</td>
<td>Activates SHP-1, ↓ acidification</td>
<td>[54,97]</td>
</tr>
<tr>
<td>MsrA</td>
<td>Methionine sulfoxide reductase A</td>
<td>↑ Resistance to ROS/RNI, ↓ IL-12, ↓ TNF</td>
<td>[98]</td>
</tr>
<tr>
<td>ALO</td>
<td>Arabino-1,4-lactone oxidase/vitamin C biosynthesis</td>
<td>↑ Resistance to ROS/RNI, ↓ IL-12, ↓ TNF</td>
<td>[99]</td>
</tr>
<tr>
<td>TXNPx</td>
<td>Trypapedoxin peroxidase</td>
<td>Detoxifies ROS/RNI, ↓ NRAMP-1, Fe redistribution</td>
<td>[100,101]</td>
</tr>
<tr>
<td>Thioredoxin</td>
<td>ROS scavenging enzyme</td>
<td>Stabilizes PTPs, ↑ proinflammatory pathways</td>
<td>[81]</td>
</tr>
<tr>
<td>CPB</td>
<td>Cysteine protease</td>
<td>Activates PTTPs, ↓ activation, ↓ NO</td>
<td>[102]</td>
</tr>
<tr>
<td>MIF</td>
<td>Macrophage migration inhibitory factor ortholog</td>
<td>Activates MAPK, ↓ apoptosis</td>
<td>[103]</td>
</tr>
</tbody>
</table>

Names of *Leishmania* survival factors are listed alongside their descriptions. Their effects on macrophage defense pathways and *Leishmania* survival are described. LPG: Lipophosphoglycan; NO: Nitric oxide; PTP: Protein tyrosine phosphatase; PV: Parasitophorous vacuole; RNI: Reactive nitrogen intermediates; ROS: Reactive oxygen species.
following inoculation by the sand fly into a mammalian host, as observed with *L. donovani* stationary phase promastigotes [105]. Within 4 h of temperature shift from 26°C to 37°C, a rapid increase in protein release was induced in *L. mexicana* promastigotes via the exosomes budding from the parasite surface. *Leishmania*-secreted molecules disrupted macrophage intracellular signaling pathways, including cleavage of PTPs, altered translocation of NF-κB and AP-1 in macrophages and inhibition of NO production [106,107]. Thus, exosomes provide a means for the parasite to efficiently deliver effector molecules to macrophages and modify their behavior to benefit parasite survival.

- **Lipophosphoglycan**

LPG is the most abundant surface glycolipid of promastigotes and is one of the best studied *Leishmania* molecules. LPG exhibits wide variation in sugar composition between and within species. For example, LPG from *L. braziliensis* is devoid of oligosaccharide side chains whereas LPG from *L. infantum* contains side chains, and they both trigger distinct immune responses in macrophages. *L. braziliensis* LPG results in higher levels of TNF, IL-1β, IL-6 and NO production and a stronger but more transient MAPK activation than *L. infantum* LPG, as observed in thioglycolate-elicited peritoneal macrophages, respectively [86,87]. *L. chagasi* LPG upregulated heme oxygenase-1 (HO-1), a key enzyme triggered by cellular stress, which was associated with diminished production of TNF and ROS and enhanced parasite survival [88].

Differentiation of promastigotes into amastigotes is accompanied by the loss of flagellum and a 1000-fold downregulation in LPG levels, underlying major physical differences between the two life cycle stages and the resulting differences in the two intracellular niches [10].

- **GP63**

GP63 is a GPI-anchored metalloprotease predominantly expressed by promastigotes and is thought to be released from the parasite via exosomes [78,105]. In infected cells, this intracellular survival factor colocalized with ganglioside GM1-positive lipid microdomains, possibly via its GPI anchor [53,59]. However, disruption of lipid microdomains did not impair GP63-dependent downstream events, such as TC-PTP cleavage, suggesting that additional mechanisms for entry into the host cell cytosol exist. GP63 also interacts with the complement component C3b so it can be taken up directly into cells [59]. Indeed, it has been proposed that parasite phagocytosis is not required for GP63 uptake and subsequent intracellular modifications, suggesting that *Leishmania* can modulate cell behavior prior to parasite uptake by the macrophage [89].

Once inside macrophages, GP63 cleaves host proteins, including phosphorylated adaptors...
Inhibitors of serine peptidase

Leishmania produces molecules known as inhibitors of serine peptidase (ISP), which inhibit a number of host enzymes, including neutrophil elastase, trypsin and chymotrypsin. This was demonstrated in murine peritoneal macrophages infected with L. major stationary-phase metacyclic promastigotes enriched by agglutination with peanut lectin [63]. Inhibition of neutrophil elastase prevented TLR4 activation and promoted parasite survival. ISP2/3 mutants could differentiate but failed to divide in the absence of serine peptidase inhibition [63]. ISP2/3 deficiency in parasites led to unregulated activity of neutrophil elastase and enhanced parasite uptake and killing rates following increased superoxide burst [93]. Leishmania ISP is also involved in preventing activation of the host protein kinase, PKR. PKR is a serine/threonine kinase normally activated in response to dsRNA, such as during viral infections, but also to LPS via the TLR2/4 signaling pathway. PKR regulates NF-κB, TNF and IL-6 production. Disruption of PKR activity by L. major purified metacyclic promastigotes prevented activation of bone marrow-derived macrophages and killing of the parasite [64].

Other intracellular survival factors

Several other Leishmania molecules contribute to parasite fitness and survival inside macrophages. For instance, mammalian ortholog proteins such as prohibitin and the PKC-like enzyme play a role in parasite uptake. Prohibitin interacts with host HSP70 on the macrophage surface and possibly forms part of a recognition complex, which is required for parasite binding to macrophages. Overexpression increased infectivity, whereas antibody treatment led to lower infectivity of purified metacyclic L. donovani promastigotes in J774A.1 cells [94]. L. mexicana PKC-like enzyme is expressed during the infective stationary phase, exhibits external Ca2+ and phosphatidyserine-dependent PKC activity in murine resident peritoneal macrophages, and plays a role in parasite internalization [95]. L. amazonensis promastigotes produce the mitochondrial enzyme inositol phosphoglyceride phospholipase C-like (ISCL), which is responsible for sphingolipid degradation, and mutants in this enzyme were severely attenuated in low pH medium and in bone marrow-derived macrophages [96]. This suggests that ISCL is required for parasite survival in its macrophage replicative niche. L. donovani produces aldolase, which binds and activates the PTP SHP-1 in RAW 264.7 macrophages [97]. This may lead to impaired phagosome acidification [54] and may help the parasite avoid the hostile environment of the macrophage phagolysosome.

Other factors help the parasite counter oxidative stress inside the macrophage. L. major produces Methionine Sulfoxide Reductase A, which is required for resistance to oxidative stress. Mutants in this enzyme exhibited increased sensitivity to hydrogen peroxide and a reduced proliferation in RAW 264.7 macrophages. Interestingly, this enzyme was not essential for in vivo lesion formation [98]. L. donovani...
produces the ALO enzyme, which is involved in vitamin C biosynthesis. ALO-deficient stationary phase promastigotes induced IFN-γ, IL-12 and TNF production and were susceptible to ROS and RNI in J774A.1 cells [99]. L. donovani and L. pifanoi secrete tryparedoxin peroxidase (TXNPx), which is then trafficked out of PVs in vesicles with distinct morphologies, into the cytosol and nucleus, where it acts as an antioxidant that detoxifies peroxides, ROS and RNI [100]. L. donovani peroxidase has peroxidoxin-like peroxidase activity and also downregulates NRAMP1 expression in peritoneal macrophages, possibly to redistribute iron to PVs and dampen immune responses, such as the production of IFN-γ, IL-12 and TNF [101]. Another ROS scavenging enzyme, Leishmania thioredoxin, is induced during infection and is also involved in PTP stabilization [81].

The ability of Leishmania to alter macrophage signaling and counter inflammation is also mediated by the cysteine protease CPB [102]. L. mexicana promastigotes and amastigotes activate host PTPs, including SHP-1, in B10R cells. Interestingly, PTP-1B is activated by promastigotes but not amastigotes. Both activate STAT-1α and AP-1. Promastigotes cleave p65 subunit of NF-κB to p35, while amastigotes fully degrade p65. All of these events are mediated by CPB. As a result, IFN-γ-mediated activation is suppressed and NO production is blocked [102]. L. major produces an ortholog of macrophage MIF, which binds MIF receptor, and like its mammalian counterpart it induced ERK1/2 MAPK activation and inhibited activation-induced apoptosis in murine bone marrow-derived macrophages [103]. Overall, such Leishmania tactics create an intracellular niche more conducive to their survival and replication.

Conclusion

As an intracellular parasite of macrophages, Leishmania has to find ways for efficient uptake into the host cell, and subsequently remodel the hostile environment of phagolysosome. Leishmania uses multiple macrophage receptors for recognition and is well adapted to stimulate phagocytosis with the help of the flagellum. Even before the phagosome has fully formed, the macrophage elicits an anti-microbial response through the recruitment of NADPH oxidase and V-ATPase complexes to the phagosomal cup. These measures would normally result in oxidative damage to the pathogen and promote acidification of the newly formed phagosome, as well as hydrolysis following the delivery of lysosomal enzymes to the phagosome. As well as playing a central role in pathogen destruction, the phagosome also functions in immune recognition by providing substrates for antigen presentation. Leishmania has evolved evasion strategies, such as the expression of LPG, to selectively modify the recruitment of various phagosome maturation factors and the fusion with lysosomes. The resulting PV protects the parasite from oxidative damage and immune recognition by antigen presentation. Furthermore, Leishmania releases intracellular survival factors, such as GP63, to target host signaling and cause global cellular modifications, including suppressed immune activation, retention of iron, foamy cell formation and enhanced autophagy. Such changes enhance nutrient availability to the parasite and prevent stimulation of proinflammatory responses. Multiple other defense factors have been shown to contribute to the intra-macrophage survival of different Leishmania strains and life stages, helping the parasite modify and adapt to its niche and making it a highly successful parasite.

Future perspective

The recent studies of Leishmania-infected macrophages highlight the vast complexity of host–parasite interactions, with many of the described pathways overlapping or interacting with each other. We have learned that the LPG-mediated disruption of lipid microdomains prevents microbicidal events, such as the NADPH oxidase recruitment to the phagosomal cup, but at the same time parasite uptake by the macrophage is compromised. Lower NADPH oxidase activity in the phagosome protects the parasite from ROS damage and also results in suppressed antigen presentation. LBs may simultaneously act as nutrient sources for Leishmania and as providers of arachidonic acid and other proinflammatory factors for the macrophage. LPG-mediated TLR2/4 activation may improve iron availability to the parasite, through iron retention by the macrophage, but it may also lead to macrophage activation. Many proinflammatory pathways are in turn selectively countered by GP63, ISP, CPB and other Leishmania defense molecules.

Although a lot of progress has been made in Leishmania research in the past few years, much remains to be explored in the area of Leishmania–macrophage interactions. What is
the trigger for parasite differentiation? What is causing foamy cell formation? What other macrophage functions are compromised? How do these findings translate to in vivo research and to humans? As we learn more about the changes exerted on the macrophage by Leishmania infection, we will gain greater appreciation for key macrophage functions and their role in immune response. As more Leishmania defense molecules are discovered, their importance in intracellular parasite survival is determined, and mechanisms for their actions are described, we will have a more comprehensive understanding of strategies employed by the parasite to survive in

EXECUTIVE SUMMARY

Initial events in parasite uptake by the macrophage

- *Leishmania* is phagocytosed by the macrophage via a range of receptors. Receptor choice affects phagosome biogenesis. Macrophage interaction with the parasite flagellum may trigger the release of parasite intracellular survival factors that modulate macrophage phagocytic activity.
- *Leishmania* phagosome maturation is modified by the mechanical action of the flagellum and a restricted fusion with vesicles of the endosomal pathway. Phagosomal pH and iron availability trigger promastigote-to-amastigote differentiation.

Intracellular parasite growth

- *Leishmania* growth depends on its interaction with ER-derived vesicles, presumably as a source of nutrients and additional membrane for the parasitophorous vacuole (PV).
- *Leishmania* acquires nutrients from vesicles of the endolysosomal and ER pathways, and possibly lipid bodies, following their fusion with the PV.
- *Leishmania* acquires iron through heme and ferrous iron transporters. The parasite upregulates iron uptake and retention by the macrophage to enhance iron availability.

Macrophage defenses

- The macrophage promotes assembly of NADPH oxidase and Nlrp3 inflammasome complexes, which produce reactive oxygen species (ROS) and reactive nitrogen intermediates to impair the parasite.
- The infected macrophage induces inflammation and IFN-γ-mediated activation, leading to enhanced ROS production, phagosome maturation and antigen presentation.
- The macrophage modulates lipid metabolism to generate lipid bodies, which produce arachidonic acid and other proinflammatory mediators.

Leishmania evasion of host defenses

- *Leishmania* upregulates host PPAγ and protein tyrosine phosphatases, which leads to suppressed inflammation.
- *Leishmania* interferes with the JAK/STAT pathway, preventing macrophage activation.
- *Leishmania* inhibits ROS generation by preventing NADPH oxidase assembly.
- *Leishmania* inhibits MHC class II expression and modulates the phagosome proteolytic function to suppress substrate production for efficient antigen presentation.
- *Leishmania* induces autophagy in macrophages, which is associated with nitric oxide reduction.

Leishmania intracellular survival factors

- Lipophosphoglycan scavenges ROS and disrupts lipid microdomains to suppress phagosome maturation. Lipophosphoglycan also interacts with TLR2/4 to interfere with host cell signaling.
- GP63 is released via exosomes and cleaves multiple host proteins, including protein tyrosine phosphatases, leading to downregulation of proinflammatory responses and antigen presentation.
- Other defense factors promote phagocytosis, modulate PV biogenesis and counter macrophage defenses including oxidative stress, activation, apoptosis and inflammation.
macrophages. As the macrophage responds to infection, tissue damage often occurs, contributing to clinical manifestations of Leishmaniasis disease. Advancing our understanding host-driven immune responses to the infection will support our efforts in minimizing symptoms of this devastating disease.

Expanding our knowledge of macrophage functions and Leishmania survival strategies will help us make more informed decisions in vaccine and drug development efforts. Currently, there are twelve million people infected with Leishmania, with two million new cases a year, however there is no available vaccine and drug resistance is emerging. Leishmaniasis is prevalent in 98 countries in Asia, Africa, South and Central America and southern Europe, with at least 17 different species of Leishmania causing the disease. The inter-species variation in drug sensitivity often means limitations in drug choice. Additionally, most available drugs have severe side effects, further complicating treatment. Manipulation of the immune response by the parasite makes it difficult to design an effective vaccine. Enhanced understanding of essential interaction pathways in Leishmania infection of macrophages will help design new drugs to disrupt interactions that favor the parasite, boost macrophage microbicidal and immune functions that support parasite elimination and inhibit Leishmania molecules that are essential for intracellular Leishmania survival.

Acknowledgements
The authors thank Christine Matte for critical reading of the manuscript.

Financial & competing interests disclosure
A Descoteaux is supported by grants from the Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada. M Podinovskaia is supported by a postdoctoral fellowship from the Fondation Armand-Frappier. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

References
Papers of special note have been highlighted as:
** of considerable interest
6. Podinovskaia, A Descoteaux is supported by grants from the Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada. M Podinovskaia is supported by a postdoctoral fellowship from the Fondation Armand-Frappier. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

References
Papers of special note have been highlighted as:
** of considerable interest

Disruption of endoplasmic reticulum/Golgi SNAREs results in the reduction in parasitophorous vacuole size and parasite replication.

A detailed review on nutritional requirements of amastigotes and mechanisms employed to obtain the nutrients from the intraphagosomal niche.

Leishmania infection triggers iron retention in macrophages through TLR4-dependent iron export regulation and promotes parasite growth.

20 Vinet AF, Fukuda M, Turco SJ, Descoteaux A. The *Leishmania donovani* lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. *PLoS Pathog.* 5(10), e1000628 (2009).

52 Hardy PO, Diao TO, Matte C, Descoteaux A. Roles of phosphatidylinositol 3-kinase and p38 mitogen-activated kinase in the regulation of protein kinase C-alpha activation in interferon-gamma-stimulated macrophages. *Immunology* 128(Suppl. 1), e652–e660 (2009).

The role of VAMP8 in phagosome biogenesis and antigen presentation and its disruption by *Leishmania* in GP63-dependent manner.

77 Matte C, Descoteaux A. *Leishmania donovani* amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5. *Infect. Immun.* 78(9), 3736–3743 (2010).

A comprehensive review of the *Leishmania* virulence factors including GP63.

81 Srivastav S, Basu Ball W, Gupta P, Giri J, Ukil A, Das PK. *Leishmania donovani* prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling (SOCS)

89 Contreras I, Gomez MA, Nguyen O, Shio MT, McMaster RW, Olivier M. Leishmania-induced inactivation of the macrophage transcription factor AP-1 is mediated by the parasite metalloproteinase GP63. PLoS Pathog. 6(10), e100148 (2010).

95 Alvarez-Rueda N, Biron M, Le Pape P. Infectivity of Leishmania mexicana is associated with differential expression of protein kinase C-like triggered during a cell-cell contact. PLoS ONE 4(10), e7581 (2009).

