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SCC0602 - Algoritmos e 
Estruturas de Dados I

Divide and Conquer

Professor: André C. P. L. F. de Carvalho, ICMC-USP 
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos
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Today

 Analysis the running time of recursive 
algorithms 

 Like divide-and-conquer

 Writing and solving recurrences

 Tree recurrence method

 Master method
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Revision: Insertion sort x Merge sort

 n2 versus nlgn

 log(n) : how many times do you need to divide n
by 2 in order to reach 1 (assume n = 2m)?

n2 nlgn
22 = 5 2lg (2) = 2
42 = 16 4lg (4) = 8
…
322 = 1024 32lg (32)    = 160
…
5122 = 262.144 512lg(512) = 4.606

lg(number of particles in the universe) < 280

log(n) grows very 
slowly with n and 
much slower than n2
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Revision: Insertion sort x Merge sort

n n log(n) n2

8 24 64

16 64 256

32 160 1024

64 384 4096

128 896 16384

256 2048 65536

512 4608 262144

1024 10240 1048576

n2 versus nlgn
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Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � �  ⟺ ∃�, �� > 0  �. �.   ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1  
g(n) = O(f(n))   (and also f(n) = O(g(n)))

Need c but not really n0
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Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � �  ⟺ ∃�, �� > 0  �. �.   ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1  
g(n) = O(f(n))   (and also f(n) = O(g(n)))

Need both c and n0
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Divide and Conquer

 Divide et impera [Divide and rule]

 Ancient political maxim cited by Machiavelli 

 Julius Caesar (102-44BC)

 The divide-and-conquer paradigm:

 DIVIDE problem up into smaller problems

 CONQUER by solving each subproblem

 COMBINE results to solve the original 
problem
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Recurrences

 Recursive calls in algorithms can be described 
using recurrences

 It is an equation or inequality that describes a 
function in terms of its value on smaller inputs

 Example: Merge Sort

(1)   if 1
( )

2 ( / 2) ( )   if 1

n
T n

T n n n

 
 

 

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1

n
T n

T n n
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Solving Recurrences

 Substitution method

 Guess the solutions

 Verify the solution by the mathematical induction

 Repeated (backward) substitution method

 Expand the recurrence by substitution and look for  a 
pattern

 Recursion-trees

 Master method

 templates for different classes of recurrences
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Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort 
 Assume that n=2b, for some b
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Guess that � � =O(�����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

T(n) = 2T(n/2) + 2n + 3 

∖
� � = �

2                                 �� � = 1

2�
�

2
+ 2� + 3   �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)

Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort 
 Assume that n=2b, for some b
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Guess that � � =Q(�����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

T(n) = 2T(n/2) + 2n + 3 

∖
� � = �

2                                 �� � = 1

2�
�

2
+ 2� + 3   �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)
Use n0 = 2
T(2) = 11 and c2lg2 = 2c
T(3) = 13 and c3lg3 = 3c1.6
For n> 3, recurrence 
does not depend on T(1)

Substitution method (ex. 2)
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T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + 2n + 3

≤  cn lg (n/2) + 2n + 3
≤  cn lg n – cnlg 2 + 2n + 3
≤  cn lg n – cn + 2n + 3 (ignore terms < nlgn)

≤  cn lg n

Choose positive value of c 
that holds for T(2) and T(3)
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Substitution method (ex. 2)
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T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + 2n + 3

≤  cn lg (n/2) + 2n + 3
≤  cn lg n – cnlg 2 + 2n + 3
≤  cn lg n – cn + 2n + 3
≤  cn lg n

Choose positive value of c 
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2 
11 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2 
11 ≤ 4 → does not hold

Substitution method (ex. 2)
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T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + 2n + 3

≤  cn lg (n/2) + 2n + 3
≤  cn lg n – cnlg 2 + 2n + 3
≤  cn lg n – cn + 2n + 3
≤  cn lg n

Choose positive value of c 
that holds for T(2) and T(3)
If c = 3

T(2) ≤ 3x2lg2
11 ≤ 6 → does not hold

If c = 6
T(2) ≤ 6x2lg2
11 ≤ 12 → holds

Substitution method (ex. 2)
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T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + 2n + 3

≤  cn lg (n/2) + 2n + 3
≤  cn lg n – cnlg 2 + 2n + 3
≤  cn lg n – cn + 2n + 3
≤  cn lg n (holds if c > 5)

Choose positive value of c 
that holds for T(2) and T(3)
If c = 6

T(3) ≤ 6x3lg3 
13 ≤ 18x1,6 → holds

Thus, c = 6 and
T(n) = O(nlg n)

Repeated Substitution Method

 Variation of substitution method
 Close to the tree

 Simple procedure:
 Substitute

 Expand

 Substitute 

 Expand

 …
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Repeated Substitution Method

 Simple procedure:
 Make some substitutions

 Observe a pattern and write how the 
expression looks after the ith substitution

 Find out which value i should have (e.g., lgn) 
to get the base case of the recurrence (T(1))

 Insert the value of T(1) and the expression of i
into the expression
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Repeated Substitution (Ex. 2)

 Sequence of expand-substitute operations
2   if 1

( )
2 ( / 2) 2 3   if 1

n
T n

T n n n


 

  

T(n)≤ 2T(n/2) + 2n + 3 Substitute T(n/2)
≤ 2[2T(n/4) + 2n/2 +3] + 2n + 3  Expand outside []
≤ 22T(n/4) + 4n + 2×3 + 3 Substitute T(n/4)
≤ 22 [2T(n/8)+2n/4+3]+4n+2×3 +3 Expand outside []
≤ 23 T(n/ 23)+2×3n +(22+21+20)×3 There is a pattern

≤ 2i T(n/ 2i)+2×in + 3×∑ 2����
��� Look for value of i to 

≤ 2lg n T(n/n)+2nlg n + 3(2lg n −1) reach the base case: lg n
≤ 2n + 2nlg n +3n – 3 = 5n + 2nlg n – 3
≤ n lg n
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Exercise

 Running time of tromino tiling algorithm for a 2nx2n board

 Find its upper bound
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1   if 1
( )

4 ( 1) 1   if 1

n
T n

T n n


 

  

Repeated Substitution (Ex. 3)

 Running time of tromino tiling algorithm for a 2nx2n board

T(n) ≤ 4T(n-1) + 1 Substitute T(n-1)
≤ 4[4T(n-2) + 1] + 1  Expand outside []
≤ 42T(n-2) + 4 + 1 Substitute T(n-2)
≤ 42[4T(n-3) +1] + 4 + 1 Expand outside []
≤ 43T(n-3) + 42 + 41 + 40 Look for value of i to 

≤ 4i T(n-i)+∑ 4����
��� reach the base case: n-1

≤ 4n-1 T(1)+
������

���
=

����

�
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1   if 1
( )

4 ( 1) 1   if 1

n
T n

T n n


 

  

Substitution method 
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Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Substitution method 
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Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Choose positive value of c 
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x13

1 ≤ 1 → holds
T(2) ≤ 1x23

6 ≤ 8 → holds

Thus c ≥ 1 and
T(n)= O(n3)

Substitution Method

 Achieving tighter bounds
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Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤  4T(n/2)+ n
≤  4c(n/2)2 + n
≤  cn2 + n
≤  cn2  

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Substitution Method

 Achieving tighter bounds
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Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤  4T(n/2)+ n
≤  4c(n/2)2 + n
≤  cn2 + n
≤  cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c 
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x12

1 ≤ 1 → holds
T(2) ≤ 1x22

5 ≤ 4 → Does not hold
If c = 2

T(1) ≤ 2x12

1 ≤ 2 → holds
T(2) ≤ 2x22

9 ≤ 8 → Does not hold
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Substitution Method

 Achieving tighter bounds
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Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤  4T(n/2)+ n
≤  4c(n/2)2 + n
≤  cn2 + n
≤  cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c 
that holds for T(1) and T(2)
If c = 3

T(1) ≤ 3x12

1 ≤ 3 → holds
T(2) ≤ 3x22

13 ≤ 12 → Does not hold
If c = 4

T(1) ≤ 4x12

1 ≤ 4 → holds
T(2) ≤ 4x22

17 ≤ 16 → Does not hold

False for any value of c 
Never holds 

Substitution Method (2)

 What is the problem? 

 The inequality (cn2 + positive value) ≤  cn2 

is not possible

 To prove inductive step, try to make the 
hypothesis stronger
 T(n)   (answer you want) - (something > 0)
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Substitution Method (3)

 Corrected proof: 

 Strength the inductive hypothesis by 
subtracting lower-order terms!

2
1 2

2
1 2

2
1 2

2
1 2 2

2
1 2 2

Assume ( )  for 

( ) 4 ( / 2)

4( ( / 2) ( / 2))

2

( )

 if 1

T k c k c k k n

T n T n n

c n c n n

c n c n n

c n c n c n n

c n c n c

  

 

  

  

   

  

© André de Carvalho - ICMC/USP 27

Substitution Method

 Powerful, but we need to guess the form 
of the solution

 Making a good guess for the substitution 
method can be difficult

 Recursion trees can give good guesses of 
asymtotic solutions to recurrences

 Which can be confirmed by the substitution method

 They can even be the direct proof of the solution to 
a recurrence
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Recursion Trees

 Show successive expansions of 
recurrences using trees

 Convenient way to visualize what happens 
when a recurrence is iterated 

 Keep track of the time spent on the 
subproblems of a divide and conquer algorithm

 Help to sum the processing times 
necessary to solve a recurrence
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Recursion Tree for Merge Sort 
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The original problem has a cost 
of cn + two subproblems of size 
(n/2) and running time T(n/2)

cn

T(n/2) T(n/2)

Each n/2 size problem has a cost of cn/2 + 
two subproblems, each costing T(n/4)

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and merge 

Cost of sorting subproblems 

T(n)=2T(n/2) + Q(n)
T(n)=2T(n/2) + cn
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Recursion Tree for Merge Sort 
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cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total           : cnlgn+cn

Continue expanding until 
the problem size reduces to 1

Recursion Tree for Merge Sort 

 Each level has total cost cn

 When we go down one level, number 
of subproblems doubles, but the cost 
per subproblem halves   cost per 
level remains the same

 There are lg n+1 levels, height is lg n
(Assuming n = 2m)

 Can be proved by induction

 Total cost=sum of costs at each level 
= (lg n+1)cn = cnlgn + cn = (n lgn)
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cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

Recursion Tree for Merge Sort 

 Confirm with the Substitution Method
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Try to show that T(n) = O(nlg n)
Assume that T(n) = 2T(n/2) + cn

T(n) ≤  2T(n/2)+ cn
≤  2[n/2lg n/2] + cn
≤  nlg n/2  + cn
≤  nlg n – n + cn
≤  nlg n

Exemplo 2

 Show the recurrence tree for the 
recurrence

2( ) ( / 4) ( / 2)T n T n T n n  
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Exemplo 2

 Show the recurrence tree for the 
recurrence

2( ) ( / 4) ( / 2)T n T n T n n  

© André de Carvalho - ICMC/USP 35

Example 2
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Exercícios

 Use the recursion-tree method to 
determine a guess for the recurrences

 Ex. 2: T(n) = T(n/3) + T(2n/3) + O(n)

 Ex. 3: T(n) = 3T(n/4) + (n2)
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Master Method

 Try to solve a class of recurrences of the form

 Where a  1, b > 1 and f is asymptotically positive

 T(n) is the runtime for an algorithm and it is 
known that
 a subproblems of size n/b are solved recursively, 

each in time T(n/b)

 f(n) is the cost of dividing the problem and 
combining the results 

 In merge-sort 

( ) ( / ) ( )T n aT n b f n 

( ) 2 ( / 2) ( )T n T n n  
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Master Method (2)
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f (n/b)f (n/b) f (n/b)

T (1)

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
algbn

f (n)

a f (n/b)

a2 f (n/b2)

…

���
�
�T (1)

(���
�
�)

CASE 1: Weight increases geometrically 
from the root to the leaves

The leaves are a constant fraction of       
the total weight

Functions increase from 
top to bottom geometrically 

Thus, only the last   
bottom term is needed

���
�
�=���

�
�

Master Method (3)

 Number of leaves:

 Iterating the recurrence, expanding the tree yields

 The first term is a division/recombination cost (totaled across 
all levels of the tree)

 The second term is the cost of doing all subproblems of 
size 1 (total of all work pushed to leaves)

logb an
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T(n) =  f(n) + aT(n/b)
=  f(n) + af(n/b) + a2T(n/b2)
=  f(n) + af(n/b) + a2f(n/b2)+…

+ alogbn-1f(n/blogbn-1) + alogbn T(1)

= ∑ ajf(n/bj) +(nlgba) 
logbn−1

���

���
�
�=���

�
�

Master Method intuition

 Three common cases:
 Running time dominated by cost at leaves

 Running time evenly distributed throughout 
the tree

 Running time dominated by cost at the 
root

 Thus, to solve the recurrence, we need 
only to characterize the dominant term

 In each case compare f(n) with O(���
�
�)
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Master Method Case 1

 for some constant

 f(n) grows polynomially (by factor     ) 
slower than  

 The work at the leaf level dominates

 Summation of recursion-tree levels

 Cost for all the leaves

 Thus, the overall cost

log( ) ( )b af n O n 

logb an

0 

n

log( )b aO n
log( )b an
log( )b an
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Master Method Case 2



 and         are asymptotically the same

 The work is equally distributed 
throughout the tree

 (level cost) ×(number of levels) 

log( ) ( )b af n n

( )f n

log( ) ( lg )b aT n n n 

logb an
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Master Method Case 3

 for some constant

 Inverse of Case 1

 f(n) grows polynomially faster than  

 Also need a regularity condition 

 The work at the root dominates

log( ) ( )b af n n  

logb an

0 01 and 0 such that ( / ) ( )   c n af n b cf n n n     

( ) ( ( ))T n f n 

0 
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Master Method Summarized

 Given a recurrence of the form 

 The master method cannot solve every recurrence of this form; 
there is a gap between cases 1 and 2, as well as cases 2 and 3

 f(n) is smaller (larger) than ���
�
� but not polynomially smaller (larger)

( ) ( / ) ( )T n aT n b f n 

 
 

 
 

 
 

log

log

log

log

log
0

1. ( )

( )

2. ( )  

( ) lg

3. ( )  and ( / ) ( ),  for some 1,

( ) ( )

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n
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Strategy

 Extract a, b, and f(n) from a given recurrence

 Determine 

 Compare f(n) and          asymptotically 

 Determine appropriate MT case, and apply

 Example merge sort

logb an
logb an

© André de Carvalho - ICMC/USP 46

T(n)=2T(n/2) + Q(n)
a = 2, b = 2, ���

�
� = ���

�
� = n = Q(n), f(n) = Q(n), 

→ Case 2: T(n) = Q(���
�
�lg n) = Q(n lg n) 

Example of Master Method 2

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)      

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)      
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T(n)=T(n/2) + 1
a = 1, b = 2, ���

�
� =1 = Q(1), f(n) = 1 = Q(1), 

f(n) = Q(���
�
�)→ Case 2: T(n) = Q(���

�
�lg n) = Q(lg n) 

T(n)=9T(n/3) + n
a = 9, b = 3, ���

�
� =Q(n2), f(n) = n = O(���

�
���) where ε = 1

f(n) = O(���
�
���) → Case 1: T(n) = Q(���

�
�) = Q(n2)

Multiplication Example (I)

 Multiplying two n-digit (or n-bit) numbers 
costs n2 digit multiplications using a classical 
procedure

 Observation:

 23*14 = (2×101 +3)*(1×101 +4) =

(2*1)102+ (3*1 + 2*4)101 + (3*4) 

 To save one multiplication use the trick:

 (3*1 + 2*4) = (2+3)*(1+4) - (2*1) - (3*4) 
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Multiplication Example (II)

 To multiply a and b, which are n-digit numbers, 
use a divide and conquer algorithm

 Split a and b in half: 

 a = a1 ×10n/2+ a0 and b = b1 ×10n/2+ b0

 Then:

 a *b = (a1 *b1 )10n+ (a1 *b0 + a0 *b1)10n/2 + (a0 *b0 ) 

 Use a trick to save one multiplication:

 (a1 *b0 + a0 *b1) = (a1 +a0)*(b1 +b0) - (a1 *b1 ) - (a0 *b0 ) 
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Multiplication Example(III)

 Number of single-digit multiplications performed 
by the algorithm can be described by a 
recurrence:

1   if 1
( )

3 ( / 2)   if 1

n
T n

T n n


 



 Solution: 2log 3 1.585( )T n n n 
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Next Week

 Sorting

 QuickSort

 HeapSort
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Questions
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