SCCO0602 - Algoritmos e
Estruturas de Dados I

w

Divide and Conquer

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

© André de Carvalho - ICMC/USP 1

Today

= Analysis the running time of recursive
algorithms

= Like divide-and-conquer

= Writing and solving recurrences
= Tree recurrence method
= Master method

© André de Carvalho - ICMC/USP 2

Revision: Insertion sort x Merge sort

= 12 versus nign

= Jog(n): how many times do you need to divide n
by 2in order to reach I (assumen = 27)?

n’ nlgn

2 =5 Ae) =2 log(n) grf)ws very

2 =16 4g(4) =8 slowly with n and
much slower than n?
322 =1024 321g(32) =160

5122=262.144 5121g(512) = 4.606

lg(number of particles in the universe) <280

© André de Carvalho - ICMC/USP 3

Revision: Insertion sort x Merge sort

n? versus nlgn

8

1200000

1000000

24 64
16 64 256 s00000
32 160 1024 e
64 384 4096
128 8% 16384 e

256 2048 65536 rooene

512 4608 262144 0

0 500 1000 1500

1024 10240 1048576

—n log(n) =——nA2

© André de Carvalho - ICMC/USP 4

Why do we need n, and ¢

T(n) = O(f(n)) <& 3c,nyg>0s.t. Vn=2np,0<T) <c-f(n)

g =2,fln)=1 Need ¢ but not really n,
55 g(n) =O(f(n)) (and also f(n) = O(g(n)))
: 2.5 f(n)
2
g(m)
1
f(n)
n
ny=1
© André de Carvalho - ICMC/USP 5

—_

Why do we need n, and ¢

T(n) = O(f(n)) < 3c,ng >0 s.t. Yn=2np,0<T(n) <c-f(n)

g(m)\=2, f(n) = 1 Need both ¢ and n,
g(n) £ O(f(n)) (and also f(n) = O(g(n)))
2.5- f(n)
g(n)

/ f(n)

ny=1

© André de Carvalho - ICMC/USP 6

Divide and Conquer

= Divide et impera [Divide and rule]
= Ancient political maxim cited by Machiavelli
= Julius Caesar (102-44BC)
= The divide-and-conquer paradigm:
= DIVIDE problem up into smaller problems
= CONQUER by solving each subproblem

= COMBINE results to solve the original
problem

© André de Carvalho - ICMC/USP 7

Recurrences

= Recursive calls in algorithms can be described
using recurrences

= It is an equation or inequality that describes a
function in terms of its value on smaller inputs

solving_trivial_problem ifn=1
T(n)= { 8 P

num_pieces 7(n/subproblem_size_factor) + dividing + combining ifn >1

= Example: Merge Sort

. 0 ifn=1
D=\ 202+ 0m) iftn>1

© André de Carvalho - ICMC/USP 8

Solving Recurrences

= Substitution method
= Guess the solutions
= Verify the solution by the mathematical induction

= Repeated (backward) substitution method

= Expand the recurrence by substitution and look for a
pattern

= Recursion-trees

= Master method
= templates for different classes of recurrences

© André de Carvalho - ICMC/USP 9

!.’ Substitution method (ex. 2)

= Find the running time (upper bound) of merge sort
= Assume that n=25, for some b e

2 ifn=1 cllgl =0
= n 2<0(n ssible)
O P (§)+2n+3 ifas1 05O meosible

T(n) = 2T(n/2) + 2n + 3

Guess that T(n) =0(nlogn)
Prove that T(n) < cn Ig n for a proper choice of ¢

© André de Carvalho - ICMC/USP 10

:-‘ Substitution method (ex. 2)

= Find the running time (upper bound) of merge sort
= Assume that 7=22, for some b

ny = (1y=2and
2 ifn=1 > cflgl=0
T(n) = n 2 < Qitiposgible)
™ A(G)+2m+3 ifn>1 enoo
T(2) =11 and c2Ig2 = 2¢
T(n) = 2T(n/2) +2n+3 T(3) =13 and c31g3 = 3cl.6

For n> 3, recurrence
does not depend on T(1)

Guess that T(n) =&(nlogn)
Prove that T(n) < cn Ig n for a proper choice of ¢

© André de Carvalho - ICMC/USP 11

Substitution method (ex. 2)

T(n) =2T(n/2) +2n + 3
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

Cn/2 lg (’1/2) Choose positive value of ¢

T(n) < 2[cn/21g (n/2)] + 2n + 3 thatholds for T2)and TG)
<cnlgm/2) +2n+3

<cnlgn—cnlg2+2n+3

< cnlgn—cn+2n+ 3 dgnore erms < nign)

<cnlgn

© André de Carvalho - ICMC/USP 12

Substitution method (ex. 2)

T(n) =2T(m/2) +2n + 3
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <
cn/2 g (n/2)
T(n)

Choose positive value of ¢
< 2[cen/2lg (n/2)] + 2n + 3 that holds for T(2) and T(3)
Ife=1

<cnlgm/2)+2n+3 TQ) < 1x21g2

11 <2 — ds hold
<cnlgn—cnlg2+2n+3 /5 ~0eme
< — + + T(2) <2x21g2
Senign—cn+2nt3 1124 — does not hold
<

cnlgn

© André de Carvalho - ICMC/USP 13

Substitution method (ex. 2)

T(n) =2T(n/2) +2n +3
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

cn/2 g (n/2) Choose positive value of ¢
T(n) < 2[cn/2 lg (n/2)] 4+ 2n + 3 thatholds for T(2) and T(3)
Ifc=3
<cnlgm/2)+2n+3 () <3x21g2
<cnlgn—cnlg2+2n+3 IrICI:S()éadoes not hold
< — T(2) <6x21g2
Scenlgn—cn+2n+3 1112 — holds
<cnlgn
© André de Carvalho - ICMC/USP 14

Substitution method (ex. 2)

T(n) =2T(m/2) +2n + 3
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

cn/2 Ig (n/2) S »
hoose positive value of ¢
T(n) < 2[cn/21g (n/2)] + 2n + 3 that holds for T(2) and T(3)
fe=6
<cnlgm/2)+2n+3 T(3) <6x31g3
< cn lgnfcnlg2 +on+ 3 13SisxL6—holds
Thus, ¢ = 6 and
<cnlgn—-cn+2n+3 T
< cnlgn (holds if ¢ > 5)
© André de Carvalho - ICMC/USP 15

!.’ Repeated Substitution Method

= Variation of substitution method
= Close to the tree
= Simple procedure:
= Substitute
= Expand
= Substitute
= Expand

© André de Carvalho - ICMC/USP 16

:_‘ Repeated Substitution Method

= Simple procedure:
= Make some substitutions

= Observe a pattern and write how the
expression looks after the ith substitution

= Find out which value /should have (e.g., Ign)
to get the base case of the recurrence (7(1))

= Insert the value of 7{1) and the expression of /
into the expression

© André de Carvalho - ICMC/USP 17

!.’ Repeated Substitution (Ex. 2)

= Sequence of expand-substitute operations

2 ifn=1
T(n)= .
2T (n/2)+2n+3 ifn>1

T(m)<2T(n/2) +2n + 3 Substitute T(n/2)
<2[2T(n/4) + 2n/2 +3] + 2n + 3 Expand outside []
<22T(n/4) +4n +2 x3 +3 Substitute T(n/4)

<22 [2T(n/8)+2n/4+3] +4n+2 X3 +3 Expand outside []
<23T(n/23)+2 X3n +(22+21+20) x3 There is a pattern
<2iT(n/2)+2 Xin + 3 XZ?;E 2/ Look for value of i to

< 2" T(n/n)+2nlg n + 3(2%¢" —1) reach the base case: Ig n
<2n+2nlgn+3n—3=>5n+2nign-3

<nlgn

© André de Carvalho - ICMC/USP 18

:-‘ Exercise

= Running time of tromino tiling algorithm for a 22" board

1 ifn=1
T(n)= .
4T(n-1+1 ifn>1

= Find its upper bound

!.’ Repeated Substitution (Ex. 3)

= Running time of tromino tiling algorithm for a 2”x2"” board

{ 1 ifn=1

T(n)= .

4T (n—-1+1 ifn>1

T(n) <4T(n-1)+1
<4[4T(n-2) + 1] + 1
<4LT(n-2)+4+1
SL[4T(n-3) +1] +4 + 1
SEBTm-3) + £ + 4 + 4
<4 T(n—l)+2j-;0 4J

Substitute T(n-1)
Expand outside []
Substitute T(n-2)
Expand outside []
Look for value of i to
reach the base case: n-1

© André de Carvalho - ICMC/USP

4n71-1 41
-1 =
<4-IT(1)+ 1 3

© André de Carvalho - ICMC/USP

!-‘ Substitution method

Solve T(n) =4T(n/2) +n

1) Guess that T(n) = O(n’)

2) Assume that T(n) <ck’ for k <n/2
3) Prove by induction that T(n) <cn’

T(m) =4T(n/2) + n (Recurrence)
<4c(n/2)? + n (Induction)
<¢/2n* + n (Simplification)
<cn’

© André de Carvalho - ICMC/USP

ny=1— T(1)=1and
en =exl =c¢

21

!.’ Substitution method

Solve T(n) = 4T(n/2) + n

1) Guess that T(n) = O(n°)

2) Assume that T(n) < ck’ for k <n/2
3) Prove by induction that T(n) <cn’

T(m) =4T(n/2) + n (Recurrence)
<4c(n/2)? + n (Induction)

ny=1- T(1)=1and
en =exl =c¢

Choose positive value of ¢
that holds for T(1) and T(2)
Ife=1

T(1) < 1x13

1<1 — holds

T(2) < 1x2}

6<8 — holds

Thus ¢ > 1 and

!-‘ Substitution Method

= Achieving tighter bounds

Try to show that T(n) = O(n?)
Assume that T(k) < ck’

T(n) 4T(n/2)+n
de(n/2)? +n
cn’+n

<
<
<
< cn?

© André de Carvalho - ICMC/USP

ny=1— T(1)=1and
e =cxl =¢

23

<¢/2n’ + n (Simplification) T(n)= O(n’)
<cn’
© André de Carvalho - ICMC/USP 22
!.’ Substitution Method
= Achieving tighter bounds I

Try to show that T(n) = O(n?)
Assume that T(k) < ck?

T(n) 4T(n/2)+ n
4e(n/2)? +n
cen?+n

<
<
<
< cn?

© André de Carvalho - ICMC/USP

e =cxl =c¢

Choose positive value of ¢
that holds for T(1) and T(2)
Ife=1

T(1) < 1x12

1<1 — holds

TQ) < 1x2?

5 <4 — Does not hold
Ife=2

T(1) <2x12

1<2 — holds

T(2) <2x2*

9 <8 — Does not hold

:-‘ Substitution Method

= Achieving tighter bounds

Try to show that T(n) = O(n?)
Assume that T(k) < ck?

ny=1— T(1)=1and
en?=cxl =¢

Choose positive value of ¢

that holds for T(1) and T(2)

Ifc=3
T(1) <3x12
Tm) < 4T(m/2)+n 1<3 — holds
< 4e(n/2) +n T(2) <3x2
;A 13 < 12 — Does not hold
<cn‘tn Ife=4
< en? T(1) <4x12
- 1 <4 — holds
T(2) <4x2?

17 <16 — Does not hold

False for any value of ¢

© André de Carvalho - ICMC/USP Never holds 25

Substitution Method (2)

= What is the problem?
= The inequality (cn? + positive value) < cn?
is not possible
= To prove inductive step, try to make the
hypothesis stronger
= T(n) < (answer you want) - (something > 0)

© André de Carvalho - ICMC/USP 26

Substitution Method (3)

= Corrected proof:

= Strength the inductive hypothesis by
subtracting lower-order terms!
Assume T(k) < ¢k’ —c,k fork<n
T(n) 4T(n/2)+n
e, (n/2) —c,(n/2))+n

2
en” =2c,n+n

IA

en’ —cyn—(cn—n)

Al

2 .
on” —c,nife, 21

© André de Carvalho - ICMC/USP 27

Substitution Method

= Powerful, but we need to guess the form
of the solution
= Making a good guess for the substitution
method can be difficult
= Recursion trees can give good guesses of
asymtotic solutions to recurrences
= Which can be confirmed by the substitution method

= They can even be the direct proof of the solution to
a recurrence

© André de Carvalho - ICMC/USP 28

:-‘ Recursion Trees

= Show successive expansions of
recurrences using trees
= Convenient way to visualize what happens
when a recurrence is iterated

= Keep track of the time spent on the
subproblems of a divide and conquer algorithm

= Help to sum the processing times
necessary to solve a recurrence

© André de Carvalho - ICMC/USP 29

;’ Recursion Tree for Merge Sort

T(n)=2T(n/2) + O(n)
T(n)=2T(n/2) + cn Each 7/2 size problem has a cost of cn/2 +

The original problem has a cost two subproblems, each costing 7(n/4)

of cn + two subproblems of size cn
(n/2) and running time 7(n/2)
cn
Cost of divide and merge

T(n/2) T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of sorting subproblems

© André de Carvalho - ICMC/USP 30

!_‘ Recursion Tree for Merge Sort

cn
Continue expanding until
the problem size reduces to 1

cnl2 cn/2 cn
- / \ / \
7< cnld cnld ORI ——s g
i d e ié ¢ — cn
Total : enlgn+cn
© André de Carvalho - ICMC/USP 31

!.’ Recursion Tree for Merge Sort

cn = Each level has total cost cn
= When we go down one level, number

of subproblems doubles, but the cost
per subproblem halves = cost per

level remains the same

Ign /\ /\ = There are Ig m+1 levels, heightis Ig n
(Assuming 17 = 2™)

cnl4 cnl4 cnl4 cnl/4

/\ /\/ \ / \ » Can be proved by induction

= Total cost=sum of costs at each level
;Y = (lg m+1)cn = crlgn + cn= ©(nlgn)

¢c¢ ¢

© André de Carvalho - ICMC/USP 32

Recursion Tree for Merge Sort

= Confirm with the Substitution Method

Try to show that 7(n) = O(nlg n)
Assume that T(n) = 2T(n/2) + cn

T(n) < 2T(n/2)+ cn
2[n/2lg n/2] + cn
nlgn/2 +cn
nlgn—n+cn
nlgn

ININ A IA

© André de Carvalho - ICMC/USP 33

!.’ Exemplo 2

= Show the recurrence tree for the
recurrence

T(n)=T(n/4)+T(n/2)+n’

© André de Carvalho - ICMC/USP 34

!-‘ Exemplo 2

= Show the recurrence tree for the
recurrence

T(n)=T(n/4)+T(n/2)+n’

© André de Carvalho - ICMC/USP 35

!.’ Example 2

() () i
/ \ ’ / \ g 25
’ 3
(70 B CO N CO R O B
/ geomelric
(=)
© André de Carvalho - ICMC/USP 80 36

:-‘ Exercicios

= Use the recursion-tree method to
determine a guess for the recurrences

= Ex. 2: T(n) = T(n/3) + T(2n/3) + A n)
« Ex. 3: T(n) = 3TLn/4l) + O(R)

© André de Carvalho - ICMC/USP 37

Master Method

= Try to solve a class of recurrences of the form
T(ny=aT(n/b)+ f(n)
=« Where > 1, > 1 and f is asymptotically positive
= T(n) is the runtime for an algorithm and it is
known that

= asubproblems of size n/b are solved recursively,
each in time 7{n/b)
» f(n) is the cost of dividing the problem and
combining the results
« In merge-sort T'(n)=2T(n/2)+0O(n)

© André de Carvalho - ICMC/USP 38

Functions increase from

top to bottom geometrically
i Master Method (2) | it
}

S fn)
B
f/b) f(n/b) - fu/b) — af(n/b)
gy P
/B2 f(/B?) o f(n/b?) af(n/b?)
/ :
CASE 1: Weight increases geometrically
/ from the root to the leaves nlg,a T(1)
T (1) The leaves are a constant fraction of ——m8 ——
the total weight al9,n=plg,a @(nlgba)
© André de Carvalho - ICMC/USP 39

:.’ Master Method (3)

= Number of leaves: a'%:"=n'9,%
= Iterating the recurrence, expanding the tree yields
T(m) = fin) +aT(n/b)
= f(n) + af(n/b) + &>T(n/b?)
= f(n) + af(n/b) + a’f(n/b’)+...
ﬂ%fffj If(n/blog/,n 1) + alog},n T(I)

— j j 1
=Yoo @fnb) +0(n'=)
= The first term is a division/recombination cost (totaled across
all levels of the tree)
= The second term is the cost of doing all 72
size 1 (total of all work pushed to leaves)
© André de Carvalho - ICMC/USP 40

log, a
*" subproblems of

;‘ Master Method intuition

= Three common cases:
= Running time dominated by cost at leaves

= Running time evenly distributed throughout
the tree

= Running time dominated by cost at the
root

= Thus, to solve the recurrence, we need
only to characterize the dominant term

= In each case compare f{(n) with On'9,¢)

© André de Carvalho - ICMC/USP 41

:.’ Master Method Case 1

= f(n)=0(n"*"*) for some constant ¢>0

= A1) grows polynomially (by factor 7#°)
slower than n'%“

= The work at the leaf level dominates
= Summation of recursion-tree levels O(r"**)
= Cost for all the leaves ®(n°%*)
= Thus, the overall cost ©(1"*%*)

© André de Carvalho - ICMC/USP 42

Master Method Case 2
. [(n)=00"")

« /(1) and n**“ are asymptotically the same
= The work is equally distributed

throughout the tree 7(n)=0(n"*“1gn)

= (level cost) x (number of levels)

© André de Carvalho - ICMC/USP 43

Master Method Case 3

u f(n)=Q(n****) for some constant & >0
= Inverse of Case 1
=) grows polynomially faster than n
= Also need a regularity condition
Jc <1 and n, >0 such that af (n/b) < ¢f (n) Vn > n,
= The work at the root dominates

T(n)=0(f(n)

log, a

© André de Carvalho - ICMC/USP 44

:-‘ Master Method Summarized

= Given a recurrence of the form 7'(n)=aT(n/b)+ f(n)
L f(m)=0(n""")
=T(m)=0(n=)
2. [=06(n"*)
=T(n)=0(n""Ign)
3. f(n)= Q(n"”‘"”“‘) and af (n/b) < ¢f (n), for some ¢ <1,n>n,
=T()=0(f(n)

= The master method cannot solve every recurrence of this form;
there is a gap between cases 1 and 2, as well as cases 2 and 3
» f{n)is smaller (larger) than n'9.¢ but not polynomially smaller (larger)

© André de Carvalho - ICMC/USP 45

Strategy

= Extract g, b, and {n7) from a given recurrence
. log, a

= Determine n

= Compare 1) and 5'°%“asymptotically

= Determine appropriate MT case, and apply

= Example merge sort

T(n)=2T(n/2) + &n)
a=2b=2n'9%=n92=n=0nm), fin) = On),
— Case 2: T(n) = Om'9:%g n) = On Ig n)

© André de Carvalho - ICMC/USP 46

:-‘ Example of Master Method 2

Binary-search(A, p, r, s):
ge(ptr) /2
if A[g]=s then return g
else if A[g]>s then
Binary-search (A, p, g-1, s)
else Binary-search(A, g+l1, r, s)

T(n)=T(m/2) + 1
a=1,b=2n91=1=01) fin)=1=&1l),
ftn) = O(n'9:%)— Case 2: T(n) = Om'9:%g n) = &g n)

T(n)=9T(n/3) +n
a=9b=3n9°=0m), f(n) =n=0Mm97F) where e = 1
fn) = OM'9:°=¢) — Case 1: T(n) = OM'9:%) = On?)

© André de Carvalho - ICMC/USP 47

Multiplication Example (I)

= Multiplying two r+digit (or n-bit) numbers
costs /7 digit multiplications using a classical
procedure

= Observation:
w 23%14 = (2x 10! +3)*(1 x 10! +4) =
(2*¥1)10%+ (3*1 + 2*¥4)10' + (3*4)

= To save one multiplication use the trick:
s (3*1 + 2%4) = (2+3)*(1+4) - (2*1) - (3*4)

© André de Carvalho - ICMC/USP 48

:-‘ Multiplication Example (II)

= To multiply @ and b, which are r+digit numbers,
use a divide and conquer algorithm
= Split @aand b in half:
. a=a,x10"+ a, and b = b, x10"%+ B,
= Then:
w a*b=(a,%b,)10™ (3, *b, + 8, *b)10"2 + (3,*b,)
= Use a trick to save one multiplication:
= (a;%by+ ap*by) = (a; +ag)*(b, +by) - (a;*b;) - (a,*by)

© André de Carvalho - ICMC/USP 49

1.’ Multiplication Example(III)

= Number of single-digit multiplications performed
by the algorithm can be described by a
recurrence:

1 ifn=1
T(n)= .
37(n/2) ifn>1

Solution: T(n)=n"%* =n"*

© André de Carvalho - ICMC/USP 50

!-‘ Next Week

= Sorting
= QuickSort
= HeapSort

© André de Carvalho - ICMC/USP 51

Acknowledgement

= A large part of this material was adapted
from

= Simonas Saltenis, Algorithms and Data Structures,
Aalborg University, Denmark

= Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

= George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

= David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 52

i Questions

© André de Carvalho - ICMC/USP 53

