
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Divide and Conquer

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

© André de Carvalho - ICMC/USP 1

Today

 Analysis the running time of recursive
algorithms

 Like divide-and-conquer

 Writing and solving recurrences

 Tree recurrence method

 Master method

© André de Carvalho - ICMC/USP 2

Revision: Insertion sort x Merge sort

 n2 versus nlgn

 log(n) : how many times do you need to divide n
by 2 in order to reach 1 (assume n = 2m)?

n2 nlgn
22 = 5 2lg (2) = 2
42 = 16 4lg (4) = 8
…
322 = 1024 32lg (32) = 160
…
5122 = 262.144 512lg(512) = 4.606

lg(number of particles in the universe) < 280

log(n) grows very
slowly with n and
much slower than n2

© André de Carvalho - ICMC/USP 3

Revision: Insertion sort x Merge sort

n n log(n) n2

8 24 64

16 64 256

32 160 1024

64 384 4096

128 896 16384

256 2048 65536

512 4608 262144

1024 10240 1048576

n2 versus nlgn

© André de Carvalho - ICMC/USP 4

Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � � ⟺ ∃�, �� > 0 �. �. ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1
g(n) = O(f(n)) (and also f(n) = O(g(n)))

Need c but not really n0

© André de Carvalho - ICMC/USP 5

Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � � ⟺ ∃�, �� > 0 �. �. ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1
g(n) = O(f(n)) (and also f(n) = O(g(n)))

Need both c and n0

© André de Carvalho - ICMC/USP 6

2

Divide and Conquer

 Divide et impera [Divide and rule]

 Ancient political maxim cited by Machiavelli

 Julius Caesar (102-44BC)

 The divide-and-conquer paradigm:

 DIVIDE problem up into smaller problems

 CONQUER by solving each subproblem

 COMBINE results to solve the original
problem

© André de Carvalho - ICMC/USP 7

Recurrences

 Recursive calls in algorithms can be described
using recurrences

 It is an equation or inequality that describes a
function in terms of its value on smaller inputs

 Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n

© André de Carvalho - ICMC/USP 8

Solving Recurrences

 Substitution method

 Guess the solutions

 Verify the solution by the mathematical induction

 Repeated (backward) substitution method

 Expand the recurrence by substitution and look for a
pattern

 Recursion-trees

 Master method

 templates for different classes of recurrences

© André de Carvalho - ICMC/USP 9

Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 10

Guess that � � =O(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

T(n) = 2T(n/2) + 2n + 3

∖
� � = �

2 �� � = 1

2�
�

2
+ 2� + 3 �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)

Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 11

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

T(n) = 2T(n/2) + 2n + 3

∖
� � = �

2 �� � = 1

2�
�

2
+ 2� + 3 �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)
Use n0 = 2
T(2) = 11 and c2lg2 = 2c
T(3) = 13 and c3lg3 = 3c1.6
For n> 3, recurrence
does not depend on T(1)

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 12

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3 (ignore terms < nlgn)

≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)

3

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 13

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2
11 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2
11 ≤ 4 → does not hold

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 14

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 3

T(2) ≤ 3x2lg2
11 ≤ 6 → does not hold

If c = 6
T(2) ≤ 6x2lg2
11 ≤ 12 → holds

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 15

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n (holds if c > 5)

Choose positive value of c
that holds for T(2) and T(3)
If c = 6

T(3) ≤ 6x3lg3
13 ≤ 18x1,6 → holds

Thus, c = 6 and
T(n) = O(nlg n)

Repeated Substitution Method

 Variation of substitution method
 Close to the tree

 Simple procedure:
 Substitute

 Expand

 Substitute

 Expand

 …

© André de Carvalho - ICMC/USP 16

Repeated Substitution Method

 Simple procedure:
 Make some substitutions

 Observe a pattern and write how the
expression looks after the ith substitution

 Find out which value i should have (e.g., lgn)
to get the base case of the recurrence (T(1))

 Insert the value of T(1) and the expression of i
into the expression

© André de Carvalho - ICMC/USP 17

Repeated Substitution (Ex. 2)

 Sequence of expand-substitute operations
2 if 1

()
2 (/ 2) 2 3 if 1

n
T n

T n n n

T(n)≤ 2T(n/2) + 2n + 3 Substitute T(n/2)
≤ 2[2T(n/4) + 2n/2 +3] + 2n + 3 Expand outside []
≤ 22T(n/4) + 4n + 2×3 + 3 Substitute T(n/4)
≤ 22 [2T(n/8)+2n/4+3]+4n+2×3 +3 Expand outside []
≤ 23 T(n/ 23)+2×3n +(22+21+20)×3 There is a pattern

≤ 2i T(n/ 2i)+2×in + 3×∑ 2����
��� Look for value of i to

≤ 2lg n T(n/n)+2nlg n + 3(2lg n −1) reach the base case: lg n
≤ 2n + 2nlg n +3n – 3 = 5n + 2nlg n – 3
≤ n lg n

© André de Carvalho - ICMC/USP 18

4

Exercise

 Running time of tromino tiling algorithm for a 2nx2n board

 Find its upper bound

© André de Carvalho - ICMC/USP 19

1 if 1
()

4 (1) 1 if 1

n
T n

T n n

Repeated Substitution (Ex. 3)

 Running time of tromino tiling algorithm for a 2nx2n board

T(n) ≤ 4T(n-1) + 1 Substitute T(n-1)
≤ 4[4T(n-2) + 1] + 1 Expand outside []
≤ 42T(n-2) + 4 + 1 Substitute T(n-2)
≤ 42[4T(n-3) +1] + 4 + 1 Expand outside []
≤ 43T(n-3) + 42 + 41 + 40 Look for value of i to

≤ 4i T(n-i)+∑ 4����
��� reach the base case: n-1

≤ 4n-1 T(1)+
������

���
=

����

�

© André de Carvalho - ICMC/USP 20

1 if 1
()

4 (1) 1 if 1

n
T n

T n n

Substitution method

© André de Carvalho - ICMC/USP 21

Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Substitution method

© André de Carvalho - ICMC/USP 22

Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x13

1 ≤ 1 → holds
T(2) ≤ 1x23

6 ≤ 8 → holds

Thus c ≥ 1 and
T(n)= O(n3)

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 23

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 24

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x12

1 ≤ 1 → holds
T(2) ≤ 1x22

5 ≤ 4 → Does not hold
If c = 2

T(1) ≤ 2x12

1 ≤ 2 → holds
T(2) ≤ 2x22

9 ≤ 8 → Does not hold

5

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 25

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 3

T(1) ≤ 3x12

1 ≤ 3 → holds
T(2) ≤ 3x22

13 ≤ 12 → Does not hold
If c = 4

T(1) ≤ 4x12

1 ≤ 4 → holds
T(2) ≤ 4x22

17 ≤ 16 → Does not hold

False for any value of c
Never holds

Substitution Method (2)

 What is the problem?

 The inequality (cn2 + positive value) ≤ cn2

is not possible

 To prove inductive step, try to make the
hypothesis stronger
 T(n) (answer you want) - (something > 0)

© André de Carvalho - ICMC/USP 26

Substitution Method (3)

 Corrected proof:

 Strength the inductive hypothesis by
subtracting lower-order terms!

2
1 2

2
1 2

2
1 2

2
1 2 2

2
1 2 2

Assume () for

() 4 (/ 2)

4((/ 2) (/ 2))

2

()

 if 1

T k c k c k k n

T n T n n

c n c n n

c n c n n

c n c n c n n

c n c n c

© André de Carvalho - ICMC/USP 27

Substitution Method

 Powerful, but we need to guess the form
of the solution

 Making a good guess for the substitution
method can be difficult

 Recursion trees can give good guesses of
asymtotic solutions to recurrences

 Which can be confirmed by the substitution method

 They can even be the direct proof of the solution to
a recurrence

© André de Carvalho - ICMC/USP 28

Recursion Trees

 Show successive expansions of
recurrences using trees

 Convenient way to visualize what happens
when a recurrence is iterated

 Keep track of the time spent on the
subproblems of a divide and conquer algorithm

 Help to sum the processing times
necessary to solve a recurrence

© André de Carvalho - ICMC/USP 29

Recursion Tree for Merge Sort

© André de Carvalho - ICMC/USP 30

The original problem has a cost
of cn + two subproblems of size
(n/2) and running time T(n/2)

cn

T(n/2) T(n/2)

Each n/2 size problem has a cost of cn/2 +
two subproblems, each costing T(n/4)

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and merge

Cost of sorting subproblems

T(n)=2T(n/2) + Q(n)
T(n)=2T(n/2) + cn

6

Recursion Tree for Merge Sort

© André de Carvalho - ICMC/USP 31

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total : cnlgn+cn

Continue expanding until
the problem size reduces to 1

Recursion Tree for Merge Sort

 Each level has total cost cn

 When we go down one level, number
of subproblems doubles, but the cost
per subproblem halves cost per
level remains the same

 There are lg n+1 levels, height is lg n
(Assuming n = 2m)

 Can be proved by induction

 Total cost=sum of costs at each level
= (lg n+1)cn = cnlgn + cn = (n lgn)

© André de Carvalho - ICMC/USP 32

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

Recursion Tree for Merge Sort

 Confirm with the Substitution Method

© André de Carvalho - ICMC/USP 33

Try to show that T(n) = O(nlg n)
Assume that T(n) = 2T(n/2) + cn

T(n) ≤ 2T(n/2)+ cn
≤ 2[n/2lg n/2] + cn
≤ nlg n/2 + cn
≤ nlg n – n + cn
≤ nlg n

Exemplo 2

 Show the recurrence tree for the
recurrence

2() (/ 4) (/ 2)T n T n T n n

© André de Carvalho - ICMC/USP 34

Exemplo 2

 Show the recurrence tree for the
recurrence

2() (/ 4) (/ 2)T n T n T n n

© André de Carvalho - ICMC/USP 35

Example 2

© André de Carvalho - ICMC/USP 36

7

Exercícios

 Use the recursion-tree method to
determine a guess for the recurrences

 Ex. 2: T(n) = T(n/3) + T(2n/3) + O(n)

 Ex. 3: T(n) = 3T(n/4) + (n2)

© André de Carvalho - ICMC/USP 37

Master Method

 Try to solve a class of recurrences of the form

 Where a 1, b > 1 and f is asymptotically positive

 T(n) is the runtime for an algorithm and it is
known that
 a subproblems of size n/b are solved recursively,

each in time T(n/b)

 f(n) is the cost of dividing the problem and
combining the results

 In merge-sort

() (/) ()T n aT n b f n

() 2 (/ 2) ()T n T n n

© André de Carvalho - ICMC/USP 38

Master Method (2)

© André de Carvalho - ICMC/USP 39

f (n/b)f (n/b) f (n/b)

T (1)

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
algbn

f (n)

a f (n/b)

a2 f (n/b2)

…

���
�
�T (1)

(���
�
�)

CASE 1: Weight increases geometrically
from the root to the leaves

The leaves are a constant fraction of
the total weight

Functions increase from
top to bottom geometrically

Thus, only the last
bottom term is needed

���
�
�=���

�
�

Master Method (3)

 Number of leaves:

 Iterating the recurrence, expanding the tree yields

 The first term is a division/recombination cost (totaled across
all levels of the tree)

 The second term is the cost of doing all subproblems of
size 1 (total of all work pushed to leaves)

logb an

© André de Carvalho - ICMC/USP 40

T(n) = f(n) + aT(n/b)
= f(n) + af(n/b) + a2T(n/b2)
= f(n) + af(n/b) + a2f(n/b2)+…

+ alogbn-1f(n/blogbn-1) + alogbn T(1)

= ∑ ajf(n/bj) +(nlgba)
logbn−1

���

���
�
�=���

�
�

Master Method intuition

 Three common cases:
 Running time dominated by cost at leaves

 Running time evenly distributed throughout
the tree

 Running time dominated by cost at the
root

 Thus, to solve the recurrence, we need
only to characterize the dominant term

 In each case compare f(n) with O(���
�
�)

© André de Carvalho - ICMC/USP 41

Master Method Case 1

 for some constant

 f(n) grows polynomially (by factor)
slower than

 The work at the leaf level dominates

 Summation of recursion-tree levels

 Cost for all the leaves

 Thus, the overall cost

log() ()b af n O n

logb an

0

n

log()b aO n
log()b an
log()b an

© André de Carvalho - ICMC/USP 42

8

Master Method Case 2

 and are asymptotically the same

 The work is equally distributed
throughout the tree

 (level cost) ×(number of levels)

log() ()b af n n

()f n

log() (lg)b aT n n n

logb an

© André de Carvalho - ICMC/USP 43

Master Method Case 3

 for some constant

 Inverse of Case 1

 f(n) grows polynomially faster than

 Also need a regularity condition

 The work at the root dominates

log() ()b af n n

logb an

0 01 and 0 such that (/) () c n af n b cf n n n

() (())T n f n

0

© André de Carvalho - ICMC/USP 44

Master Method Summarized

 Given a recurrence of the form

 The master method cannot solve every recurrence of this form;
there is a gap between cases 1 and 2, as well as cases 2 and 3

 f(n) is smaller (larger) than ���
�
� but not polynomially smaller (larger)

() (/) ()T n aT n b f n

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n

© André de Carvalho - ICMC/USP 45

Strategy

 Extract a, b, and f(n) from a given recurrence

 Determine

 Compare f(n) and asymptotically

 Determine appropriate MT case, and apply

 Example merge sort

logb an
logb an

© André de Carvalho - ICMC/USP 46

T(n)=2T(n/2) + Q(n)
a = 2, b = 2, ���

�
� = ���

�
� = n = Q(n), f(n) = Q(n),

→ Case 2: T(n) = Q(���
�
�lg n) = Q(n lg n)

Example of Master Method 2

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

© André de Carvalho - ICMC/USP 47

T(n)=T(n/2) + 1
a = 1, b = 2, ���

�
� =1 = Q(1), f(n) = 1 = Q(1),

f(n) = Q(���
�
�)→ Case 2: T(n) = Q(���

�
�lg n) = Q(lg n)

T(n)=9T(n/3) + n
a = 9, b = 3, ���

�
� =Q(n2), f(n) = n = O(���

�
���) where ε = 1

f(n) = O(���
�
���) → Case 1: T(n) = Q(���

�
�) = Q(n2)

Multiplication Example (I)

 Multiplying two n-digit (or n-bit) numbers
costs n2 digit multiplications using a classical
procedure

 Observation:

 23*14 = (2×101 +3)*(1×101 +4) =

(2*1)102+ (3*1 + 2*4)101 + (3*4)

 To save one multiplication use the trick:

 (3*1 + 2*4) = (2+3)*(1+4) - (2*1) - (3*4)

© André de Carvalho - ICMC/USP 48

9

Multiplication Example (II)

 To multiply a and b, which are n-digit numbers,
use a divide and conquer algorithm

 Split a and b in half:

 a = a1 ×10n/2+ a0 and b = b1 ×10n/2+ b0

 Then:

 a *b = (a1 *b1)10n+ (a1 *b0 + a0 *b1)10n/2 + (a0 *b0)

 Use a trick to save one multiplication:

 (a1 *b0 + a0 *b1) = (a1 +a0)*(b1 +b0) - (a1 *b1) - (a0 *b0)

© André de Carvalho - ICMC/USP 49

Multiplication Example(III)

 Number of single-digit multiplications performed
by the algorithm can be described by a
recurrence:

1 if 1
()

3 (/ 2) if 1

n
T n

T n n

 Solution: 2log 3 1.585()T n n n

© André de Carvalho - ICMC/USP 50

Next Week

 Sorting

 QuickSort

 HeapSort

© André de Carvalho - ICMC/USP 51

Acknowledgement

 A large part of this material was adapted
from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 52

Questions

© André de Carvalho - ICMC/USP 53

