

Divide and Conquer

- Divide et impera [Divide and rule]
- Ancient political maxim cited by Machiavelli . Julius Caesar (102-44BC)
- The divide-and-conquer paradigm:
- DIVIDE problem up into smaller problems
- CONQUER by solving each subproblem
- COMBINE results to solve the original problem

Recurrences

- Recursive calls in algorithms can be described using recurrences
- It is an equation or inequality that describes a function in terms of its value on smaller inputs
$T(n)=\left\{\begin{array}{cc}\text { solving_trivial_problem } & \text { if } n=1 \\ \text { num_pieces } T(n / \text { subproblem_size_factor })+\text { dividing }+ \text { combining } & \text { if } n>1\end{array}\right.$
- Example: Merge Sort

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

© André de Carvalho - ICMC/USP

Solving Recurrences

- Substitution method
- Guess the solutions
- Verify the solution by the mathematical induction
- Repeated (backward) substitution method
- Expand the recurrence by substitution and look for a pattern
- Recursion-trees
- Master method
- templates for different classes of recurrences

Substitution method (ex. 2)

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b

$$
\left.\begin{array}{l}
T(n)=\left\{\begin{array}{lll}
2 & \text { if } n=1 & \begin{array}{c}
\mathrm{n}_{0}=1 \rightarrow \begin{array}{c}
\mathrm{T}(1)=2 \text { and } \\
\text { cllg }=0
\end{array} \\
2 T\left(\frac{n}{2}\right)+2 n+3 \\
\text { if } n>1
\end{array} \\
2 \leq 0 \text { (impossible) }
\end{array}\right. \\
T(n)
\end{array}\right)=2 T(n / 2)+2 n+38
$$

Guess that $T(n)=0(n \log n)$
Prove that $T(n) \leq$ cn $\lg n$ for a proper choice of c

Substitution method (ex. 2)

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b

Substitution method (ex. 2)

$T(n)=2 T(n / 2)+2 n+3$
Prove that $T(n) \leq$ cn $\lg n$

Assuming that the bound holds for $n / 2, T(n / 2) \leq$ $\mathrm{cn} / 2 \lg (n / 2)$

Choose positive value of c
$T(n) \leq 2[c n / 2 \lg (n / 2)]+2 n+3$ that holds for $\mathrm{T}(2)$ and $\mathrm{T}(3)$
$\leq \operatorname{cn} \lg (n / 2)+2 n+3$
\leq cn $\lg n-c n l g 2+2 n+3$
$\leq c n \lg n-c n+2 n+3{ }_{\text {(ignore terms }<n l g n)}$
$\leq c n \lg n$
© André de Carvalho - ICMC/USP

\section*{Substitution method (ex. 2)
 $T(n)=2 T(n / 2)+2 n+3$
 Prove that $T(n) \leq c n \lg n$
 Assuming that the bound holds for $n / 2, T(n / 2) \leq$ $c n / 2 \lg (n / 2)$
 $\leq c n \lg (n / 2)+2 n+3 \quad \substack{\text { Ifc }=3 \\ T(2)}$ \leq cn $\lg n-$ cnlg $2+2 n+3 \quad \begin{gathered}11 \leq 6 \rightarrow \text { dos } n o t ~ h o l d ~\end{gathered}$ $\leq c n \lg n-c n+2 n+3 \quad$| $\mathrm{T}(2) \leq 6(2 x 122$ |
| :---: |
| $11 \leq 12 \rightarrow$ nod | $\leq c n \lg n$
 © André de Carvalho - ICMC/USP
 14}

Substitution method (ex. 2)

$T(n)=2 T(n / 2)+2 n+3$
Prove that $T(n) \leq c n \lg n$
Assuming that the bound holds for $n / 2, T(n / 2) \leq$
$\mathrm{cn} / 2 \lg (n / 2)$
$T(n) \leq 2[c n / 2 \lg (n / 2)]+2 n+3$ chose positive value of
$\leq c n \lg (n / 2)+2 n+3 \quad$ Ifc $=6$
\leq cn $\lg n-$ cn $\lg 2+2 n+3 \quad 13 \leq 18 \times 1,6 \rightarrow$ holds
$\leq c n \lg n-c n+2 n+3 \quad$ Thus, $\mathrm{c}=6$ and
$\leq c n \lg n(h o l d s$ if $c>5$)
© André de Carvalho - ICMC/USP

Repeated Substitution Method

- Simple procedure:
- Make some substitutions
- Observe a pattern and write how the expression looks after the $i^{\text {th }}$ substitution
- Find out which value i should have (e.g., Ign) to get the base case of the recurrence ($\pi(1)$)
- Insert the value of $7(1)$ and the expression of i into the expression

Repeated Substitution (Ex. 2)

- Sequence of expand-substitute operations
$T(n)=\left\{\begin{array}{cc}2 & \text { if } n=1 \\ 2 T(n / 2)+2 n+3 & \text { if } n>1\end{array}\right.$
$T(n) \leq 2 T(n / 2)+2 n+3$
$\leq 2[2 T(n / 4)+2 n / 2+3]+2 n+3$
$\leq 2^{2} T(n / 4)+4 n+2 \times 3+3$
$\leq 2^{2}[2 T(n / 8)+2 n / 4+3]+4 n+2 \times 3+3$
$\leq 2^{3} T\left(n / 2^{3}\right)+2 \times 3 n+\left(2^{2}+2^{l}+2^{0}\right) \times 3$
$\leq 2^{i} T\left(n / 2^{i}\right)+2 \times i n+3 \times \sum_{j=0}^{i-1} 2^{j}$
$\leq 2^{\lg n} T(n / n)+2 n \lg n+3\left(2^{\lg n}-1\right)$
$\leq 2 n+2 n \lg n+3 n-3=5 n+2 n \lg n-3$
$\leq n \lg n$

Substitute T(n/2) Expand outside [] Substitute T(n/4) Expand outside [] There is a pattern Look for value of ito reach the base case: $\lg n$

Exercise

- Running time of tromino tiling algorithm for a $2^{n} \times 2^{n}$ board $T(n)=\left\{\begin{array}{cc}1 & \text { if } n=1 \\ 4 T(n-1)+1 & \text { if } n>1\end{array}\right.$
- Find its upper bound

Repeated Substitution (Ex. 3)

- Running time of tromino tiling algorithm for a $2^{n} \times 2^{n}$ board
$T(n)=\left\{\begin{array}{cc}1 & \text { if } n=1 \\ 4 T(n-1)+1 & \text { if } n>1\end{array}\right.$
$T(n) \leq 4 T(n-1)+1 \quad$ Substitute $T(n-1)$
$\leq 4[4 T(n-2)+1]+1 \quad$ Expand outside []
$\leq 4^{2} T(n-2)+4+1 \quad$ Substitute $T(n-2)$
$\leq 4^{2}[4 T(n-3)+1]+4+1 \quad$ Expand outside []
$\leq 4^{3} T(n-3)+4^{2}+4^{1}+4^{0} \quad$ Look for value of ito
$\leq 4^{i} T(n-i)+\sum_{j=0}^{i-1} 4^{j} \quad$ reach the base case: $n-1$
$\leq 4^{n-1} T(1)+\frac{4^{n-1}-1}{4-1}=\frac{4^{n}-1}{3}$
© André de Carvalho - ICMC/USP

Substitution Method (2)

- What is the problem?
- The inequality $\left(\mathrm{cn}^{2}+\right.$ positive value $) \leq \mathrm{cn}^{2}$ is not possible
- To prove inductive step, try to make the hypothesis stronger
- $T(n) \leq$ (answer you want) - (something >0)

Substitution Method (3)

- Corrected proof:

- Strength the inductive hypothesis by subtracting lower-order terms!

Assume $T(k) \leq c_{1} k^{2}-c_{2} k$ for $k<n$
$T(n)=4 T(n / 2)+n$
$\leq 4\left(c_{1}(n / 2)^{2}-c_{2}(n / 2)\right)+n$
$=c_{1} n^{2}-2 c_{2} n+n$
$=c_{1} n^{2}-c_{2} n-\left(c_{2} n-n\right)$
$\leq c_{1} n^{2}-c_{2} n$ if $c_{2} \geq 1$
© André de Carvalho - ICMC/USP

Substitution Method

- Powerful, but we need to guess the form of the solution
- Making a good guess for the substitution method can be difficult
- Recursion trees can give good guesses of asymtotic solutions to recurrences
- Which can be confirmed by the substitution method
- They can even be the direct proof of the solution to a recurrence

Recursion Trees

- Show successive expansions of recurrences using trees
- Convenient way to visualize what happens when a recurrence is iterated
- Keep track of the time spent on the subproblems of a divide and conquer algorithm
- Help to sum the processing times necessary to solve a recurrence

Recursion Tree for Merge Sort

$T(n)=2 T(n / 2)+\Theta(n)$
$T(n)=2 T(n / 2)+c n$
The original problem has a cost of $c n+$ two subproblems of size

Each $n / 2$ size problem has a cost of $c n / 2+$ two subproblems, each costing $T(n / 4)$

$(n / 4) T(n / 4) T(n / 4) T(n / 4)$ ${ }^{1} \uparrow$
© André de Carvalho - ICMC/USP
30

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n \\
& \leq 2[n / 2 \lg n / 2]+c n \\
& \leq n \lg n / 2+c n \\
& \leq n \lg n-n+c n \\
& \leq n \lg n
\end{aligned}
$$

Exemplo 2

- Show the recurrence tree for the recurrence

© André de Carvalho - ICMC/USP 35

Exemplo 2

- Show the recurrence tree for the recurrence

$$
T(n)=T(n / 4)+T(n / 2)+n^{2}
$$

Exercícios

- Use the recursion-tree method to determine a guess for the recurrences
- Ex. 2: $T(n)=\pi(n / 3)+T(2 n / 3)+O(n)$
- Ex. 3: $\pi(n)=3 \pi(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$

Master Method

- Try to solve a class of recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

- Where $a \geq 1, b>1$ and f is asymptotically positive
- $T(n)$ is the runtime for an algorithm and it is known that
- a subproblems of size n / b are solved recursively, each in time $\pi(n / b)$
- $f(n)$ is the cost of dividing the problem and combining the results
- In merge-sort $T(n)=2 T(n / 2)+\Theta(n)$

Master Method (3)
 - Number of leaves: $a^{\lg _{b} n}=n^{l g_{b} a}$
 - Iterating the recurrence, expanding the tree yields
 $$
T(n)=f(n)+a T(n / b)
$$
 $=f(n)+a f(n / b)+a^{2} T\left(n / b^{2}\right)$
 $=f(n)+a f(n / b)+a^{2} f\left(n / b^{2}\right)+\ldots$
 $+a^{\log b n-1} f\left(n / b^{\log g n-1}\right)+a^{\log b} T(1)$
 $=\sum_{j=0}^{\log ^{2} n^{-1}} a^{\mathrm{j}} f\left(n / b^{j}\right)+\Theta\left(n^{\lg b^{a}}\right)$
 - The first term is a division/recombination cost (totaled across all levels of the tree)
 - The second term is the cost of doing all $n^{\log _{b} a}$ subproblems of size 1 (total of all work pushed to leaves)

Master Method intuition

- Three common cases:
- Running time dominated by cost at leaves
- Running time evenly distributed throughout the tree
- Running time dominated by cost at the root
- Thus, to solve the recurrence, we need only to characterize the dominant term
- In each case compare $f(n)$ with $O\left(n^{l_{b} a}\right)$

Master Method Case 1

- $f(n)=O\left(n^{\log _{\alpha} \alpha-\varepsilon}\right)$ for some constant $\varepsilon>0$
- An) grows polynomially (by factor n^{ε}) slower than $n^{\log _{b} a}$
- The work at the leaf level dominates
- Summation of recursion-tree levels $O\left(n^{\log _{b} a}\right)$
- Cost for all the leaves $\Theta\left(n^{\log _{b} a}\right)$
- Thus, the overall cost $\Theta\left(n^{\log _{b} a}\right)$

Master Method Case 2

- $f(n)=\Theta\left(n^{\log _{b} a}\right)$
- $f(n)$ and $n^{\log _{b} a}$ are asymptotically the same
- The work is equally distributed throughout the tree $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$ - (level cost) \times (number of levels)

Master Method Summarized

- Given a recurrence of the form $T(n)=a T(n / b)+f(n)$

1. $f(n)=O\left(h^{\log _{s} a-\varepsilon}\right)$ $\Rightarrow T(n)=\Theta\left(n^{\log _{s} a}\right)$
2. $f(n)=\Theta\left(n^{\log _{s, ~} \alpha}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{g} \alpha} \lg n\right)
$$

3. $f(n)=\Omega\left(n^{\log _{g} \alpha+\varepsilon}\right)$ and $a f(n / b) \leq c f(n)$, for some $c<1, n>n_{0}$ $\Rightarrow T(n)=\Theta(f(n))$

- The master method cannot solve every recurrence of this form; there is a gap between cases 1 and 2, as well as cases 2 and 3 - $f(n)$ is smaller (larger) than $n^{l_{g} a}$ but not polynomially smaller (larger)

Example of Master Method 2

Binary-search ($A, p, r, s)$:
$q \leftarrow(p+r) / 2$
if $A[q]=S$ then return q
else if $A[q]>s$ then
Binary-search ($A, p, q-1, s$)
else Binary-search ($A, q+1, r, s)$
$T(n)=T(n / 2)+1$
$a=1, b=2, n^{\lg _{2} 1}=1=\Theta(1), f(n)=1=\Theta(1)$,
$f(n)=\Theta\left(n^{\lg _{b} a}\right) \rightarrow$ Case 2: $T(n)=\Theta\left(n^{\lg _{b} a} \lg n\right)=\Theta(\lg n)$
$T(n)=9 T(n / 3)+n$
$a=9, b=3, n^{\lg _{3} 9}=\Theta\left(n^{2}\right), f(n)=n=O\left(n^{\lg _{3} 9-\varepsilon}\right)$ where $\varepsilon=1$ $f(n)=O\left(n^{\lg _{3} 9-\varepsilon}\right) \rightarrow$ Case 1: $T(n)=\Theta\left(n^{\lg _{b} a}\right)=\Theta\left(n^{2}\right)$
© André de Carvalho - ICMC/USP

Master Method Case 3

- $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$ - Inverse of Case 1
- f(n) grows polynomially faster than $n^{\log _{b} a}$
- Also need a regularity condition
$\exists c<1$ and $n_{0}>0$ such that $a f(n / b) \leq c f(n) \forall n>n_{0}$
- The work at the root dominates $T(n)=\Theta(f(n))$

Strategy

- Extract a, b, and $f(n)$ from a given recurrence
- Determine $n^{\log _{b} a}$
- Compare $f(n)$ and $n^{\log _{b} a}$ asymptotically
- Determine appropriate MT case, and apply
- Example merge sort
$T(n)=2 T(n / 2)+\Theta(n)$
$a=2, b=2, n^{l_{b} a}=n^{l g_{2} 2}=\mathrm{n}=\Theta(n), f(n)=\Theta(n)$,
\rightarrow Case 2: $T(n)=\Theta\left(n^{l_{b} a} \lg n\right)=\Theta(n \lg n)$

Multiplication Example (I)

- Multiplying two n-digit (or n-bit) numbers costs n^{2} digit multiplications using a classical procedure
- Observation:
- $23 * 14=\left(2 \times 10^{1}+3\right) *\left(1 \times 10^{1}+4\right)=$ $(2 * 1) 10^{2}+\left(3^{*} 1+2 * 4\right) 10^{1}+\left(3^{*} 4\right)$
- To save one multiplication use the trick:
- $\left(3^{*} 1+2 * 4\right)=(2+3) *(1+4)-\left(2^{*} 1\right)-\left(3^{*} 4\right)$

Multiplication Example (II)

- To multiply a and b, which are n-digit numbers, use a divide and conquer algorithm
- Split a and b in half:
- $a=a_{1} \times 10^{n / 2}+a_{0}$ and $b=b_{1} \times 10^{n / 2}+b_{0}$
- Then:
- $a * b=\left(a_{1} * b_{1}\right) 10^{n}+\left(a_{1} * b_{0}+a_{0} * b_{1}\right) 10^{\mathrm{n} / 2}+\left(a_{0} * b_{0}\right)$
- Use a trick to save one multiplication:
- $\left(a_{1} * b_{0}+a_{0} * b_{1}\right)=\left(a_{1}+a_{0}\right) *\left(b_{1}+b_{0}\right)-\left(a_{1} * b_{1}\right)-\left(a_{0} * b_{0}\right)$

Multiplication Example(III)

- Number of single-digit multiplications performed by the algorithm can be described by a recurrence:

$$
T(n)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
3 T(n / 2) & \text { if } n>1
\end{array}\right.
$$

- Solution: $T(n)=n^{\log _{2} 3}=n^{1.585}$

Next Week

- Sorting
- QuickSort
- HeapSort

