
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Divide and Conquer

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

© André de Carvalho - ICMC/USP 1

Today

 Analysis the running time of recursive
algorithms

 Like divide-and-conquer

 Writing and solving recurrences

 Tree recurrence method

 Master method

© André de Carvalho - ICMC/USP 2

Revision: Insertion sort x Merge sort

 n2 versus nlgn

 log(n) : how many times do you need to divide n
by 2 in order to reach 1 (assume n = 2m)?

n2 nlgn
22 = 5 2lg (2) = 2
42 = 16 4lg (4) = 8
…
322 = 1024 32lg (32) = 160
…
5122 = 262.144 512lg(512) = 4.606

lg(number of particles in the universe) < 280

log(n) grows very
slowly with n and
much slower than n2

© André de Carvalho - ICMC/USP 3

Revision: Insertion sort x Merge sort

n n log(n) n2

8 24 64

16 64 256

32 160 1024

64 384 4096

128 896 16384

256 2048 65536

512 4608 262144

1024 10240 1048576

n2 versus nlgn

© André de Carvalho - ICMC/USP 4

Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � � ⟺ ∃�, �� > 0 �. �. ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1
g(n) = O(f(n)) (and also f(n) = O(g(n)))

Need c but not really n0

© André de Carvalho - ICMC/USP 5

Why do we need n0 and c

f(n)

n0 = 1
n

g(n)

2.5⋅ f(n)

1

2

2.5

c
� � = � � � ⟺ ∃�, �� > 0 �. �. ∀� ≥ ��, 0 ≤ � � ≤ � ⋅ �(�)

g(n) = 2, f(n) = 1
g(n) = O(f(n)) (and also f(n) = O(g(n)))

Need both c and n0

© André de Carvalho - ICMC/USP 6

2

Divide and Conquer

 Divide et impera [Divide and rule]

 Ancient political maxim cited by Machiavelli

 Julius Caesar (102-44BC)

 The divide-and-conquer paradigm:

 DIVIDE problem up into smaller problems

 CONQUER by solving each subproblem

 COMBINE results to solve the original
problem

© André de Carvalho - ICMC/USP 7

Recurrences

 Recursive calls in algorithms can be described
using recurrences

 It is an equation or inequality that describes a
function in terms of its value on smaller inputs

 Example: Merge Sort

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
 

 

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n


 

  

© André de Carvalho - ICMC/USP 8

Solving Recurrences

 Substitution method

 Guess the solutions

 Verify the solution by the mathematical induction

 Repeated (backward) substitution method

 Expand the recurrence by substitution and look for a
pattern

 Recursion-trees

 Master method

 templates for different classes of recurrences

© André de Carvalho - ICMC/USP 9

Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 10

Guess that � � =O(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

T(n) = 2T(n/2) + 2n + 3

∖
� � = �

2 �� � = 1

2�
�

2
+ 2� + 3 �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)

Substitution method (ex. 2)

 Find the running time (upper bound) of merge sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 11

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

T(n) = 2T(n/2) + 2n + 3

∖
� � = �

2 �� � = 1

2�
�

2
+ 2� + 3 �� � > 1

n0 = 1 → T(1) = 2 and
c1lg1 = 0

2 ≤ 0 (impossible)
Use n0 = 2
T(2) = 11 and c2lg2 = 2c
T(3) = 13 and c3lg3 = 3c1.6
For n> 3, recurrence
does not depend on T(1)

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 12

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3 (ignore terms < nlgn)

≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)

3

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 13

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2
11 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2
11 ≤ 4 → does not hold

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 14

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 3

T(2) ≤ 3x2lg2
11 ≤ 6 → does not hold

If c = 6
T(2) ≤ 6x2lg2
11 ≤ 12 → holds

Substitution method (ex. 2)

© André de Carvalho - ICMC/USP 15

T(n) = 2T(n/2) + 2n + 3
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + 2n + 3

≤ cn lg (n/2) + 2n + 3
≤ cn lg n – cnlg 2 + 2n + 3
≤ cn lg n – cn + 2n + 3
≤ cn lg n (holds if c > 5)

Choose positive value of c
that holds for T(2) and T(3)
If c = 6

T(3) ≤ 6x3lg3
13 ≤ 18x1,6 → holds

Thus, c = 6 and
T(n) = O(nlg n)

Repeated Substitution Method

 Variation of substitution method
 Close to the tree

 Simple procedure:
 Substitute

 Expand

 Substitute

 Expand

 …

© André de Carvalho - ICMC/USP 16

Repeated Substitution Method

 Simple procedure:
 Make some substitutions

 Observe a pattern and write how the
expression looks after the ith substitution

 Find out which value i should have (e.g., lgn)
to get the base case of the recurrence (T(1))

 Insert the value of T(1) and the expression of i
into the expression

© André de Carvalho - ICMC/USP 17

Repeated Substitution (Ex. 2)

 Sequence of expand-substitute operations
2 if 1

()
2 (/ 2) 2 3 if 1

n
T n

T n n n


 

  

T(n)≤ 2T(n/2) + 2n + 3 Substitute T(n/2)
≤ 2[2T(n/4) + 2n/2 +3] + 2n + 3 Expand outside []
≤ 22T(n/4) + 4n + 2×3 + 3 Substitute T(n/4)
≤ 22 [2T(n/8)+2n/4+3]+4n+2×3 +3 Expand outside []
≤ 23 T(n/ 23)+2×3n +(22+21+20)×3 There is a pattern

≤ 2i T(n/ 2i)+2×in + 3×∑ 2����
��� Look for value of i to

≤ 2lg n T(n/n)+2nlg n + 3(2lg n −1) reach the base case: lg n
≤ 2n + 2nlg n +3n – 3 = 5n + 2nlg n – 3
≤ n lg n

© André de Carvalho - ICMC/USP 18

4

Exercise

 Running time of tromino tiling algorithm for a 2nx2n board

 Find its upper bound

© André de Carvalho - ICMC/USP 19

1 if 1
()

4 (1) 1 if 1

n
T n

T n n


 

  

Repeated Substitution (Ex. 3)

 Running time of tromino tiling algorithm for a 2nx2n board

T(n) ≤ 4T(n-1) + 1 Substitute T(n-1)
≤ 4[4T(n-2) + 1] + 1 Expand outside []
≤ 42T(n-2) + 4 + 1 Substitute T(n-2)
≤ 42[4T(n-3) +1] + 4 + 1 Expand outside []
≤ 43T(n-3) + 42 + 41 + 40 Look for value of i to

≤ 4i T(n-i)+∑ 4����
��� reach the base case: n-1

≤ 4n-1 T(1)+
������

���
=

����

�

© André de Carvalho - ICMC/USP 20

1 if 1
()

4 (1) 1 if 1

n
T n

T n n


 

  

Substitution method

© André de Carvalho - ICMC/USP 21

Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Substitution method

© André de Carvalho - ICMC/USP 22

Solve T(n) = 4T(n/2) + n
1) Guess that T(n) = O(n3)
2) Assume that T(n) ≤ ck3 for k ≤ n/2
3) Prove by induction that T(n) ≤ cn3

T(n) = 4T(n/2) + n (Recurrence)
≤ 4c(n/2)3 + n (Induction)
≤ c/2n3 + n (Simplification)
≤ cn3

n0 = 1 → T(1) = 1 and
cn3 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x13

1 ≤ 1 → holds
T(2) ≤ 1x23

6 ≤ 8 → holds

Thus c ≥ 1 and
T(n)= O(n3)

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 23

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 24

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 1

T(1) ≤ 1x12

1 ≤ 1 → holds
T(2) ≤ 1x22

5 ≤ 4 → Does not hold
If c = 2

T(1) ≤ 2x12

1 ≤ 2 → holds
T(2) ≤ 2x22

9 ≤ 8 → Does not hold

5

Substitution Method

 Achieving tighter bounds

© André de Carvalho - ICMC/USP 25

Try to show that T(n) = O(n2)
Assume that T(k) ≤ ck2

T(n) ≤ 4T(n/2)+ n
≤ 4c(n/2)2 + n
≤ cn2 + n
≤ cn2

n0 = 1 → T(1) = 1 and
cn2 = cx1 = c

Choose positive value of c
that holds for T(1) and T(2)
If c = 3

T(1) ≤ 3x12

1 ≤ 3 → holds
T(2) ≤ 3x22

13 ≤ 12 → Does not hold
If c = 4

T(1) ≤ 4x12

1 ≤ 4 → holds
T(2) ≤ 4x22

17 ≤ 16 → Does not hold

False for any value of c
Never holds

Substitution Method (2)

 What is the problem?

 The inequality (cn2 + positive value) ≤ cn2

is not possible

 To prove inductive step, try to make the
hypothesis stronger
 T(n)  (answer you want) - (something > 0)

© André de Carvalho - ICMC/USP 26

Substitution Method (3)

 Corrected proof:

 Strength the inductive hypothesis by
subtracting lower-order terms!

2
1 2

2
1 2

2
1 2

2
1 2 2

2
1 2 2

Assume () for

() 4 (/ 2)

4((/ 2) (/ 2))

2

()

 if 1

T k c k c k k n

T n T n n

c n c n n

c n c n n

c n c n c n n

c n c n c

  

 

  

  

   

  

© André de Carvalho - ICMC/USP 27

Substitution Method

 Powerful, but we need to guess the form
of the solution

 Making a good guess for the substitution
method can be difficult

 Recursion trees can give good guesses of
asymtotic solutions to recurrences

 Which can be confirmed by the substitution method

 They can even be the direct proof of the solution to
a recurrence

© André de Carvalho - ICMC/USP 28

Recursion Trees

 Show successive expansions of
recurrences using trees

 Convenient way to visualize what happens
when a recurrence is iterated

 Keep track of the time spent on the
subproblems of a divide and conquer algorithm

 Help to sum the processing times
necessary to solve a recurrence

© André de Carvalho - ICMC/USP 29

Recursion Tree for Merge Sort

© André de Carvalho - ICMC/USP 30

The original problem has a cost
of cn + two subproblems of size
(n/2) and running time T(n/2)

cn

T(n/2) T(n/2)

Each n/2 size problem has a cost of cn/2 +
two subproblems, each costing T(n/4)

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and merge

Cost of sorting subproblems

T(n)=2T(n/2) + Q(n)
T(n)=2T(n/2) + cn

6

Recursion Tree for Merge Sort

© André de Carvalho - ICMC/USP 31

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

cn

cn

cn

cn

Total : cnlgn+cn

Continue expanding until
the problem size reduces to 1

Recursion Tree for Merge Sort

 Each level has total cost cn

 When we go down one level, number
of subproblems doubles, but the cost
per subproblem halves  cost per
level remains the same

 There are lg n+1 levels, height is lg n
(Assuming n = 2m)

 Can be proved by induction

 Total cost=sum of costs at each level
= (lg n+1)cn = cnlgn + cn = (n lgn)

© André de Carvalho - ICMC/USP 32

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c cc c

lg n

Recursion Tree for Merge Sort

 Confirm with the Substitution Method

© André de Carvalho - ICMC/USP 33

Try to show that T(n) = O(nlg n)
Assume that T(n) = 2T(n/2) + cn

T(n) ≤ 2T(n/2)+ cn
≤ 2[n/2lg n/2] + cn
≤ nlg n/2 + cn
≤ nlg n – n + cn
≤ nlg n

Exemplo 2

 Show the recurrence tree for the
recurrence

2() (/ 4) (/ 2)T n T n T n n  

© André de Carvalho - ICMC/USP 34

Exemplo 2

 Show the recurrence tree for the
recurrence

2() (/ 4) (/ 2)T n T n T n n  

© André de Carvalho - ICMC/USP 35

Example 2

© André de Carvalho - ICMC/USP 36

7

Exercícios

 Use the recursion-tree method to
determine a guess for the recurrences

 Ex. 2: T(n) = T(n/3) + T(2n/3) + O(n)

 Ex. 3: T(n) = 3T(n/4) + (n2)

© André de Carvalho - ICMC/USP 37

Master Method

 Try to solve a class of recurrences of the form

 Where a  1, b > 1 and f is asymptotically positive

 T(n) is the runtime for an algorithm and it is
known that
 a subproblems of size n/b are solved recursively,

each in time T(n/b)

 f(n) is the cost of dividing the problem and
combining the results

 In merge-sort

() (/) ()T n aT n b f n 

() 2 (/ 2) ()T n T n n  

© André de Carvalho - ICMC/USP 38

Master Method (2)

© André de Carvalho - ICMC/USP 39

f (n/b)f (n/b) f (n/b)

T (1)

…

f (n) a

f (n/b2)f (n/b2) f (n/b2)…
algbn

f (n)

a f (n/b)

a2 f (n/b2)

…

���
�
�T (1)

(���
�
�)

CASE 1: Weight increases geometrically
from the root to the leaves

The leaves are a constant fraction of
the total weight

Functions increase from
top to bottom geometrically

Thus, only the last
bottom term is needed

���
�
�=���

�
�

Master Method (3)

 Number of leaves:

 Iterating the recurrence, expanding the tree yields

 The first term is a division/recombination cost (totaled across
all levels of the tree)

 The second term is the cost of doing all subproblems of
size 1 (total of all work pushed to leaves)

logb an

© André de Carvalho - ICMC/USP 40

T(n) = f(n) + aT(n/b)
= f(n) + af(n/b) + a2T(n/b2)
= f(n) + af(n/b) + a2f(n/b2)+…

+ alogbn-1f(n/blogbn-1) + alogbn T(1)

= ∑ ajf(n/bj) +(nlgba)
logbn−1

���

���
�
�=���

�
�

Master Method intuition

 Three common cases:
 Running time dominated by cost at leaves

 Running time evenly distributed throughout
the tree

 Running time dominated by cost at the
root

 Thus, to solve the recurrence, we need
only to characterize the dominant term

 In each case compare f(n) with O(���
�
�)

© André de Carvalho - ICMC/USP 41

Master Method Case 1

 for some constant

 f(n) grows polynomially (by factor)
slower than

 The work at the leaf level dominates

 Summation of recursion-tree levels

 Cost for all the leaves

 Thus, the overall cost

log() ()b af n O n 

logb an

0 

n

log()b aO n
log()b an
log()b an

© André de Carvalho - ICMC/USP 42

8

Master Method Case 2



 and are asymptotically the same

 The work is equally distributed
throughout the tree

 (level cost) ×(number of levels)

log() ()b af n n

()f n

log() (lg)b aT n n n 

logb an

© André de Carvalho - ICMC/USP 43

Master Method Case 3

 for some constant

 Inverse of Case 1

 f(n) grows polynomially faster than

 Also need a regularity condition

 The work at the root dominates

log() ()b af n n  

logb an

0 01 and 0 such that (/) () c n af n b cf n n n     

() (())T n f n 

0 

© André de Carvalho - ICMC/USP 44

Master Method Summarized

 Given a recurrence of the form

 The master method cannot solve every recurrence of this form;
there is a gap between cases 1 and 2, as well as cases 2 and 3

 f(n) is smaller (larger) than ���
�
� but not polynomially smaller (larger)

() (/) ()T n aT n b f n 

 
 

 
 

 
 

log

log

log

log

log
0

1. ()

()

2. ()

() lg

3. () and (/) (), for some 1,

() ()

b

b

b

b

b

a

a

a

a

a

f n O n

T n n

f n n

T n n n

f n n af n b cf n c n n

T n f n







  

 

 

   

  

© André de Carvalho - ICMC/USP 45

Strategy

 Extract a, b, and f(n) from a given recurrence

 Determine

 Compare f(n) and asymptotically

 Determine appropriate MT case, and apply

 Example merge sort

logb an
logb an

© André de Carvalho - ICMC/USP 46

T(n)=2T(n/2) + Q(n)
a = 2, b = 2, ���

�
� = ���

�
� = n = Q(n), f(n) = Q(n),

→ Case 2: T(n) = Q(���
�
�lg n) = Q(n lg n)

Example of Master Method 2

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

Binary-search(A, p, r, s):
q(p+r)/2
if A[q]=s then return q
else if A[q]>s then

Binary-search(A, p, q-1, s)
else Binary-search(A, q+1, r, s)

© André de Carvalho - ICMC/USP 47

T(n)=T(n/2) + 1
a = 1, b = 2, ���

�
� =1 = Q(1), f(n) = 1 = Q(1),

f(n) = Q(���
�
�)→ Case 2: T(n) = Q(���

�
�lg n) = Q(lg n)

T(n)=9T(n/3) + n
a = 9, b = 3, ���

�
� =Q(n2), f(n) = n = O(���

�
���) where ε = 1

f(n) = O(���
�
���) → Case 1: T(n) = Q(���

�
�) = Q(n2)

Multiplication Example (I)

 Multiplying two n-digit (or n-bit) numbers
costs n2 digit multiplications using a classical
procedure

 Observation:

 23*14 = (2×101 +3)*(1×101 +4) =

(2*1)102+ (3*1 + 2*4)101 + (3*4)

 To save one multiplication use the trick:

 (3*1 + 2*4) = (2+3)*(1+4) - (2*1) - (3*4)

© André de Carvalho - ICMC/USP 48

9

Multiplication Example (II)

 To multiply a and b, which are n-digit numbers,
use a divide and conquer algorithm

 Split a and b in half:

 a = a1 ×10n/2+ a0 and b = b1 ×10n/2+ b0

 Then:

 a *b = (a1 *b1)10n+ (a1 *b0 + a0 *b1)10n/2 + (a0 *b0)

 Use a trick to save one multiplication:

 (a1 *b0 + a0 *b1) = (a1 +a0)*(b1 +b0) - (a1 *b1) - (a0 *b0)

© André de Carvalho - ICMC/USP 49

Multiplication Example(III)

 Number of single-digit multiplications performed
by the algorithm can be described by a
recurrence:

1 if 1
()

3 (/ 2) if 1

n
T n

T n n


 



 Solution: 2log 3 1.585()T n n n 

© André de Carvalho - ICMC/USP 50

Next Week

 Sorting

 QuickSort

 HeapSort

© André de Carvalho - ICMC/USP 51

Acknowledgement

 A large part of this material was adapted
from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 52

Questions

© André de Carvalho - ICMC/USP 53

