Reductions

Computable function f:

There is a deterministic Turing machine Mwhich for any input string w computes f(w)and writes it on the tape

Problem X is reduced to problem Y

If we can solve problem Ythen we can solve problem X

Definition:

Language A is reduced to language B

There is a computable function f (*reduction*) such that:

$W \in A \iff f(W) \in B$

Theorem 1:

If: Language A is reduced to Band language B is decidable Then: A is decidable

Proof:

Basic idea: Build the decider for A using the decider for B

Decider for A

From reduction: $W \in A \iff f(W) \in B$

END OF PROOF

$EQUAL_{DFA} = \{ \langle M_1, M_2 \rangle : M_1 \text{ and } M_2 \text{ are DFAs} \\ \text{that accept the same languages} \}$

is reduced to:

$EMPTY_{DFA} = \{ \langle M \rangle : M \text{ is a DFA that accepts} \\ \text{the empty language } \emptyset \}$

We only need to construct:

$\langle M_1, M_2 \rangle \in EQUAL_{DFA} \iff \langle M \rangle \in EMPTY_{DFA}$

construct DFA Mby combining M_1 and M_2 so that:

 $L(M) = (\mathcal{L} \cap \mathcal{L}) \cup (\mathcal{L} \cap \mathcal{L})$

Costas Busch - LSU

Theorem 2:

If: Language A is reduced to B and language A is undecidable Then: B is undecidable

Proof: Suppose B is decidable Using the decider for Bbuild the decider for A

Contradiction!

Costas Busch - LSU

If B is decidable then we can build:

Decider for A

$$W \in A \iff f(W) \in B$$

CONTRADICTION!

END OF PROOF

Observation:

To prove that language B is undecidable we only need to reduce a known undecidable language A to B State-entry problem

Input: •Turing Machine M •State q •String W

Question: Does M enter state qwhile processing input string W?

Corresponding language:

 $STATE_{TM} = \{ \langle M, w, q \rangle : M \text{ is a Turing machine that} \}$

enters state q on input string w}

(while processing)

Theorem: $STATE_{TM}$ is undecidable

(state-entry problem is unsolvable)

Proof:

Reduce $HALT_{TM}$ (halting problem) to $STATE_{TM}$ (state-entry problem)

Given the reduction, if $STATE_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable We only need to build the reduction:

$$\langle \mathcal{M}, w \rangle \longrightarrow \text{Reduction} \longrightarrow \langle \hat{\mathcal{M}}, q, w \rangle$$

So that:

 $\langle M, w \rangle \in HALT_{TM} \quad \longleftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$

For the reduction, construct \hat{M} from M:

A transition for every unused tape symbol x of q_i

Equivalently:

 $\langle M, w \rangle \in HALT_{TM} \quad \longleftrightarrow \quad \langle \hat{M}, w, q \rangle \in STATE_{TM}$

END OF PROOF

Costas Busch - LSU

Blank-tape halting problem

Input: Turing Machine MQuestion: Does M halt when started with a blank tape?

Corresponding language:

$BLANK_{TM} = \{\langle M \rangle : M \text{ is a Turing machin } e \text{ that} \\ halts when started on blank tape \}$

Theorem: BLANK_{TM} is undecidable

(blank-tape halting problem is unsolvable)

Proof:

Reduce HAL T_{TM} (halting problem) to BLANK_{TM} (blank-tape problem)

Given the reduction, If $BLANK_{TM}$ is decidable, then $HALT_{TM}$ is decidable

A contradiction! since $HALT_{TM}$ is undecidable

We only need to build the reduction:

$$\langle \mathcal{M}, w \rangle \longrightarrow \text{Reduction} \longrightarrow \langle \hat{\mathcal{M}} \rangle$$

So that:

 $\langle M, w \rangle \in HALT_{TM} \quad \langle \hat{M} \rangle \in BLANK_{TM}$

Construct $\langle \hat{M} \rangle$ from $\langle M, w \rangle$:

If M halts then \hat{M} halts too

Ŵ

\hat{M} halts when started on blank tape

Costas Busch - LSU

M halts on input W

M halts on input W

\hat{M} halts when started on blank tape

Equivalently:

$\langle M, w \rangle \in HALT_{TM} \langle \widehat{M} \rangle \in BLANK_{TM}$

END OF PROOF

Costas Busch - LSU

Theorem 3:

If: Language A is reduced to \overline{B} and language A is undecidable Then: B is undecidable

Proof: Suppose B is decidable Then \overline{B} is decidable Using the decider for \overline{B} build the decider for A

Suppose B is decidable

Suppose B is decidable Then \overline{B} is decidable

If \overline{B} is decidable then we can build:

Decider for A

 $W \in A \iff f(W) \in B$

CONTRADICTION!

Alternatively:

 $W \in A \iff f(W) \notin B$

CONTRADICTION!

END OF PROOF

Observation:

- To prove that language B is undecidable we only need to reduce
- a known undecidable language A
- to B (Theorem 2)
- or \overline{B} (Theorem 3)

Undecidable Problems for Turing Recognizable languages Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

All these are undecidable problems

Let L be a Turing-acceptable language

- L is regular?
- L has size 2?

Empty language problem

Input: Turing Machine M

Question: Is L(M) empty? $L(M) = \emptyset$?

Corresponding language:

$EMPTY_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine that} \\ \text{ accepts the empty language } \emptyset \}$

Theorem: $EMPTY_{TM}$ is undecidable

(empty-language problem is unsolvable)

Proof:Reduce A_{TM} (membership problem)to \overline{EMPTY}_{TM} (empty language problem)

membership problem decider

Decider for ATM

Given the reduction, if $\overline{EMPTY_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

$$\langle \mathcal{M}, w \rangle \longrightarrow \text{Reduction} \longrightarrow \langle \hat{\mathcal{M}} \rangle$$

So that:

$$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$$

$M \text{ accepts } W \quad \longleftarrow \quad L(\ddot{M}) \neq \emptyset$

Equivalently:

$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{EMPTY_{TM}}$

END OF PROOF

Let L be a Turing-acceptable language

• L is empty?

• L has size 2?

Regular language problem

Input: Turing Machine M

Question: Is L(M) a regular language?

Corresponding language:

$\begin{aligned} \textit{REGULAR}_{TM} = \{ \langle M \rangle : M \text{ is a Turing machine that} \\ \text{accepts a regular language} \} \end{aligned}$

Theorem: $REGULAR_{TM}$ is undecidable

(regular language problem is unsolvable)

membership problem decider

Decider for ATM

Given the reduction, If $\overline{REGULAR_{TM}}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

$$\langle \mathcal{M}, w \rangle \longrightarrow \text{Reduction} \longrightarrow \langle \hat{\mathcal{M}} \rangle$$

So that:

$$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$$

M accepts $W \leftarrow L(\hat{M})$ is not regular

Equivalently:

$\langle M, w \rangle \in A_{TM} \quad \longleftrightarrow \quad \langle \hat{M} \rangle \in \overline{REGULAR_{TM}}$

END OF PROOF

Let L be a Turing-acceptable language

- L is empty?
- L is regular?

Size2 language problem

Input: Turing Machine M

Question: Does L(M) have size 2 (two strings)? |L(M)|=2?

Corresponding language:

$SIZE2_{TM} = \{\langle M \rangle : M \text{ is a Turing machine that}$ accepts exactly two strings}

Theorem: $SIZE2_{TM}$ is undecidable

(size2 language problem is unsolvable)

membership problem decider

Decider for ATM

Given the reduction, If $SIZE2_{TM}$ is decidable, then A_{TM} is decidable

A contradiction! since A_{TM} is undecidable

We only need to build the reduction:

$$\langle \mathcal{M}, w \rangle \longrightarrow \text{Reduction} \to \langle \hat{\mathcal{M}} \rangle$$

So that:

$$\langle M, w \rangle \in A_{TM} \quad \langle \widehat{\mathcal{M}} \rangle \in SIZE2_{TM}$$

$M \text{ accepts } w \leftarrow L(\hat{M}) \text{ has size 2}$

Equivalently:

$\langle M, w \rangle \in A_{TM} \Leftrightarrow \langle \hat{M} \rangle \in SIZE2_{TM}$

END OF PROOF