Reductions

Computable function f :

There is a deterministic Turing machine M which for any input string w computes $f(w)$ and writes it on the tape

Problem X is reduced to problem \boldsymbol{Y}

If we can solve problem Y
then we can solve problem X

Definition:

Language A
is reduced to
language B

There is a computable
function f (reduction) such that:

$$
w \in A \Leftrightarrow f(w) \in B
$$

Theorem 1:

If: Language A is reduced to B and language B is decidable
Then: \boldsymbol{A} is decidable

Proof:

Basic idea:

Build the decider for A using the decider for B

Decider for \boldsymbol{A}

Input string
 \rightarrow Reduction $f(w)$
 Decider for B
 $$
\begin{tabular}{|c|c|} \hline YES accept & \multirow[t]{2}{*}{\begin{tabular}{l} YES \\ \(\rightarrow\) accep \end{tabular}
$$

\hline (halt) \&

\hline NO reject \& \multirow[t]{2}{*}{$$
\xrightarrow[\rightarrow r e j e c t]{\mathrm{NO}}
$$}

\hline (halt) \&

\hline
\end{tabular}

From reduction: $w \in A \Leftrightarrow f(w) \in B$

END OF PROOF

Example:

$E Q \cup A L_{D F A}=\left\{\left\langle M_{1}, M_{2}\right\rangle: M_{1}\right.$ and M_{2} are DFAs that accept the same languages \}

is reduced to:

EMPTV $_{\text {DFA }}=\{\langle M\rangle: M$ is a DFA that accepts the empty language $\varnothing\}$

We only need to construct:

$\left\langle M_{1}, M_{2}\right\rangle \in E Q U A L_{D F A} \quad \Leftrightarrow \quad\langle M\rangle \in E M P T Y_{D F A}$

Let L_{1} be the language of DFA M_{1} Let L_{2} be the language of DFA M_{2}

$\left\langle M_{1}, M_{2}\right\rangle \longrightarrow$| Reduction
 Turing Machine
 for reduction f |
| :---: | | $f\left(\left\langle M_{1}, M_{2}\right\rangle\right)$ |
| :--- |
| $=\langle M\rangle$ DFA |

construct DFA M
by combining M_{1} and M_{2} so that:

$$
L(M)=\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)
$$

$$
L(M)=\left(L_{1} \cap \overline{L_{2}}\right) \cup\left(\overline{L_{1}} \cap L_{2}\right)
$$

$$
L_{1}=L_{2} \quad \Leftrightarrow \quad L(M)=\varnothing
$$

$\left\langle M_{1}, M_{2}\right\rangle \in E Q U A L_{\text {DFA }} \Leftrightarrow\langle M\rangle \in E M P T Y_{\text {DFA }}$

Decider for $E Q U A L_{D F A}$

Theorem 2:

If: Language A is reduced to B and language \boldsymbol{A} is undecidable Then: B is undecidable

Suppose B is decidable Using the decider for B build the decider for \boldsymbol{A}

Contradiction!

If B is decidable then we can build:

Decider for \boldsymbol{A}

\section*{Input string
 | $f(w)$ | Decider
 for B | yES accept | YES |
| :---: | :---: | :---: | :---: |
| | | (halt) | |
| | | $\begin{aligned} & \mathrm{NO} \\ & \text { reject } \end{aligned}$ | NO |
 $w \in A \Leftrightarrow f(w) \in B$}

CONTRADICTION!
END OF PROOF

Observation:

To prove that language B is undecidable we only need to reduce a known undecidable language A to B

State-entry problem

Input: •Turing Machine M

- State q
- String w

Question: Does M enter state q
while processing input string w ?
Corresponding language:
$\operatorname{STATE}_{T M}=\{\langle M, w, q\rangle: M$ is a Turing machine that enters state q on input string $w\}$
(while processing)

Theorem: STATE $_{T M}$ is undecidable

(state-entry problem is unsolvable)

Proof:
Reduce
HALTM (halting problem)
to
sTATE $_{\text {TM }}$ (state-entry problem)

Halting Problem Decider

Decider for $H A L T_{T M}$

Given the reduction,
if STATE $_{\text {TM }}$ is decidable, then $H A L T_{T M}$ is decidable

A contradiction!
since $H A L T_{T M}$
is undecidable

We only need to build the reduction:

So that:
$\langle M, w\rangle \in H A L T_{T M} \longleftrightarrow\langle\hat{M}, w, q\rangle \in$ STATE $_{T M}$

For the reduction, construct \hat{M} from M :

A transition for every unused tape symbol x of q_{i}
\hat{M}

M halting
 halt state states
 9

M halts

N nattsonstate

Therefore:
 M halts on input w

\hat{M} halts on state q on input w

Equivalently:

$\langle M, w\rangle \in H_{A L} T_{T M} \Longleftrightarrow\langle\hat{M}, w, q\rangle \in \operatorname{STATE}_{T M}$

END OF PROOF

Blank-tape halting problem

Input: Turing Machine M
Question: Does M halt when started with a blank tape?

Corresponding language:
$B L A N K_{T M}=\{\langle M\rangle: M$ is a Turing machin e that halts when started on blank tape\}

Theorem: $B L A N K_{\text {TM }}$ is undecidable

(blank-tape halting problem is unsolvable)

Proof: Reduce
HAL $T_{T M}$ (halting problem)
to
$B L A N K_{T M}$ (blank-tape problem)

Decider for $H A L T_{T M}$

Given the reduction,
If $B L A N K_{T M}$ is decidable, then $H A L T_{T M}$ is decidable

A contradiction! since $H A L T_{T M}$
is undecidable

We only need to build the reduction:

So that:
$\langle M, w\rangle \in H A L T_{T M} \longleftrightarrow\langle\hat{M}\rangle \in B L A N K_{T M}$

Construct $\langle\hat{M}\rangle$ from $\langle M, w\rangle$:

\hat{M}

If M halts then \hat{M} halts too

\hat{M}

M halts on input w

\hat{M} halts when started on blank tape
M halts on input w

\hat{M} halts when started on blank tape

Equivalently:

END OF PROOF

Theorem 3:

If: Language \boldsymbol{A} is reduced to \bar{B} and language \boldsymbol{A} is undecidable Then: B is undecidable

Proof: Suppose B is decidable Then \bar{B} is decidable Using the decider for \bar{B} build the decider for \boldsymbol{A}

Contradiction!

Suppose B is decidable

Suppose B is decidable

Then \bar{B} is decidable

If \bar{B} is decidable then we can build:

Decider for \boldsymbol{A}

Input string

YES accept	YES
(halt)	
NO reject	NO
(halt)	

$w \in A \Leftrightarrow f(w) \in \bar{B}$
CONTRADICTION!

Alternatively:

Decider for \boldsymbol{A}

Input string
 $w \rightarrow$ Reduction
 $$
w \in A \Leftrightarrow f(w) \notin B
$$

 $w \in A \Leftrightarrow f(w) \notin B$

 $w \in A \Leftrightarrow f(w) \notin B$}CONTRADICTION!
END OF PROOF

Observation:

To prove that language B is undecidable we only need to reduce a known undecidable language \boldsymbol{A} to B (Theorem 2) or \bar{B} (Theorem 3)

Undecidable Problems for Turing Recognizable languages

Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

All these are undecidable problems

Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

Empty language problem

Input: Turing Machine M
Question: Is $L(M)$ empty? $L(M)=\varnothing$?

Corresponding language:
$E^{E M P T V_{T M}}=\{\langle M\rangle: M$ is a Turing machine that accepts the empty language \varnothing \}

Theorem: $E M P T Y_{T M}$ is undecidable

(empty-language problem is unsolvable)

Proof: Reduce

$A_{T M} \quad$ (membership problem)
to
$\overline{E M P T Y_{T M}}$ (empty language problem)
membership problem decider

Decider for $A_{T M}$

Given the reduction,
if $\overline{E M P T Y_{T M}}$ is decidable, then $A_{T M}$ is decidable

A contradiction! since $A_{\text {TM }}$
is undecidable

We only need to build the reduction:

So that:

$\langle M, w\rangle \in A_{T M} \longleftrightarrow\langle\hat{M}\rangle \in \overline{E M P T Y_{T M}}$

Construct $\langle\hat{M}\rangle$ from $\langle M, w\rangle$:

Tape of \hat{M}

	S	
\uparrow input string	Turing Machine \hat{M}	

$s=$ Louisiana?

yes
-Write \boldsymbol{W} on tape, and

- Simulate \boldsymbol{M} on input \boldsymbol{w}

Maccepts w?

The only possible accepted string S

Maccepts w
$L(\hat{M})=\{$ Louisiana $\} \neq \varnothing$
$M^{\text {does not }}$ accep \dagger

$$
L(\hat{M})=\varnothing
$$

Turing Machine \hat{M}

Therefore:

M accepts w

Equivalently:

$$
\langle M, w\rangle \in A_{T M} \Longleftrightarrow\langle\hat{M}\rangle \in \overline{E M P T Y_{T M}}
$$

END OF PROOF

Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

Regular language problem

Input: Turing Machine M
Question: Is $L(M)$ a regular language?

Corresponding language:
$\operatorname{REGULAR}_{T M}=\{\langle M\rangle: M$ is a Turing machine that accepts a regular language\}

Theorem: $R E G \cup L A R_{T M}$ is undecidable

(regular language problem is unsolvable)

Proof: Reduce

$A_{T M} \quad$ (membership problem)
to
$\overline{\operatorname{REGULAR}}{ }_{T M}$ (regular language problem)
membership problem decider
Decider for $A_{T M}$
$\langle M, \boldsymbol{w}\rangle \rightarrow$ Reduction $\langle\hat{M}\rangle \xrightarrow{\substack{\text { regular problem } \\ \text { decider } \\ \text { Decider } \\ \text { REGULAR } \\ \text { VES }} \text { NO }}$ NES

Given the reduction,
If $\overline{\operatorname{REGULAR}}$ TM then $A_{T M}$ is decidable

A contradiction! since $A_{\text {TM }}$
is undecidable

We only need to build the reduction:

So that:

$$
\langle M, w\rangle \in A_{T M} \Longleftrightarrow\langle\hat{M}\rangle \in \overline{\operatorname{REGULAR}}
$$

Construct $\langle\hat{M}\rangle$ from $\langle M, w\rangle$:

Tape of \hat{M}

	S
	input string

Turing Machine \hat{M}
(forsome $k \geq 0$)
$s=a^{k} b^{k} ?$
Accept S
-Write W on tape, and

- Simulate \boldsymbol{M} on input \boldsymbol{W}
M accepts w?

Maccepts w

 $L(\hat{M})=\left\{\begin{array}{c}\text { not regular } \\ \left.a^{n} b^{n}: n \geq 0\right\}\end{array}\right.$$M^{\text {does not }}$ accept
$L(\hat{M})=\varnothing$ regular
Turing Machine \hat{M}

Therefore:

M accepts w $L(\hat{M})$ is not regular

Equivalently:

$$
\langle M, w\rangle \in A_{T M} \Longleftrightarrow\langle\hat{M}\rangle \in \overline{\operatorname{REGULAR}}{ }_{T M}
$$

Let L be a Turing-acceptable language

- L is empty?
- L is regular?
- L has size 2?

Size2 language problem

Input: Turing Machine M
Question: Does $L(M)$ have size 2 (two strings)?

$$
|\angle(M)|=2 ?
$$

Corresponding language:
SIZE $_{\text {TM }}=\{\langle M\rangle: M$ is a Turing machine that accepts exactly two strings\}

Theorem: $\operatorname{SIZE2}_{\text {Tи }}$ is undecidable

(size2 language problem is unsolvable)

Proof: Reduce

$A_{T M} \quad$ (membership problem) to

SIZE2 $_{\text {TM }}$ (size 2 language problem)
membership problem decider
Decider for $A_{T M}$

Given the reduction,
If $\operatorname{SIZEZ}_{T M}$ is decidable, then $A_{T M}$ is decidable

A contradiction! since $A_{\text {TM }}$
is undecidable

We only need to build the reduction:

So that:

$\langle M, w\rangle \in A_{T M} \longleftrightarrow\langle\hat{M}\rangle \in$ SIZE2 $_{\text {TM }}$

Construct $\langle\hat{M}\rangle$ from $\langle M, w\rangle$:

Tape of \hat{M}

	S
	input string

Turing Machine \hat{M}

Maccepts w

2 strings $L(\hat{M})=\{$ Baton, Rouge $\}$
$M^{\text {does not }}$ accept

$$
L(\hat{M})=\varnothing \quad 0 \text { strings }
$$

Turing Machine \hat{M}

Therefore:

M accepts w $L(\hat{M})$ has size 2

Equivalently:
$\langle M, w\rangle \in A_{T M} \Longleftrightarrow\langle\hat{M}\rangle \in$ SIZE2 $_{\text {TM }}$

