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Metabolic profiling (metabonomics/metabolomics) is now used routinely as a tool to provide
information-rich datasets for biomarker discovery, prompting and augmenting detailed mechanistic
studies. The experimental design and focus of any individual study will be reflected in the types of
biomarkers that can be detected; toxicological studies will likely focus on markers of response to insult,
whereas clinical case-control studies may yield diagnostic markers of disease. Population studies can
make use of omics analyses, including metabonomics, to provide mechanistically-relevant markers that
link environmental exposures to chronic disease endpoints. In this article, examples of how metabolic
profiling has played a key role in molecular epidemiological analyses of chronic disease are presented,
and how these reflect different aspects of the causal pathway. A commentary on the nature of metab-
olome analysis as a complex mixture problem as opposed to a coded, sequence or template problem is
provided, alongside an overview of current and future analytical platforms that are being applied to meet
this analytical challenge. Epidemiological studies are an important nexus for integrating various mea-

sures of the human exposome, and the ubiquity, diversity and functions of small molecule metabolites,
represent an important way to link individual exposures, genetics and phenotype.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The completion of the of the human genome project promised
to provide bioscientists, clinicians and epidemiologists with a new
way to identify underlying genetic causes of chronic disease, esti-
mate disease risk, conduct population/patient stratification, and
identify new drug targets for therapy [1]. There are numerous ex-
amples of how candidate gene approaches, and genome-wide as-
sociation studies (GWAS) have proved useful in understanding
disease, and the post-genomic era has been characterized by
incalculable innovation and progress [2,3]. However, it is now well
recognised that the proportion of chronic disease explained by
genetic variation is relatively small when compared with the in-
fluence of the environment [4—7]. Precise definitions of ‘environ-
ment’ vary, but for the purposes of this commentary, it is taken to
mean all non-genetic factors, which corresponds well with the
concept of a human ‘exposome’ as a complement to the human
genome, suggested by Wild in 2005 [8—12]. The initial exposome
definition that it “... encompasses life-course environmental expo-
sures (including lifestyle factors), from the prenatal period onwards.”,
has been subsequently expanded and reinterpreted, but all defini-
tions retain much of the same scope and scale [13—15]. Concep-
tually, the exposome is relatively simple, and has highlighted the
need to devote effort to understanding environmental exposures in
relation to health in addition to genomics. This approach represents
a dramatic shift away from a candidate, chemical-oriented
approach, to embrace the totality of exposures across different
scenarios and timeframes (Fig. 1). While traditional methods for
estimating exposure (e.g. personal exposure monitoring,
geographic information systems) remain important in the overall
exposure story, characterizing the exposome is predominantly led
by the application of omics platforms that provide rich individual-
level biological profiles. The blend of these techniques is clearly
important to those designing studies of the exposome, and many
factors play a part in determining which are used (e.g. life-course
studies vs adult exposures vs mother-child studies), which has
been highlighted in recent articles [16,17]. Metabolic profiling
(metabonomics/metabolomics) [18,19] is central to these analyses,
and several reviews provide further rationale and examples of how
this is being implemented [20—23].

2. Throwing down the gauntlet: characterizing chemical and
biological space

The full complement of small molecules in a given tissue, bio-
fluid or compartment is known as the metabolome. Biological
systems efficiently create complex metabolomes through the
combinatorial action of multiple enzyme systems with varying
substrate affinities and reaction rates. For example, a simple
xenobiotic may (although not always) be metabolized to a dizzying
array of phase 1 and phase 2 metabolites, with these distributed
unequally at cellular, tissue and system level, and each having a
unique set of interactions and responses. The human body also
exists in close companionship with a wide variety of other organ-
isms, each with their own genomes and metabolomes; the term
‘superorganism’ has appropriately been used to describe the
ensemble [24]. Human gut microbiota exhibit both spatial and

temporal dynamics, and are intimately involved in co-metabolism
across a wide range of substrates, meaning that the already com-
plex picture of the human metabolome presented above is
incomplete. The gut-host metabolic interface can give rise to
diverse compound metabolism, with both potentially beneficial
and adverse consequences [25]. Furthermore, the microbiotic
composition is modulated by the gut environment - including its
metabolic profile — meaning it is not a simple exposure, but
inherently plastic and variable. There is currently much interest in
understanding the role of microbiota in human health, as a po-
tential dietary and/or therapeutic modifiable factor. Researchers
have attempted to partition subsets of chemicals relevant to their
own biological interest area, resulting in a variety of metabolomes
being defined, echoing efforts in genomics to sequence species/
individual genomes. These include the human blood and urine
metabolomes [26,27], and those relating to nutrition [28], herbs
[29], and pharmaceuticals, supplements, cosmetics, toxins, and
substances of abuse [30—32].

2.1. Chemical space

The chemical space in which these processes occur is vast. Es-
timates of how vast vary considerably, but many estimates from the
pharmaceutical industry put the number of chemicals that might
have drug-like (i.e. potentially biologically active) properties at
around 10%, and dwarfs the current list of human-synthesized
compounds (listed in the Beilstein database) [33—36]. The au-
thors of these papers comment that ennumeration of all com-
pounds is nether helpful nor possible — the search space is so large
— but focused libraries of compounds help cover the chemical space
efficiently. In a similar way, while any of these compounds has the
potential to exist — they could be synthesised given sufficient effort
- most are irrelevant in terms of a real exposure that has a mean-
ingful effect on the metabolome, and consequently the health
status of an individual. The use of analytical methods that are
sufficient broad so as to help cover the potential exposure/metab-
olome space are likely to be most useful. Interestingly, not only is
the chemical space vast, but so to is the range of concentrations
experienced, both inside and outside of the body. Rappaport et al.
(2014) compiled the available, published literature values for 1500
chemicals observed in human serum or plasma samples. These
compounds included dietary components, drugs, and environ-
mental pollutants — and revealed these span 11 orders of magni-
tude. Interestingly, these authors demonstrated that environmental
pollutants were present at much lower levels (typically 10—1000-
fold) than those of other sources, which were comparable in
magnitude [37]. If we are to attempt to dissect exposures from
various sources, and the responses that are elicited by their
ensemble action across the vast physicochemical and concentration
ranges, then appropriate, high-capacity methods for interrogating
biofluids are needed.

2.2. Codes

As described above, the human metabolome is a complex,
responsive, dynamic part of the exposome, with comparable
complexity to that of the human genome. However, the
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Fig. 1. Cartoon illustrating the chemical and non-chemical environmental influences on the human metabolome. They incorporate both acute and chronic exposures that may
originate from lifestyle/behaviors and interaction with the wider environment, including occupation. Such diversity generates a considerable challenge when attempting to
delineate relations between exposures — many of which may occur simultaneously — and biological responses encoded in the metabolic phenotype of individuals.

metabolome presents a different type of analytical challenge to
other omics approaches that are based on profiling encoded mole-
cules. Here, we define encoded molecules as those formed from the
linkage of a limited number of subunits (for example, DNA in-
corporates the nitrogenous bases cytosine, guanine, thymine, and
adenine that are used as the molecular code). For identification and
to a large extent, function, of these molecules, the order is what
matters, and the combination of the limited set of subunits gives
rise to the observed (and required) complexity. Sequencing tech-
nologies that rely on incremental detection of these limited sub-
units (e.g. by pyrosequencing [38], or nanopore analysis [39]) need
only be able to distinguish between the limited number of possi-
bilities for a particular part of the code. As is evident from our
ability to sequencing an entire human genome in a short time-
frame, such analyses have been well optimized, made possible by
the relatively simple analytical step that is required, coupled with
the ability to repeat the step at a very high rate (Fig. 1).
Differentiation of metabolites in the context of complex biofluid
profiling cannot be conducted in such a way, as the analytical step is
not simply to choose between one of a limited number of options.
Two similar metabolites (for example, two phospholipids differing
only by the degree of fatty acid chain saturation) may be separable/
differentiated using a highly specific assay, but the assay will have
limited applicability elsewhere in the metabolome. A further issue
is that sequencing can be applied to any coded molecule of a
particular type (DNA, RNA, proteins), as the critical analytical step
(e.g. measurement of a particular base) is independent of its mo-
lecular context. By contrast, not all metabolites are amenable to the
same analytical platforms/techniques, with each giving rise to a
different/unique response. Thus, we are not attempting an analo-
gous sequencing of the metabolome, but a very complex chemical
mixture analysis. An alternative to molecular sequencing is to use

knowledge of the various codes to generate templates that have
highly specific affinity for target coded molecules, such as is used in
transcriptomic microarrays. The specificity comes from the
requirement for a large number of possible interactions to be pre-
sent only for the target (or those with very similar sequence). For
small molecules, template recognition approaches are possible,
using techniques such as molecular imprinted polymers (MIPs)
whereby analytes have high affinity for specific target, but these
have not yet been readily deployed in a metabolic profiling context.
Some panels of metabolites (e.g. lipids) can now be detected using
multiplex ELISA-based kits, suggesting that the template/affinity
approach may have value for targeted applications in certain
metabolite classes. The differences between these approaches are
summarised in Fig. 2.

3. Rising to the challenge: global metabolome profiling
methods and population studies

The inherent complexity of the metabolome means we must
look for methods that are capable of differentiation, identification,
and measurement of metabolites across a wide chemical space.
Detailed accounts of the main analytical platforms have been
extensively reviewed and appraised [40]. In brief, global profiling
methods are used to provide an agnostic view of sample similarity,
identify outliers, and uncover metabolites that differentiate sample
classes; targeted methods may be used to focus analysis on
particular subsets of metabolites. Typically, these platforms rely on
a combination of chromatographic separation, mass spectrometry
and nuclear magnetic resonance (NMR) spectroscopy as these
techniques can be used to detect a wide range of small molecules in
an untargeted manner. Molecular epidemiological analyses present
their own unique set of challenges for the application of metabolic
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profiling, which are well met by the characteristics of existing
analytical platforms.

NMR spectroscopy is used extensively in metabolic profiling,
typically by application of 1D 'H experiments for many reasons.
These include the non-destructive nature of the technique, wide
coverage of chemical classes in key biofluids, highly reproducibility
and robustness, and direct comparability of spectra obtained on
different instruments. NMR spectroscopy does not require physical
instrumental contact with the sample, and no carry over is possible
(unless using flow cell apparatus, which is rare in such

applications). In the context of large-scale profiling exposome
studies, NMR may also present an additional benefit in that it can be
used as a screening tool for inappropriate/outlier samples (e.g.
gross contamination, protocol non-compliance, etc.), that can be
removed/quarantined before subsequent analysis. This may
improve the representative nature of the overall sample set, and
reduce adverse effects on other analytical platforms.

In the case of mass spectrometry, it is commonplace for the
analyte detection step to be preceded by physical chromatographic
separation of sample components, either by gas chromatography
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Fig. 2. The analytical challenge of metabolome profiling is different to that presented by coded molecules such as DNA or RNA. The analysis of encoded macromolecules either relies
on the complementarity of the analyte with a (known) template of high specificity and affinity (e.g. in a microarray) (A), or the identification of subunits drawn from a small number
of possibilities (e.g. ribonucleotides) in the sequence the analytical challenge being to conduct a relatively simple analysis with very high throughput and fidelity (B). Conversely,
metabolite measurement requires analytical methods that can differentiate multiple analytes drawn from a very large and chemically diverse pool, based on selected physico-

chemical properties (C).
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(GC), liquid chromatography (LC) or capillary electrophoresis (CE).
This provides a much greater resolution of metabolites, and affords
the opportunity to separate isobaric species, that would be insep-
arable by MS alone. This increase in resolution comes with the price
of longer analytical runtimes and an additional (chromatographic
retention) dimension in the resulting data. However, recent ad-
vances in system/column technology such as ultraperformance
liquid chromatography UPLC and supercritical fluid chromatog-
raphy (SFC), have resulted in systems greatly improving sample
throughput while maintaining resolution. The main benefits for
exposome studies are the high sensitivity and resolved coverage,
and both reversed-phased UPLC and SFC exhibit particular utility in
the separation of lipids, which represent a large subset of the blood
metabolome [41—43].

NMR- and MS analyses provide detailed spectral information
about detected metabolites, and therefore can be used for struc-
tural elucidation, beneficial in the assignment of unknowns and
biomarker identification. Protocols for global/untargeted/agnostic
and panel/targeted metabolic profiling analysis of biofluids and
tissues by NMR spectroscopy, FT-MS, UPLC-MS, GC-MS and related
platforms are widely available in the literature, and have been
reviewed on numerous occasions [44—49].

3.1. Requirements

Platforms for population and individual level profiling require
similar properties: high throughput, high information density and
coverage, robustness, reproducibility, adequate coverage, and low
cost; samples sets in population studies are typically (and under-
standably) large, and therefore the high-throughput of NMR- and
MS-based metabolic profiling techniques are well suited to the task.
Analysis times are dependent on individual assay, but typically
permit up to ten samples per hour. Analysis cost is also relatively
low, as consumables are typically restricted to solvents, selected
standards, and chromatographic column chemistries are now
typically very robust to heavy usage [48,50]. While it is almost
irrelevant to compare the per-sample costs of platforms that pro-
vide completely different genotypic/phenotypic information,
experience indicates that in terms of total financial outlay, inclusion
of metabolic profiling in multi-omic large-scale studies is likely to
represent only a fraction of the analytics budget.

Unlike other omics platforms (commonly used in parallel), NMR
and MS analyses will provide a metabolite profile for a biospecimen
irrespective of its composition, and as such does not have an
inherent measure of ‘quality’ (c.f. RNA integrity number; RIN). This
is a double-edged sword, as it does mean virtually all samples will
yield a useable profile, but the need to establish if that profile is
truly representative is greatly increased. This is of significance in
the context of molecular epidemiological studies, as archived
samples may have been collected many years before analysis, using
a variety of different protocols, and may lack information relating to
pre-analytical factors that could potentially affect or bias metabolic
profiles (e.g. collection time, centre, clotting time, etc.). A number of
studies have focused on understanding the influence of these pre-
analytical factors on the metabolome, including bias associated
with collection protocol parameters [51], storage/transport condi-
tions [52], and the identification of metabolites that are differen-
tially affected (i.e. those that are most reliable and stable) by pre-
analytical factors [53]. These and other aspects of the collection-
to-analysis workflows have recently been the subject of a detailed
review [54]. With respect to the specific requirements of large-scale
metabolome profiling in exposome studies - that may require the
use of both freshly collected and archived biospecimens - efforts to
establish suitability/preanalytical criteria for biobank samples have
been made. As part of a multi-platform evaluation, Hebels et al.

(2013) compared metabolome profiles obtained from freshly-
collected blood plasma samples with varying anticoagulant pre-
servatives (EDTA, heparin, citrate), bench time (0—24 h), storage
temperature (—80 C or lig. Ny) [55]. The factors found to be most
influential on the global metabolite profiles could be related to
chemical interactions with the anticoagulant (potentially directly
influencing the analytics), and periods in which the plasma had the
opportunity to undergo post-draw metabolic changes (bench time).

3.2. Overcoming limitations

A combination of preanalytical factors, in addition to inter- and
intra-instrumental variability means that one major limitation of
global metabolic profiling in large-scale studies is data compara-
bility. Within individual (campaigns of) untargeted metabolomics
studies, data comparability can be assessed on a feature-wise basis
using standard quality control (QC) methods (typically character-
izing the coefficient of variation of individual spectral features
across repeated analysis of a pooled sample), which also serve to
track instrument performance, identify outliers and permit batch-
wise normalization [56,57]. Such measures are critical to enable
combined analysis of large sample sets. For example, after imple-
menting appropriate quality control measures and establishing in
the HUSERMET study, Dunn et al. (2014) have generated compa-
rable metabolic profiles for 1200 individuals [48,50,57].

As described in numerous previous commentaries, the trade-off
for using global profiling methods that allow for a hypothesis-free
approach is that subsequent identification, annotation and valida-
tion of putative markers is currently a potential bottleneck. This is
particularly acute in the context of molecular epidemiological
analysis, where collaborators are used to having annotated datasets
(e.g. measures of single nucleotide polymorphisms or gene
methylation). Targeted methods that provide a validated panel of
metabolite concentrations can help bridge this gap for metabolic
profiling, at the expense of excluding unexpected associations (e.g.
AbsoluteIDQ p180 Kit). Many studies have combined both ap-
proaches to provide both readily amenable readouts for core me-
tabolites, while retaining the ability to conduct agnostic profiling.

Irrespective of the platforms used to characterize the metab-
olome, one of the main limitations to their application and subse-
quent interpretation of metabolic profiles is the sparsity of data
that details normal variation in population across the measureable/
detected metabolites; among other things, this limits a priori power
calculations. Despite the severe lack of metabolome variability in-
formation, a recent report by Yousri et al. (2014) showed that there
is long-term conservation of individual metabolic phenotype (over
seven years) and apparent heritability of signatures [58]. In light of
this, the view of this author is that appropriate study designs that
utilize i) participants as their own control, and ii) multiple repeat
samples may be well placed to identify and integrate systematic
patterns of change that align with exposures profiles. A recent
exemplar has been the ‘Oxford Street’ study of diesel exhaust
exposure and respiratory health, that is due to be expanded to
include metabonomics analysis in the EU FP7 EXPOsOMICS study
[59]. Once combined with longer-term data describing key devel-
opmental periods, and early markers of disease onset, it will start to
enable the deconvolution of metabolic changes occurring over
varying timescales in response to environmental exposures.

Another limitation includes the difficulty in annotation of
metabolic profiles, largely a result from the requirement to perform
additional spectroscopic analyses/sample cleanup, separation, and
authentic standards synthesis/addition to conform the identity of
unknowns sufficiently well. An issue with this is that the annota-
tion stage occurs after an unannotated feature of interest has been
identified during the study data analysis, and therefore may result
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in delays between identifying metabolites of interest and biological
interpretation or analysis that requires annotation to be in place
(e.g. over-representation analysis or joint pathway analysis).

4. Emerging and future analytical methods

While NMR, LCMS, GCMS and CEMS comprise the main
analytical platforms for large-scale analysis, there are several other
auxiliary approaches that may address the need to increase the
coverage of the metabolome by improving resolution, sensitivity, or
throughput. One important aspect to note is that expansion of the
coverage puts additional demands on the bioinformatics and po-
tential number of putative metabolites requiring annotation.

4.1. Ion-mobility

Ion-mobility (IM) spectrometry is a well-established analytical
platform for separations performed on a millisecond timescale,
intermediate between that of chromatography (seconds) and time-
of-flight mass spectrometry (microseconds) [60—62]. lons are
moved through a drift tube by an electric field from a source and
into a detector. Several different ion mobility approaches for
achieving separation exist but all rely on a drift gas (e.g. helium) to
be present in the drift tube to impede the motion of the ions [63].
IM provides several potential benefits for metabolic profiling,
particularly those involving samples obtained from human pop-
ulations in exposome studies [64]. Firstly, the resolution of the
analysis is greatly increased through the ability to conduct an
orthogonal separation within the typical timescale of a chromato-
graphic peak elution that is amenable to multiple MS scans. Sec-
ondly, the observed mobility drift time (that relates to the ion
collision cross section) can provide an additional identifier to aid
structural elucidation, and in certain circumstances, separate
isobaric species [65,66]. Thirdly, common sample contaminants/
additives that co-elute with metabolites of interest are detected
separately; and can be edited from the profile data in post-
acquisition data processing stages.

While IM can greatly increase the resolution of the metabolic
profiles available, the additional complexity may result in addi-
tional headaches for the analyst. For example, ion mobility may
reveal protomeric ions (i.e. ions of the same parent molecule,
protonated at different sites) formed in the instrument source, that
have differing mobilities (and potentially different fragmentation
spectra) as a consequence of the site of protonation altering the
conformation/analyte-gas collision cross section. Another limita-
tion of IM is the dramatic increase in the computational overhead
and data storage requirements that are concomitant with the
increased dimensionality of the spectral data. For large-scale
studies, this may prove prohibitive for individuals without access
to dedicated computational hardware, at least in the short-medium
term.

IM can also be used as a stand-alone separation step, permitting
very rapid acquisitions, albeit at lower resolution than when
coupled to other chromatographic systems. This has been devel-
oped for metabolic profiling applications [67,68] and has potential
utility for deployment in a variety of exposome study scenarios
using less complex instrumentation (e.g. high-frequency longitu-
dinal studies). Other direct methods are also being developed, and
may find utility in the analysis of very large datasets due to their
relative simplicity, and speed. For example, Fourier transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS) analysis of
direct infusion of biofluid preparations have been used extensively
by some metabolomics research groups, utilizing the very high
resolution and mass accuracy on this type of mass analyzer.
Methods and applications have been reviewed by Brown et al.

(2005) [69]. More recently, interfaces for MS that are capable of
direct sampling without the need for complex matrices, and can be
used under ambient conditions. These include desorption electro-
spray ionization (DESI) [70,71] and rapid evaporative ionization
mass spectrometry (REIMS) methods [72,73].which have been
demonstrated to provide very rapid, interpretable MS data on
biofluids and tissues (particularly in clinical applications), and will
undoubtedly influence future directions for high-throughput
metabolome analysis in the context of exposome studies.

4.2. Chirality

Metabolite stereochemistry is one largely underexplored
dimension of the chemical space in metabolic profiling. Chiral
analytical methods are readily available, but typically have very
high specificity for particular analytes. We have previously
explored the use of chiral co-solvation agents as a potential route to
efficient enantiodifferentiation in routine NMR biofluid spectra
[74]. For chromatographic separations of enantiomeric species,
several different strategies are potentially viable, including use of a
chiral stationary phase, enantiopure solvents, addition of ion-
pairing agents, and sample derivatization to produce diastereo-
meric species that can be separated on a chiral column. Some evi-
dence that IM-MS might also be feasible for providing chiral
separations has been provided by Dwivedi et al. who have per-
formed drift-cell enantiodifferentiation using chiral drift gas
modifiers [75]. Replication and expansion of these findings for
metabolome profiling platforms potentially provide a route to
efficient capture of the chiral metabolome, notwithstanding the
need to explore and optimize such separations across a wide va-
riety of metabolite classes. Other similar approaches, based on
derivatization of stereoisomers to form diastereomers have been
suggested [76—78]. In addition to the limitations that targeted
methods such as these place on metabolome coverage, derivati-
zation methods also require more time and money, and methods
may suffer from additional pre-analytical issues.

The analytical challenge of chiral metabonomics results form a
combination of the inherent complexity of metabolic profiles, and
the specificity of chiral interactions — simultaneous enantiodiffer-
entiation of multiple species is not only difficult to achieve, but
results in an even more complex profile. Nevertheless, harnessing
chiral methods to explore this facet of metabolic variation is of
interest as biological systems are intrinsically chiral environments,
and the absolute configuration of small molecules can fundamen-
tally alter their biological function (e.g. thalidomide, serine). As is
the case with the metabolome as a whole, understanding sources of
variation is a key step in being able to interpret observed differ-
ences in enantioselective. Visser et al. previously compared multi-
ple LCMS based approaches for amino acid analysis, and reported
the concentrations and enantiomeric excess in urine, blood plasma
and cerebrospinal fluid [79]. Recently, Lorenzo et al. demonstrated
the use of an analysis in which eight amino acid enantiomeric pairs
were separated and detected using a chiral GCMS method [80]. The
method was applied to urine samples obtained form a small
gestational diabetes cohort, and indicated an association of
phenylalanine enantiomeric ratio with presence of the condition.

5. Incorporating metabolome analyses into studies of
environment and health

5.1. Metabolomes vs exposure
Biomarkers of exposures have particular utility in molecular

epidemiology studies, as they can help alleviate some of the
problems related to the misclassification of study participants'
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exposure or co-exposure (e.g. through inaccurate recall, inaccurate
behavior modeling, or protocol non-compliance) that reduce study
power [81]. The human metabolome has the potential to report
directly on a very large number of environmental exposures of
chemical origin; many environmental, occupational, and lifestyle
exposures fit the common definition of ‘small molecule metabolite’
(typically < 1500 Da), and are potentially detectable using the
common metabolic profiling analytical platforms discussed above.

While environmental chemicals retain importance from an
epidemiological and public health perspective, the diet provides
arguably the greatest quantitative influence on the human
metabolome, in terms of both diversity of exposures and range of
concentrations; dietary components from animals and plants each
have their own metabolomes, are consumed in different quantities,
combinations, and proportions, and over different periods, with
components modified by storage, preparation, and cooking.
Therefore, compositional analysis of foods, provides a natural route
to characterizing key exposures, and can be conducted using either
traditional analytical methods, or untargeted metabolomics. In
particular, the plant biology community has an expansive literature
relating to metabolomics, with established profiling protocols [82].
Community resources for food composition (e.g. FooDB; www.
fooddb.ca) have been established, and can be used to help anno-
tate metabolome signatures, and identify biomarkers of food intake
[28]. The current interest in developing dietary exposure markers,
and the role of diet as a major, modifiable chronic disease risk factor
| 7] suggest it is an opportune time to bring together those working
on non-human metabolome characterization to help capture the
broad range of nutritional exposures in much more detail.

As highlighted by the analysis of Rappaport et al. [37], major
dietary inputs are typically observed at concentrations many times
higher than environmental pollutant chemicals that are tradition-
ally the focus of environmental toxicology. In this respect, current
untargeted metabonomics methods are limited in their role for
global environmental exposure assessment as they do not deliver
sufficient sensitivity and coverage, although some efforts have been
made to provide extensive panels of pesticide exposure markers
using typical profiling instrumentation and (semi)targeted
methods [83].

While the wide coverage of untargeted/targeted NMR- and MS-
based profiling analyses are by far the most prevalent methods for
characterising biofluid composition, the field can also benefit from
measurements made by a variety of means, particular if many are
made in a highly parallel manner. A good example of this is the
panel of biomarkers routinely collected from individuals enrolled
on the National Health and Nutrition Examination Survey
(NHANES) — an ongoing research programme run by the National
Center for Health Statistics in the USA. In addition to periodic
physical examinations and detailed questionaire data collection for
around 5000 participants each year, the study also archives and
analyses urine and/or blood measurements for a range of envi-
ronmental exposures and nutritional indicators. Patel et al. have
developed a model for interpreting the wide range of laboratory
measurements made in this study to realise the concept an
environment-wide association study (EWAS). As the first of its kind,
this study has been extensively discussed elsewhere as a major step
towards tools that can integrate environment and health within an
exposome context [84,85]. However, one point that is worth
highlighting is that one of powerful aspects of these studies is that
they do not rely on cutting-edge instrumental analysis of archived
samples, but the relative consistency of repeated measures made
over time on a vary large scale. In order to capture aspects of the
life-course in the human exposome, accessing such datasets may
prove useful in the extreme.

5.2. Responses to exposure

While many individual exposures may be currently beyond the
reach of routine metabolome analyses, the responses they provoke
are manifest as biochemical perturbations that may be more easily
captured. Identifying responses at the cellular, organ and organism
level are central to the concept of defining Adverse Outcome
Pathways (AOPs), an emerging framework in chemical risk
assessment. As the name suggests, AOPs are aimed at integrating a
variety of knowledge relating to the causal chain of key events that
link exposures at ‘Molecular Initiating Events’ (MIEs) to ‘Adverse
Outcomes’ (AOs). Definition of AOPs may help interpret the effect of
simultaneous exposure to multiple agents; those with the same
MIE will share common toxicological pathways. Metabolic pheno-
types are ideal for helping characterize events in AOPs, contribute
to their definition, and provide linkage between population-based
exposome studies and mechanistic toxicology used in risk assess-
ment [86]. For example, dioxins are a class of persistent environ-
mental contaminants that are byproducts of a range of industrial
processes, and represent an almost ubiquitous human chemical
exposure, with the main route being in foodstuffs, particularly
those of animal origin. The observed toxicity of these dioxins and
dioxin-like compounds differs according to their specific chemical
structure [87], with the most potent being 2,3,7,8-
tetrachlorodibenzodioxin (TCDD), which is used as a comparator
for other compounds (toxicity equivalence factor; TEF of 1) [88] and
has been used as an exemplar AOP based around the aryl hydro-
carbon receptor [89]. Exposure to TCDD can give rise to a wide
range of adverse effects across multiple tissue types, and is classed
as a Group 1 carcinogen by the International Agency for Research
on Cancer (IARC), although limitations of the epidemiological and
other evidence, and potential influence of publication bias on the
overall assessment have been highlighted [90]. Hosnijeh et al.
(2013) employed an LCMS based metabonomics approach to
identify systemic metabolic changes related to TCDD exposure in
serum samples obtained from a cohort of occupationally-exposed
workers (n = 81) in chlorphenoxy herbicide factories and control
worker (n = 63) factory locations in the Netherlands [91—-93].
Jeanneret et al. (2014) also investigated long-term responses to
dioxin, in a Czech cohort who were exposed at high levels of TCDD
in 1960 as a consequence of working in a herbicide production
facility [94]. The authors incorporated the existing biological
knowledge relating to TCDD perturbation of steroid hormones, and
focused on the urinary androgen (conjugate) profile that could be
generated using a broad analysis of this chemical class. The authors
also accessed urine samples collected from an extreme case of
TCDD exposure (poisoning of V. Yuchchenko in 2004; [95]) and
compared their profiles with freshly collected healthy control in-
dividuals. Studies such as these, that capture real human exposures
and responses, may be useful in the development of AOPs, as they
can help anchor other existing mechanistic knowledge (e.g. in vitro
or in vivo toxicological data) relating to adverse human health
endpoints.

Responses to non-chemical exposures are also highly relevant to
the exposome concept, as these may elicit specific responses, and
also contribute to the overall context in which other exposures and
responses occur. Variation related to system—level cycles and
timeframes such as diurnal variation [96], circadian rhythm [97],
aging [98], and many others [99] influence metabolic status of the
individual. For example, in recent work, Davies et al. (2014)
investigated the influence of sleep deprivation on the human
plasma metabolome using an LC-MS profiling platform [100]. The
authors showed that the daily rhythms exhibited by a large number
of metabolites were influenced by the disruption of normal sleep
patterns. Interestingly, the patterns of some metabolites, (e.g. some
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branched-chain amino acids) remained unaffected by sleep or meal
patterns. Variation of this kind is likely to be a consequence of
several highly correlated factors such as day length, food intake,
temperature, activity, etc., and this study highlights the challenge
faced by those attempting epidemiological analyses in free-living
populations, with potential impact on sampling times/logistics,
and the overall ability to attribute observed metabolic changes to
specific environmental sources.

5.3. Metabolomes vs disease risk factors and health endpoints

Recently, several studies have applied similar approaches to
metabolic phenotypes in metabolome-wide association studies
(MWAS), and provided several examples of linking metabolic traits
to health [101,102]. For example, NMR-based metabolic profiles of
urine were obtained the INTERMAP study, and showed several
metabolites to be associated with BMI [103].

The responses to environmental agents are, in part, conditional
on health status at the time exposure, and therefore the metab-
olome can provide useful context in the form of a detailed
phenotype; exposures may not only give rise to specific metabolic
phenotypes, but be modulated by them. For example, dysregulation
and inflammation associated with metabolic syndrome will likely
alter an individual's subsequent response to exposures (of all
types), and therefore modulate their risk of disease. This
complexity is encompassed by the exposome concept; while the
totality of exposures represents the scope, it is important to
recognize that prior exposures alter the context of subsequent ex-
posures. Maitre et al. (2014) conducted a '"H NMR-based metab-
olome urinalysis of pregnant mothers from the Rhea birth cohort
[104]. Using a case-control design comparing adverse pregnancy
endpoints (preterm birth (PB), fetal growth restriction (FGR), small
for gestational age (SGA)) and matched controls (n = 438), the
authors explored associations to urinary metabolites in first
trimester collections. Previous analysis had shown PB to be asso-
ciated with maternal metabolic syndrome in this cohort and in this
work, the predictive signatures derived differed between sponta-
neous and medically indicated/induced PB. Additionally, a number
of metabolites showed an inverse relationship with both FGR and
blood insulin, suggesting a potential complex relationship between
metabolic syndrome and adverse birth outcomes.

5.4. Metabolic profiling in current exposome studies

One conceptual framework that has been proposed as a way of
engaging with the human exposome and to help develop appro-
priate experimental designs has been the ‘Meet-in-the-Middle’
(MITM) concept [105,106]. This augments traditional epidemio-
logical approaches of determining exposure-disease associations,
by using case-control studies, nested in prospectively collected
cohorts to delineate intermediate markers of response. On the one
hand, these markers can be related to exposures (modeled or
measured in biospecimens), and on the other, are predictive of the
subsequent health endpoint (case-control status). It has been pro-
posed that analysis of these biospecimens using multiple omics
platforms will reveal signatures that report on the causal events
linking exposures and disease. This approach has most recently
been applied in the EU FP7 EnviroGenomarkers study (http://www.
envirogenomarkers.net) which utilized prospectively collected
biospecimens from the European Prospective Investigation into
Cancer and Nutrition (EPIC) and Northern Sweden Health and
Disease Study (NHSDS) biobanks, and integrated multiple omics
analyses (transcriptomics, epigenomics, metabonomics) with bio-
markers of high-priority environmental exposures. Two ongoing
large-scale exposome studies have incorporated the MITM

approach into their analytical plan (EU FP7 EXPOsOMICS and HELIX
projects) [107,108]. Limitations of the MITM approach are largely
due to the complexity of gene-environment (GXE) interactions
[109], and the multifactorial influences on the metabolome/tran-
scriptome/proteome/epigenome that confound the relationship(s)
of interest; samples collected may not capture similar stages in the
exposure-disease pathway, or the pathway may be exhibit
nonlinear and multicomponent behavior.

5.5. Metabolic profiles in understanding gene-environment
interactions

Partitioning the variation that is attributable to G and E respec-
tively on a metabolite-wise basis is important as it provides a context
for differences observed between individuals and sub-populations in
molecular epidemiological studies. Cohort studies of twins provide a
valuable opportunity to examine the effect of environmental vari-
ables on the metabolome, by permitting the genomics component to
be kept effectively constant. Nicholson et al. (2011) used the TwinsUK
(http://www.twinsUK.ac.uk) cohort of 154 twins to estimate spot
urine and blood plasma metabolite variation that was attributable to
the biologically-factors familiality (28—58%) and individual envi-
ronment (9—22%) which were shown to be relatively stable, and two
less stable factors relating to short-term variations occurring at the
timescale of the collection visit of the study [19]. Longitudinal sam-
pling in this study allowed this biologically-related variation of each
metabolite measured to be deconvoluted from the non-biological
variation, such as technical variation and random noise. Impor-
tantly, the argument is not to focus on either the genome or the
exposome, but to integrate data relating to both to understand their
interaction. Where genomic and metabolic datasets exist in parallel,
it has been possible to start linking genotype to phenotype; under-
standing the influences of genome and epigenome on metabolic
phenotypes has been conducted in several studies [110—117] and
reviewed by Kastenmdiller et al. (2015) [118].

6. Future perspectives

The use of metabolic profiling in human environmental health
studies has become ever more relevant as the concept of the
exposome has developed, and the centrality of metabolome in
mediating gene-environment interactions recognised. Application
of metabolic profiling to large-scale studies is associated with a
number of unique challenges that are well met by current methods
including throughput, cost, and suitability for archived bio-
specimens. Areas currently requiring substantial further develop-
ment are data comparability, coverage, and feature annotation. This
raises the question of what we can realistically expect metabolic
profiling platforms to provide in terms of metabolome/exposome
characterization. Should we be aiming for sensitivity/depth or
coverage/breadth? Alongside national and international initiatives
to provide harmonized analytical protocols, the application of
complementary analytical techniques may actually yield both
depth and breadth. A more detailed view on the continuum of
metabolism that connects genes, environment, health, will ulti-
mately provide new insight into the determinants of chronic
disease.
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