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INTRODUCTION: OMICS ANDSYSTEMS BIOLOGY

The identification of hazardous environmental pollutants is

complex, particularly in relation to chronic, noncommunica-

ble diseases. The main contributors to this complexity are the

diversity of hazards that may exist, the typically low levels of

environmental contaminants/pollutants, long latency periods,

and largely unknown modes of action. The unravelling of

environmental causes of disease is also limited by the

technical difficulties in defining, and accurately measuring

exposures, and by considerable spatial, temporal, and intrain-

dividual variation. The complex and partially unknown inter-

action with underlying genetic and other factors that modulate

susceptibility and response to environmental exposures further

complicates the process of delineating and understanding

environmental hazards. To address such difficulties, the con-

cept of the “exposome” was proposed, initially by Wild

[2005], with more recent detailed development in relation to

its application to population-based studies [Wild, 2012]. The

original concept was expanded by others, particularly Rappa-

port and Smith [2010] who functionalized the exposome in

terms of chemicals detectable in biospecimens [Exposome].

The exposome concept refers to the totality of exposures from

a variety of sources including, but not limited to, chemical

agents, biological agents, radiation, and psychosocial compo-

nents from conception onward, over a complete lifetime, and

offers a conceptual leap in studying the role of the environ-

ment in human disease [Exposome; Rappaport and Smith,

2010; Wild, 2012].

The term “omics” refers to the quantitative measurement

of global sets of molecules in biosamples using high-

throughput techniques, in combination with advanced bio-

statistics and bioinformatics tools [Vineis et al., 2009]. In

this article, we refer specifically to the application of omics

in an epidemiological context and confine our use of the

term “environment” to pollutants/environmental contami-

nants, as opposed to the totality of nongenetic factors

encompassed by the exposome concept.
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The exposome may be at least partially characterized by

repeated measurements of global sets of biomarkers of ex-

posure and early effects in biosamples collected at differ-

ent critical life stages. These biomarkers include a wide

range of molecules, including small molecule metabolites

in blood (metabolomics), covalent complexes of chemical

agents with DNA and proteins (adductomics), and down-

stream changes in gene expression levels and regulation

(transcriptomics, epigenomics, and proteomics). Although

encouraging progress has already been made in the use of

omics technologies in environmental health research, con-

siderable additional development is required, including the

application of such methods to samples from existing bio-

repositories within large population studies.

Given the availability of data from high-throughput

omics platforms, together with reliable measurements of

external exposures, at least for some prioritized expo-

sures, the use of omics may represent not only a leap for-

ward in chronic disease epidemiology but also the

investigation for platform-specific markers playing a role

in the biological pathway linking exposure to disease risk.

Additionally, the in-depth characterization of common or

integrated patterns across platforms allows a full applica-

tion of the concept of systems biology in environmental

epidemiology.

This article addresses some aspects that are key to the

understanding, development, and application of omics in

environmental epidemiology: (a) the underlying causal

interpretation and models; (b) the “meet-in-the-middle”

(MITM) concept, with examples; (c) the role of

“calibration” of measurements; and (d) the role of life-

course epidemiology and the related development of

adequate biostatistical models.

CAUSAL INTERPRETATIONS

It has been proposed that the causal interpretation typical

of reductionism is bottom-up, whereas theories of top-

down causation (or of whole-part causation) are more rele-

vant to systems biology. Philosophers who have contrib-

uted to the latter have used concepts such as integration,

pattern and function [Sellars, 1970], or organization [Van

Gulick, 2007]. However, we acknowledge that the two

approaches are complementary and that probably much (if

not most) successful science has been bottom-up rather

than top-down. Therefore, we are not advocating a substitu-

tion of bottom-up with top-down, but complementarity of

the two. Moreover, we are aware that the terms “bottom-

up” and “top-down” have been used in the exposome litera-

ture [particularly in Rappaport and Smith, 2010] with

slightly different meanings: bottom-up is the omic-based

investigation of specific exposures or classes of exposures,

whereas top-down refers to complete agnostic investigation

of omic signals irrespective of hypotheses on relevant

exposures. The discussion on causal models fits into this

conceptual context, as we will try to show below.

In brief, the bottom-up, causal reductionist view is that

complex, higher-level systems are nothing but the sum of

their parts and that the behavior of the system is deter-

mined by the intrinsic properties of its constituent parts.

The behavior of these parts is independent of their rela-

tionship to other parts or the system as a whole. In con-

trast, the top-down view is that the intrinsic properties of

the constituents of a system are not the sole determinants

of its overall behavior; the relationship between the con-

stituent parts, that is, the organization of the system, gives

rise to higher-order laws that govern this behavior.

Below, we consider more detailed aspects of the bottom-

up and top-down approaches.

Bottom-Up

The traditional neo-Darwinian theory based on random

mutations is an example of typical bottom-up interpreta-

tion of causality. The assumption is made that by identi-

fying individual key genes one can discover the

underlying causes of (higher order) biological phenomena.

For example, the discovery of the gene encoding the tu-

mor suppressor, p53, and of its role as a “guardian of the

genome,” led to the hypothesis that its mutations were

crucial for carcinogenesis. However, it is now clear that

mutations in the gene encoding p53 are neither necessary

nor sufficient to cause cancer. By construction, the bot-

tom-up approach is neither able to adequately consider

the role of selection operated by conditions external to

the cell nor does it address important aspects of biology

that have relevance to carcinogenesis, such as the tension

between stability, variation, and plasticity. Organisms

(and cells) require stability to transfer their properties

from one generation to the following, variability to

respond to major environmental challenges, and plasticity

to respond to minor ones. All these are forces operating

at both the low and higher levels of causation that drive

the link between causes and effects but cannot be

accounted for based on bottom-up approaches.

Top-Down

The causal framework underlying top-down approaches

relies on multiple, ordered, and correlated levels contrib-

uting to the observed phenomenon. Information driving

the observed process cannot be entirely derived by lower

levels; lower levels are typically necessary, but are rarely

sufficient. The fact that they are not sufficient is

expressed by the concept of emergence of new properties

in a complex system (as in biological systems). It has

been proposed [Deacon, 2007], in fact, to distinguish

three levels of emergence in complex systems.

First-order emergence can be illustrated by the viscos-

ity of liquids, turbulence in large bodies of water, and
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feedback systems (such as thermostatically controlled

heating systems). The physical processes linking elements

of the first-order emergence impose constraints on the

system and ultimately define its behavior.

Second-order emergence occurs when there is the ampli-

fication of a fluctuation beyond the constraints from physi-

cal processes. Systems in which this occurs are called

nonlinear. The simpler sort is self-organizing, in which

higher-order patterns selectively drive the incorporation of

lower-order constituents into the system or select among

possible states of the lower level entities. More complex

second-order emergent systems are also “autopoietic,” that

is, they change the lower-order constituents themselves

and their interactions. All of life involves second-order

emergence of this more complex sort.

Third-order emergence involves further interaction

between levels and appears only in biological systems.

Here, a variety of second-order forms emerge and are

selected by the environment, but in such a way that a rep-

resentation of their form is introduced into the next genera-

tion. An example is the evolutionary process where the

microlevel (the genome) in interaction with the higher-

level organism’s environment directs the construction of

the organism (the mid-level), whose reproductive fate is

determined top-down by the environment. The preservation

of information regarding the organism’s success in the

environment is the means by which a population of suc-

cessful organisms can be produced and maintained, within

which future viable fluctuations appear. In this way, a two-

stage process of emergence occurs that results in down-

ward causation not just from top to mid-level but from top

to bottom—from environment to genome.

To summarize, components in complex systems such as

the human body are arranged in a hierarchy, with each

level consisting of modules that obey local rules and inter-

act with those in the adjacent “higher” and ‘lower’ levels

of organization. Ellis [2012] has also reviewed the top-

down causal mechanisms and discussed five distinct types

(algorithmic top-down causation, top-down causation via

nonadaptive information control, top-down causation via

adaptive selection, top-down causation via adaptive infor-

mation control, and intelligent top-down causation). Of

these, top-down causation via adaptive selection relates to

natural selection and most biological phenomena.

THE MEET-IN-THE-MIDDLE PRINCIPLE

In relation to environmental epidemiology, top-down

causality can be investigated in a variety of ways. The

simplest approach is to start by determining the associa-

tions between exposures, intermediate markers, and dis-

ease. Building on this, we have recently proposed a new

approach that is known as the MITM [Chadeau-Hyam

et al., 2011] and includes by construction a multilayer

causal framework. Its implementation aims at addressing

the challenge of identifying causal relationships that link

exposures and disease outcome. This approach is usually

based on a combination, within a population study, of a

prospective search for intermediate biomarkers, which are

elevated in subjects who eventually develop disease and a

retrospective search for links of such biomarkers to past

environmental exposures (Fig. 1). The reasoning is in

three steps. The first step of this approach consists in the

investigation of the association between exposure and dis-

ease. The next step consists in the study of the relation-

ship between (biomarkers of) exposure and intermediate

omics biomarkers of early effects; and third, the relation

between the disease outcome and intermediate omics bio-

markers is assessed. The MITM stipulates that the causal

nature of an association is reinforced if it is found in all

three steps.

To illustrate its flexibility, we describe below the prac-

tical use of the MITM paradigm in the context of a litera-

ture review process using real data.

Endocrine-Disrupting Chemicals and Omics Technologies:
A Literature-Based Example

Endocrine-disrupting chemicals (EDCs) are compounds,

of both synthetic and natural origin, in the environment

that interfere with (i.e., mimic and/or antagonize) the

actions of endogenous hormones by altering hormone

synthesis, secretion, transport, binding, action, or elimina-

tion and thereby disrupt the functions of the endocrine

system. Many studies have focused on the association

between exposure to EDCs and breast cancer risk. There

are numerous pathways to EDC exposure, and although a

few of these compounds are administered for medicinal

purposes, exposure to the vast majority of these EDCs is

unintended. The epidemiological evidence to support or

refute a relationship between EDCs and breast cancer is

still limited, and therefore, it is a potentially fruitful field

of application of the MITM concept. Here, we show how

the MITM concept can be applied in a systematic review

of the literature.

We searched PubMed using MESH terms for literature

published up to May 2011. The search was performed in

four stages: for (a) gene expression profiling, (b) proteo-

mics, (c) epigenomics, and (d) metabolomics. More

details are given in a separate paper (van Veldhoven

et al., in preparation). Three candidate genes (i) have

been reported in more than one study as differentially

expressed after exposure to EDC and (ii) have also been

found to be differentially expressed in breast cancer tissue

and patients (Table I).

One of the main challenges when considering (poten-

tial) intermediate biomarkers is to understand whether

they belong to the causal pathway linking exposure and

disease risk, whether they are simply a side effect of
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exposure or disease, or whether their measurement is con-

founded by some other exposure. A way to show that lev-

els of EDCs in the blood contribute to breast cancer risk

independently of confounding by other risk factors would

be to show that the levels of EDCs are associated with

different genotypes or polymorphisms, which, in turn,

predict disease (concept of Mendelian randomization

[MR]) [Ebrahim and Davey Smith, 2008]. For example,

three studies found higher breast cancer risk associated

with higher exposures to PCBs (well-established ECDs)

among postmenopausal white women with a polymor-

phism in the CYP1A1 gene [Moysich et al., 1999; Laden

et al., 2002; Zhang et al., 2004]. Being assorted randomly

from one generation to the next, variants of the CYP1A1

gene are independent of confounding factors. Hence, the

finding that a polymorphism in the CYP1A1 gene was

associated with breast cancer would provide indirect

proof of a genuine involvement of PCBs in the etiology

of the disease. However, because genome-wide associa-

tion studies (GWAS) and familial studies of breast cancer

point to a rather small genetic effect (5–10%), the lack of

the two levels of association should not be taken to mean

the absence of a potentially important causal exposure.

In addition to similarities, the differences between

MITM and MR should also be stressed. In particular, in

MR, (a) genetic susceptibility precedes exposure and is

expected to modulate it; (b) gene variants are fixed from

birth; (c) and gene variants are usually not confounded.

Fig. 1. The “meet-in-the-middle” approach. In prospectively collected cohorts, biological samples are characterized

using omics platforms (e.g., transcriptomics, proteomics, and metabonomics) to identify molecules that represent interme-

diate markers of early effect. These are used to link exposure metrics/biomarkers of exposure with disease endpoints.

TABLE I. Genes Found to be Differentially Expressed After EDC Exposure and in Relation to Breast Cancer

Study

Number of

significant

associations

(N) CD44 CEBPDa CYP1B1a GALR2 IGFBP3 LAMB3 PGR SYK THBS1a TIMP3 TP53

Exposure versus omics

Boehme 86 X X X X X

De Exposure

PCB-153 51 X X X

PCB-77 41 X X X

Buterin Cell line

MCF7 133 X X X

T47D 76 X X

Epigenomics versus BC

Jovanovic 43 X X X

Huang 186 X X X X X X X X X X X

The top part of the table displays genes found to be differentially expressed (in gene expression studies) after endocrine disrupting compounds (poly-

chlorinated biphenyl, dichlorodiphenyltrichloroethane, and Dichlorodiphenyldichloroethylene) exposure. The lower part shows genes that have been

reported to be associated with breast cancer in epigenetic studies. The established overview of this table is a comparison of genes mentioned in both

Steps 2 and 3 of the MITM approach (see main text).
aGenes reported by at least two studies as differently expressed after PCB/DDT/DDE exposure and also reported to be associated with breast cancer

in epigenetic studies.
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In the MITM approach, exposure precedes changes in

biomarkers, the latter are variable in time and also subject

to confounding; therefore, the interpretation of MITM

requires more caution. In both cases, lack of evidence

(for MD or MITM) is not evidence of lack of causality.

MITM: An Example From a Single Study on Epigenomics
and Breast Cancer

The second example is based on preliminary data from

a small study on epigenomics (unpublished). Ninety-six

breast cancer cases and their 96 matched controls nested

within the European Prospective Investigation into Cancer

and Nutrition cohort underwent genome-wide methylation

profiling (Illumina 450K chip). We identified the 10 CpG

sites whose methylation fraction exhibited the strongest

association with breast cancer onset. We looked at the

association between these candidates and well-established

breast cancer risk factors. Of the 10 candidate signals,

four signals (cg01546046, cg08890338, cg13298827, and

cg13665852) were associated exclusively with reproduc-

tive factors, and in particular with ever having breast fed

and age at menopause, of hundreds of different exposure

items. The application of the MITM approach in the cur-

rent context is based on the investigation of risk factor

versus disease; omics versus disease; and omics versus

risk factor. The observation lends credibility in this case

not only to the original association (risk factor and dis-

ease, which is well known) but in particular to the associ-

ation between omics and disease, which is novel. This

example illustrates one key advantage of the MITM to

perform causal inferences based on high-dimensional

data. Although typical multiple-testing correction strat-

egies (e.g., Bonferroni correction) may provide stringent

criteria to guard against false-positive candidates, they

may also exclude weaker yet relevant markers. This is

especially true when small sample sizes are considered.

The MITM approach can therefore complement the list of

putative influential markers by considering their biologi-

cal relevance, irrespective of their formal statistical

significance.

PRACTICAL AND TECHNICAL REQUIREMENTS

Calibration

Existing population-based studies are often limited by

poor exposure assessment and uncertain biological plausi-

bility of associations that are detected, leading to false-

positive and false-negative findings. This is of particular

importance in studies on environmental exposures, such

as those focused on air pollution and water contamina-

tion. Many studies conducted with in-depth exposure

assessment tend to be too small for causal inference on

disease, and there is a conflict between “depth” and

“breadth,” that is, accuracy of individual information and

study size. Well-conceived, fully controlled short-term

intervention studies, such as the Oxford Street Random-

ized Trial [McCreanor et al., 2007], have shown that

acute changes can occur in lung and heart function at low

or very low levels of exposure to air pollutants. However,

the identification of long-term effects has been problem-

atic due to the lack of the same degree of accuracy in ex-

posure assessment as obtained in short-term experimental

studies. A challenge is therefore in bringing together both

types of investigations and in linking personal exposure

monitoring (high precision, used mostly in short-term

studies) with up-to-date land use regression modeling and

satellite-based exposure assessment (less precise methods

applicable in large populations). A recently EU-funded

project called EXPOsOMICS will enable the collection,

in several European populations, of modeled exposures

based on refined models and cutting edge technologies

such as omics, as well as personal exposure measure-

ments (PEM). Based on samples in which both types of

data are available, we will define calibration models to

optimize the prediction of true exposure (using PEM stud-

ies) from (possibly complex combinations of) variables in

the modeled exposure matrices. Statistical methods

involved include classical measurement error models and

their Bayesian alternatives (filtering models), providing

calibrated exposure estimates for air and water pollutants.

The resulting estimates will be used within EXPOsO-

MICS for (a) the characterization of the internal response

to the external component of the exposome and (b) to

study the association between the calibrated exposures

and disease endpoints. The latter includes the calibration

component.

A Conceptual Model of Life-Course Disease Risk

Population studies of chronic diseases have tradition-

ally recruited middle-aged subjects, whereas there is

strong evidence that (a) the risk of disease is influenced

by early exposures, including in utero, and (b) life stages

include critical periods (during which changes in expo-

sure have long-term effects on disease risks or related, in-

termediate markers) and sensitive periods (during which

an exposure has stronger effect on development and,

hence, disease risk than at other times) [Ben-Shlomo and

Kuh, 2002].

The idea of a sequence of critical and sensitive periods

leads to the concept of “chain of risk,” that is, the inter-

play of early exposures and late exposures. The practical

use of this concept implies having access to multiple life

stages in exposure assessment and epidemiological studies

and repeated measurements of biomarkers at different

time windows. This approach requires an intergenera-

tional epidemiological study design. The intrinsic

dynamic nature of the exposome, which encompasses all

exposures from conception to death, makes statistical
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analysis a challenging task requiring the inclusion of a

temporal component in causal inferences [Vermeulen and

Chadeau-Hyam, 2012]. Unfortunately, there is currently

no single cohort that covers all periods of life from con-

ception to death, and therefore, we need to look at differ-

ent age cross sections using information from separate

cohorts. In addition, the vast majority of cohorts just have

one spot biological sample, which makes the life-course

assessment of (causal) relationships even more difficult.

Although epidemiology usually treats time in a rather

simplified manner, for example, by stratifying risk meas-

ures by duration of exposure or latency since first expo-

sure, recent developments have proposed refined ways to

account for a dynamic exposure function (exposure his-

tory) and its effect on health outcomes (exposure incre-

ments) [Lubin et al., 2009, 2012; Richardson et al.,

2012]. Alternative approaches include models for the

reconstruction on the natural history of disease progres-

sion such as compartmental models. In these approaches,

the population is subdivided into states corresponding to

observed (or assumed) steps in the disease process and

transition from one state to another reflects an evolution

of the health status of the studied population (or of each

individual included). Such models were initially devel-

oped to study spread of infectious diseases but were

extended to noncommunicable diseases. In chronic dis-

ease epidemiology, they can be used to estimate the evo-

lution of health status among known steps of disease

progression. These stages can either be observed or hid-

den (e.g., if the prevalence of the underlying asymptom-

atic affection cannot be measured) [Chadeau-Hyam et al.,

2010; Vineis and Chadeau-Hyam, 2011]. Their applica-

tion not only quantifies the impact of risk factors/expo-

sures (and their history) on the disease risk but also gives

an insight into their role in the dynamics of disease pro-

gression and provide refined estimates of their predictive

performances: their ability to help in the reconstruction of

the individual (or population based) trajectories across

health states.

The extensive investment in the field of GWAS has

given rise to numerous high-dimensional datasets and

opened doors to a now well-established “good practice”

consisting in the replication of findings through validation

in multiple independent epidemiological studies. This

same requirement for causal assessment of any putative

marker is expected in the field of omic-based biomarkers,

through multiple nested validations. This is even more

important in this case given the additional uncertainties

related to environmental exposures and their high vari-

ability [Ioannidis and Khoury, 2011].

As discussed in the Introduction section, the exposome

may prove to be one of the best ways of addressing

“systems biology” because of the powerful analytical

omic instruments now available and should contribute to

a cross-omics validation of the findings: if signals found

in different omics platforms do belong to the same (and

biologically relevant) pathway, then their causal link with

the health outcome should be strengthened. However, the

identification of these patterns remains computationally

challenging as we seek for common signals within a large

set of highly correlated data. The recent developments in

network theory will help in that respect and should enable

the investigation of relationships between external envi-

ronment and internal changes at different levels (DNA,

transcripts, miRNA, proteins, metabolites, etc.). The

application of network models as developed by Albert-

Laszlo Barabasi investigate “emergence” of new proper-

ties from the interaction of different underlying molecular

phenomena. This has provided an exciting new approach

[Barabasi, 2007] and contributed to the identification of

complex protein–protein interactions, in which some pro-

teins exert a more prominent role (hubs) and others less

so [Vidal et al., 2011]. Central to this approach is that

molecules are not seen in isolation but within their bio-

chemical contexts (networks). Components are “nodes”

and interactions are “edges,” using the tools of graph

theory [Joffe et al., 2012]; for example, in the field of

metabolomics, small molecule metabolites are represented

by nodes, and metabolic reactions (metabolite intercon-

versions) are represented by edges. It appears that a series

of “basic and reproducible organizing principles” regulate

different processes like cell functioning and technological

and social systems. Some important discoveries have

been made by applying the network theory, for example,

it was discovered that hub proteins tend to correspond to

more ancient genes and have evolved more slowly and

that the deletion of the corresponding genes has a larger

diversity of phenotypic outcomes [Vidal et al., 2011].

Another important concept is that multiple diseases may

not be independent, that is, a “phenome” can be recon-

structed based on the underlying molecular networks that

do not correspond to the existing classification of diseases

(e.g., International Classification of Diseases).

CONCLUSIONS

The introduction of omics in environmental epidemiol-

ogy represents a new paradigm for studying the influence

of environmental agents on health over a lifetime. The

ability to generate efficiently parallel omics datasets and

recent advances in personal environmental monitoring

provide a strong technological backdrop for exploiting

cohort biospecimens to assess personal-level exposures

and responses. Several aspects of these studies require

methodological development to make best use of such

opportunities. What is clear is that the scope of the expo-

some concept will require the input and collaboration of

researchers across many disciplines for exposome studies

to succeed and will rely as much on the design and
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philosophy that underpin them as on our ability to gener-

ate complex datasets about their participants.
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