

Exercise

- Write a pseudocode of an algorithm to find the two smallest numbers in a sequence of numbers given as an array

Correctness of Algorithms

- An algorithm is correct if
- For any allowed input, it terminates and produces the desired output
- Automatic proof of correctness is not possible
- But there are practical techniques and rigorous formalisms that help to reason about the correctness of algorithms

Correctness

- Difficult to prove
- How to test for all possible inputs?
- Test algorithm with sample of possible inputs
- Software testing
- Even more difficult is to prove total correctness

Assertions

- To prove partial correctness
- Associate a number of assertions (statements about the state of the execution) with specific checkpoints in the algorithm
- E.g.: $\mathrm{i}=\mathrm{k}, A[1], \ldots, A[\mathrm{k}]$ form an increasing sequence (IS)
- Other important assertions:

- Preconditions

- Assertions that must be true before the execution of an algorithm or a subroutine (INPUT)
- Postconditions
- Assertions that must be true after the execution of an algorithm or a subroutine (OUTPUT)

Exercise

- Write a pseudocode of an algorithm to find the two smallest numbers in a sequence of numbers given as an array
- Precondition:
- INPUT: an array of integers $A[1 . . n], n>0$

Exercise

- Write a pseudocode of an algorithm to find the two smallest numbers in a sequence of numbers given as an array
- Precondition:
- INPUT: an array of integers $A[1 . . n], n>0$
- Postcondition:
- OUTPUT: $\left(m_{1,}, m_{2}\right)$, s. t. (such that) $m_{1}<m_{2}$ and
- For each $i \in[1 . . n], m_{1} \leq A[i]$ and, if $A[i] \neq m_{1}$, then $m_{2} \leq A[/]$
- If there is no m_{2} satisfying these conditions, then ...

Exercise

- Write a pseudocode of an algorithm to find the two smallest numbers in a sequence of numbers given as an array
- Precondition:
- INPUT: an array of integers $A[1 . . n], n>0$
- Postcondition:
- OUTPUT: $\left(m_{1}, m_{2}\right)$, s. t. (such that) $m_{1}<m_{2}$ and
- For each $i \in[1 . . n], m_{1} \leq A[i]$ and, if $A[i] \neq m_{1}$, then $m_{2} \leq A$ [$]$
- If there is no m_{2} satisfying these conditions, then m_{2} $=m_{1}$
© André de Carvalho - ICMC/USP
12

Loop Invariants

- Used to evaluate partial correctness
- Invariants: assertions (statements) that are valid any time they are reached
- Are valid many times during the execution of an algorithm
- E.g., in loops, a property or condition is true before and after each iteration

int $a=5 ;$	What is loop invariant
int $b=0 ;$	in this algorithm?
for $(a>0)\{$	
$a--;$ $b++;$	

© André de Carvalho - ICMC/USP

Loop Invariants

- Three facts about a loop invariant:
- Initialization
- It is true before the first loop iteration
- Maintenance
- If it is true before a loop iteration, then it remains true before the next iteration
- Termination
- When the loop finishes, the invariant gives a useful property to show the correctness of the algorithm

Loop Invariants

- Used to evaluate partial correctness
- Invariants: assertions (statements) that are valid any time they are reached
- Are valid many times during the execution of an algorithm
- E.g., in loops, a property or condition is true before and after each iteration

Example: Binary Search (1)

- We want to make sure that if NIL is return q is not in A
- Invariant: at the start of each while loop,

```
left\leftarrow1
r1g
do
\(j \leftarrow(\) left+right) \(/ 2\rfloor\) if \(A[j]=q\) then return
else if \(A[j]>q\) then right \(\leftarrow j-1\)
lse left=j+1 return NIL
```

$q>A[i]$ for all i
$\in[1 . . l e f t-1]$ and $q<A[i]$
for all $i \in[r i g h t+1 . . n]$

Example: Binary Search (1)

- We want to make sure that if NIL is return q is not in A
- Invariant: at the start of each while loop, q >

left $\leftarrow 1$ right $\leftarrow n$

do
$j \leftarrow\lfloor($ left + right $) / 2\rfloor$
if $A[j]=q$ then return
else if $A[j]>q$ then right $\leftarrow j-1$
else left=j+1
ile left<=right
return NIL

A[I] for all $i \in[1 . . l e f t-1$
and $q<A[i]$ for all i
\in [right+1..n]

- Initialization: left $=1$, right $=n$, the invariant holds
- Because there are no elements in A neither to the left of left nor to the right of right

Example: Binary Search (2)

- We want to make sure that if NIL is return q is not in A
- Invariant: at the start of each while loop, q > A[i] for all $i \in$ [1..left-1] and $q<A[i]$ for all i \in [right+1..n]
- Maintenance: if $\mathrm{q}<A[j]$, then $\mathrm{q}<A[i]$ for each $i \in[j . n]$
- Because the array is sorted, the algorithm assigns $j-1$ to right (the second part of the invariant holds)
- The first part of the invariant could similarly be shown to hold

Example: Binary Search (3)

- We want to make sure that if NIL is return q is not in A
- Invariant: at the start of each while loop, q > A[i] for all $i \in$ [1..left-1]

do $j \leftarrow$ (left+right) $/ 2\rfloor$

if $A[j]=q$ then return
else if $A[j]>q$ then right $\leftarrow j-1$
else left=j+1
while left<=right
return NIL and $q<A[i]$ for all i \in [right+1..n]

- Termination: the loop terminates when left > right
- The invariant states that q is smaller than all elements of A to the left of left and larger than all elements of A to the right of right
- This covers all elements of A, i.e. q is either smaller or larger that any element of A André de Carvalho - ICMC/USP

left $\leftarrow 1$
do
$j \leftarrow\lfloor($ left+right) $/ 2\rfloor$
if $A[j]=q$ then return
else if $A[j]>q$ then right $\leftarrow j-1$
le left=j+1
return NIL

Example: Insertion Sort

Example: Insertion Sort (1)

- Invariant: at the start of each for loop, the elements in A[1...j-1] are in sorted order
for $j=2$ to length(A)
do key=A[j]

while $i>0$ and $A[i]>k e y$ do $A[i+1]=A[i]$ i--
A $[i+1]:=k e$ A[i+1]:=key

Example: Insertion Sort (2)

Invariant: at the start of each for loop, the elements in A[1...j-1] are in sorted order

```
for j=2 to length(A)
    do key=A[j]
        i=j-1
        while i>0 and A[i]>key
        do A[i+1]=A[i]
        [i+1]:=key
```

- Initialization: $j=2$, the invariant trivially holds because $A[1]$ is a sorted array

Example: Insertion Sort (4)

- Invariant: at the start of each for loop, the elements in A[1...j-1] are in sorted order

```
for j=2 to length(A)
    do key=A[j]
        i=j-1
        while i>0 and A[i]>key
        do A[i+1]=A[i]
        do Ali
        A[i+1]:=key
```

- Termination: the loop terminates, when $j=n+1$. Then the invariant states: "A[1...n] consists of elements originally in A[1...n] but in sorted order"

Asymptotic notation

- For $\Theta, \boldsymbol{O}, \Omega, \boldsymbol{O}, \omega$
- Defined for functions over the natural numbers.
- E.g.: $f(n)=\Theta\left(n^{2}\right)$.
- Describes how $f(n)$ grows in comparison to n^{2}
- Define a set of functions
- In practice used to compare two function sizes
- Describe different rate-of-growth relations between a defining function and a defined set of functions

Example: Insertion Sort (3)

- Invariant: at the start of each for loop, the elements in A[1...j-1] are in sorted order

- Maintenance: the while loop moves elements $A[j-1]$, $A[j-2], \ldots, A[j-k]$ one position to the right without changing their order
- Then the former $A[j]$ element is inserted into k-th position so that $A[k-1] \leq A[k]<A[k+1]$
- $A[1 . . . j-1]$ sorted $+A[j] \rightarrow A[1 . . . j]$ sorted
© André de Carvalho - ICMC/USP

Asymptotic analysis

- Goal:
- Simplify analysis of running time by ignoring "details" that may be affected by specific implementation and hardware
- Like "rounding" for numbers: $1,000,001 \approx 1,000,000$
- "Rounding" for functions: $3 n^{2} \approx n^{2}$
- Captures the essence:
- How the running time of an algorithm increases with the size of the input in the limit
- Algorithms asymptotically more efficient are the best for all but small inputs
- Written using asymptotic notation

Asymptotic notation (1)

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of n, as the set:
$\Theta(g(n))=\{f(n): \exists$ positive constants c_{1}, c_{2}, and \boldsymbol{n}_{0}, such that $\forall \boldsymbol{n} \geq \boldsymbol{n}_{0}$, we have $\left.0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$
Intuitively: Set of all functions that have the same rate of growth as $g(n)$.

$g(n)$ is an asymptotically tight bound for $f(n)$

Asymptotic notation (1)

For function $g(n)$, we define $\Theta(g(n))$, big-Theta of n, as the set:
$\Theta(g(n))=\{f(n): \exists$ positive constants c_{1}, c_{2}, and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

Technically, $f(n) \in \Theta(g(n))$
Old use, $f(n)=\Theta(g(n))$
Both can be used in this course
$f(n)$ and $g(n)$ are nonnegative, for large n

Example

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

- Is $3 n^{3} \in \Theta\left(n^{4}\right)$?
- How about $2^{2 n} \in \Theta\left(2^{n}\right)$?

Example

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

- $10 n^{2}-3 n=\Theta\left(n^{2}\right)$
- What constants for n_{0}, c_{1}, and c_{2} will work?
- Make c_{1} a little smaller than the leading coefficient, and c_{2} a little bigger.
- To compare orders of growth, look at the leading term
- Exercise: Prove that $n^{2} / 2-3 n=\Theta\left(n^{2}\right)$

Asymptotic Notation

- Simple Rule: Drop lower order terms and constant factors
- $50 n \log n$ is ...
- $7 n-3$ is ...
- $8 n^{2} \log n+5 n^{2}+n$ is...

Asymptotic Notation

- Simple Rule: Drop lower order terms and constant factors
- $50 n \log n$ is $\mathrm{O}(n \log n)$
- $7 n-3$ is $\mathrm{O}(n)$
$=8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$

Asymptotic Notation (2)

For a function $g(n)$, we define $O(g(n))$, big-O of n, as the set:
$\boldsymbol{O}(\boldsymbol{g}(n))=\{f(n): \exists$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $0 \leq f(n) \leq \operatorname{cg}(n)\}$

Intuitively: Set of all functions whose rate of growth is the same as or lower
 than that of $g(n)$.
$g(n)$ is an asymptotic upper bound for $f(n)$
$f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$
$\Theta(g(n)) \subset O(g(n))$
© André de Carvalho - ICMC/USP 42

Example

$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0},
such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq c g(n)\right\}$

- Any linear function $a n+b$ is in $O\left(n^{2}\right)$? - Why?
- Show that $3 n^{3}=O\left(n^{4}\right)\left(3 n^{3} \in O\left(n^{4}\right)\right)$ for appropriate values of c and n_{0}

Relations Between Θ, O, Ω

- $f(n)=\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$
- $O(f(n))$ is often misused instead of $\Theta(f(n))$

$f(n)=\Theta(g(n))$

$f(n)=O(g(n))$
© André de Carvalho - ICMC/USP
© Anlare de Carvanto - ICMC/USF

$f(n)=\Omega(g(n))$

Asymptotic Notation (5)

- "Little-Oh" notation $f(n)=o(g(n))$ non-tight analogue of Big-Oh $o(g(n))=\left\{f(n): \forall c>0, \exists n_{0}>0\right.$ such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n)<c g(n)\right\}$
- Used for comparisons of running times
- If $f(n)=o(g(n)$), it is said that $g(n)$ dominates $f(n)$
Big-Oh $\begin{aligned} & \boldsymbol{O}(g(n))=\left\{f(n): \exists \text { positive constants } c \text { and } n_{0} \text {, such }\right. \\ & \text { that } \forall n \geq n\end{aligned}$ that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq c g(n)\right\}$

Asymptotic Notation (6)

- "Little-omega" notation $f(n)=\omega(g(n))$ non-tight analogue of Big-Omega
$\boldsymbol{o}(\boldsymbol{g}(\boldsymbol{n}))=\left\{f(n): \forall \boldsymbol{c}>\mathbf{0}, \exists \boldsymbol{n}_{\mathbf{0}}>\mathbf{0}\right.$ such
that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n)<c g(n)\right\}$

```
Big-Omega
            |(g(n))={f(n):\exists\mathrm{ positive constants c and }\mp@subsup{n}{0,}{}\mathrm{ , such }
```


Asymptotic properties

- Analogy with real numbers
- $f(n)=O(g(n)) \cong a \leq b$
- $f(n)=\Omega(g(n)) \cong \quad \cong \geq b$
- $f(n)=\Theta(g(n)) \cong \quad a=b$
- $f(n)=o(g(n)) \cong a<b$
- $f(n)=\omega(g(n)) \cong \quad a>b$
- Abuse of notation: $f(n)=O(g(n))$ actually means $f(n) \in O(g(n))$

Limits

- $\lim _{n \rightarrow \infty}[f(n) / g(n)]=0 \quad \Rightarrow f(n) \in d(g(n))$
- $\lim _{n \rightarrow \infty}[f(n) / g(n)]<\infty \quad \Rightarrow f(n) \in Q(g(n))$
- $0<\lim _{n \rightarrow \infty}[f(n) / g(n)]<\infty \Rightarrow A(n) \in \Theta(g(n))$
- $0<\lim _{n \rightarrow \infty}[f(n) / g(n)] \quad \Rightarrow f(n) \in \Omega(g(n))$
- $\lim _{n \rightarrow \infty}[f(f) / g(n)]=\infty \quad \Rightarrow f(n) \in \omega(g(n))$
- $\lim _{n \rightarrow \infty}[f(n) / g(n)]$ undefined \Rightarrow Not possible to say

Properties

- Reflexivity
$f(n)=\Theta(f(n))$
$f(n)=O(f(n))$
$f(n)=\Omega(f(n))$
- Complementarity
$f(n)=O(g(n))$ iff $g(n)=\Omega(f(n))$
$f(n)=\alpha(g(n))$ iff $g(n)=\omega((f(n))$

Monotonicity

- $f(n)$ is
- monotonically increasing if $m \leq n \Rightarrow f(m) \leq$ f(n)
- monotonically decreasing if $m \geq n \Rightarrow f(m) \geq$ $f(n)$
- strictly increasing if $m<n \Rightarrow A(m)<\AA(n)$
- strictly decreasing if $m>n \Rightarrow f(m)>f(n)$

Properties

- Symmetry

$f(n)=\Theta(g(n))$ iff $g(n)=\Theta(f(n))$

- Transitivity
$f(n)=\Theta(g(n)) \& g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n))$
$f(n)=\alpha(n)) \& g(n)=\alpha(n)) \Rightarrow f(n)=\alpha(n(n))$
$f(n)=\Omega(g(n)) \& g(n)=\Omega(h(n)) \Rightarrow f(n)=\Omega(h(n))$
$f(n)=\alpha(n)) \& g(n)=o(h(n)) \Rightarrow f(n)=o(h(n))$
$f(n)=\omega(g(n)) \& g(n)=\omega(h(n)) \Rightarrow f(n)=\omega(h(n))$

Brief
 Mathematical review

Exponentials and Logarithms

- Properties of	- Properties of
logarithms:	exponentials:
$\log _{b}(x y)=\log _{b} x+\log _{b} y$	$a^{(b+c)}=a^{b a} c$
$\log _{b}(x / y)=\log _{b} x-\log _{b} y$	$a^{b c}=\left(a^{b}\right)^{c}$
$\log _{b} x a=a \log _{b} x$	$a^{b} / a^{c}=a^{(b-c)}$
$\log _{b} a=\log _{x} a / \log _{x} b$	$b=a \log _{a} b$
	$b^{c}=a a^{4 \log _{a} b}$

Bases of logarithms and exponentials

- The base of a logarithm can be changed multiplying the logarithm by a constant
- E.g. $\log _{10} n * \log _{\mathbf{2}} \mathbf{1 0}=\log _{2} n$
- Base of logarithm is not important in asymptotic notation
- Exponentials with different bases differ by a exponential (not a constant)
- E.g. $2^{n}=(2 / 3)^{n *} 3^{n}$

Summations

- Quadratic Series
- Given an integer $n \geq 0$

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Cubic Series
- Given an integer $n \geq 0$

$$
\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Summations

- Geometric progression (series)
- Given an integer n and a real number $0<a \neq 1$
$\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\cdots+a^{n}=\frac{a^{n+1}-1}{a-1}$
- Geometric progressions exhibit exponential growth behaviour
- For $|a|<1$

$$
\sum_{i=0}^{\infty} a^{i}=\frac{1}{1-a}
$$

Summations

- Linear-Geometric Series
- Given an integer $n \geq 0$ and a real $c \neq 1$

$$
\sum_{i=1}^{n} i c^{i}=c+2 c^{2}+\cdots+n c^{n}=\frac{-(n+1) c^{n+1}+n c^{n+2}+c}{(c-1)^{2}}
$$

- Harmonic Series

- Given a $n^{\text {th }}$ harmonic number, $n \in \mathrm{I}^{+}$Popular with architects, | $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \leq \sum_{i=1}^{n} \frac{1}{i}=\ln (n)+1$ |
| :---: |
| $\begin{array}{l}\text { mainly in the Baroque } \\ \text { period, to define } \\ \text { Harmonic relations } \\ \text { between interior and } \\ \text { exterior architecture } \\ \text { of churches and palaces }\end{array}$ |
| © André de Carvalho - ICMC/USP |

Summations

- The running time of insertion sort is determined by a nested loop

```
for j}\leftarrow2 to length(A
    key\leftarrowA[j]
    i\leftarrowj-1
    while i>0 and A[i]>key
        A[i+1]}\leftarrowA[i
        i\leftarrowi-1
    A[i+1]\leftarrowkey
```

- Nested loops correspond to summations

$$
\sum_{j=2}^{n}(j-1)=O\left(n^{2}\right)
$$

Proof by Induction

- Correctness estimation and time complexity estimation can be proved by mathematical induction
- Important mathematical tool for proofs
- Allow simple proofs

Proof by Induction (1)

- We want to show that property P is true for all integers $n \geq n_{0}$
- Basis: prove that P is true for n_{0}
- Inductive step: prove that if P is true for all k such that $n_{0} \leq k \leq n-1$ then P is also true for n
- Example $S(n)=\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ for $n \geq 1$
- Basis $S(1)=\sum_{i=0}^{1} i=\frac{1(1+1)}{2}$

Next Week

- Divide-and-conquer
- Merge sort
- Writing recurrences to describe the running time of divide-and-conquer algorithms

