
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Correctness

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor:

Today

 Correctness of algorithms

 Growth of functions and asymptotic
notation

 Revision of some basic math

 Conclusion

© André de Carvalho - ICMC/USP 2

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array

3© André de Carvalho - ICMC/USP

Correctness of Algorithms

 An algorithm is correct if

 For any allowed input, it terminates and
produces the desired output

 Automatic proof of correctness is not
possible

 But there are practical techniques and rigorous
formalisms that help to reason about the
correctness of algorithms

4© André de Carvalho - ICMC/USP

Partial and Total Correctness

 Partial correctness

Any allowed input Algorithm Output

IF this point is reached, THEN this is the desired output

 Total correctness

Any allowed input Algorithm Output

IF this point is reached, AND this is the desired output

5© André de Carvalho - ICMC/USP

Correctness

 Difficult to prove

 How to test for all possible inputs?

 Test algorithm with sample of possible
inputs

 Software testing

 Even more difficult is to prove total
correctness

© André de Carvalho - ICMC/USP 6

CHOROCHRONOS Midter Review

Timos Sellis 2

Assertions

 To prove partial correctness
 Associate a number of assertions (statements about

the state of the execution) with specific checkpoints in
the algorithm

 E.g.: i=k, A[1], …,A[k] form an increasing sequence (IS)

 Other important assertions:
 Preconditions

 Assertions that must be true before the execution of an
algorithm or a subroutine (INPUT)

 Postconditions
 Assertions that must be true after the execution of an

algorithm or a subroutine (OUTPUT)

7© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

8© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

9© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

10© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and

 For each i [1..n], m1 A[i] and, if A[i] m1, then

m2 A[i]

 If there is no m2 satisfying these conditions, then …

11© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and

 For each i [1..n], m1 A[i] and, if A[i] m1, then

m2 A[i]

 If there is no m2 satisfying these conditions, then m2

= m1

12© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 3

Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid
any time they are reached

 Are valid many times during the execution of an
algorithm

 E.g., in loops, a property or condition is true before and after
each iteration

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant
in this algorithm?

13© André de Carvalho - ICMC/USP

Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid
any time they are reached

 Are valid many times during the execution of an
algorithm

 E.g., in loops, a property or condition is true before and after
each iteration

14© André de Carvalho - ICMC/USP

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant
in this algorithm?
a + b = 5

Loop Invariants

 Three facts about a loop invariant:

 Initialization

 It is true before the first loop iteration

 Maintenance

 If it is true before a loop iteration, then it remains
true before the next iteration

 Termination

 When the loop finishes, the invariant gives a useful
property to show the correctness of the algorithm

15© André de Carvalho - ICMC/USP

Binary Search

 Very simple search algorithm

© André de Carvalho - ICMC/USP 16

https://brilliant.org/wiki/binary-search/

Example: Binary Search (1)
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop,
q > A[i] for all i
[1..left-1] and q < A[i]
for all i [right+1..n]

17© André de Carvalho - ICMC/USP

Example: Binary Search (1)
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

Floor

18© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 4

Example: Binary Search (1)

 Initialization: left = 1, right = n, the invariant holds
 Because there are no elements in A neither to the left of left nor

to the right of right

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

19© André de Carvalho - ICMC/USP

Example: Binary Search (2)

 Maintenance: if q < A[j], then q <A[i] for each i [j..n]
 Because the array is sorted, the algorithm assigns j-1 to right (the

second part of the invariant holds)

 The first part of the invariant could similarly be shown to hold

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

20© André de Carvalho - ICMC/USP

Example: Binary Search (3)

 Termination: the loop terminates when left > right
 The invariant states that q is smaller than all elements of A to the

left of left and larger than all elements of A to the right of right

 This covers all elements of A, i.e. q is either smaller or larger
that any element of A

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

21© André de Carvalho - ICMC/USP

Insertion Sort

 One of the simplest sorting algorithms

 Is not the simplest

 People use it to sort cards in their hands

 E.g. Suppose you have the following cards in
your hand:

 And received the card

© André de Carvalho - ICMC/USP 22

Example: Insertion Sort

23

To insert 12, it is necessary
to make room for this card
by moving first 36 and
then 24

© André de Carvalho - ICMC/USP

Example: Insertion Sort

24© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 5

Example: Insertion Sort

25© André de Carvalho - ICMC/USP

Example: Insertion Sort

26© André de Carvalho - ICMC/USP

Insertion Sort

27

5 2 4 6 1 3

Input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

Sorted Unsorted

© André de Carvalho - ICMC/USP

Insertion Sort

28© André de Carvalho - ICMC/USP

Insertion Sort

© André de Carvalho - ICMC/USP 29

https://upload.wikimedia.org/wikipedia/commons/0/0f/Inserti
on-sort-example-300px.gif

Example: Insertion Sort (1)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

30

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 6

Example: Insertion Sort (2)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Initialization: j = 2, the invariant trivially holds because
A[1] is a sorted array

31

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (3)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Maintenance: the while loop moves elements A[j-1],
A[j-2], …, A[j-k] one position to the right without
changing their order
 Then the former A[j] element is inserted into k-th position so that

A[k-1] A[k] < A[k+1]

 A[1…j-1] sorted + A[j] A[1…j] sorted

32

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (4)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Termination: the loop terminates, when j=n+1. Then
the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order”

33© André de Carvalho - ICMC/USP

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

Asymptotic analysis

 Goal:
 Simplify analysis of running time by ignoring ”details” that

may be affected by specific implementation and hardware

 Like “rounding” for numbers: 1,000,001 1,000,000

 “Rounding” for functions: 3n2 n2

 Captures the essence:
 How the running time of an algorithm increases with the

size of the input in the limit

 Algorithms asymptotically more efficient are the best for all
but small inputs

 Written using asymptotic notation

34© André de Carvalho - ICMC/USP

Asymptotic notation

 For Q, O, W, o, w

 Defined for functions over the natural numbers.

 E.g.: f(n) = Q(n2).

 Describes how f(n) grows in comparison to n2

 Define a set of functions

 In practice used to compare two function sizes

 Describe different rate-of-growth relations
between a defining function and a defined set of
functions

© André de Carvalho - ICMC/USP 35

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 36

Q(g(n)) = {f(n) : positive constants
c1, c2, and n0, such that n n0, we
have 0 c1g(n) f(n) c2g(n) }

For function g(n), we define Q(g(n)),
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

)(ngc 2

)(ngc 1

Intuitively: Set of all functions that
have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n)

CHOROCHRONOS Midter Review

Timos Sellis 7

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 37

Q(g(n)) = {f(n) : positive constants
c1, c2, and n0, such that n n0, we
have 0 c1g(n) f(n) c2g(n) }

For function g(n), we define Q(g(n)),
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

)(ngc 2

)(ngc 1

Technically, f(n) Q(g(n))
Old use, f(n) = Q(g(n))
Both can be used in this course

f(n) and g(n) are nonnegative, for large n

Example

 10n2 - 3n = Q(n2)

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading
coefficient, and c2 a little bigger.
 To compare orders of growth, look at the

leading term

 Exercise: Prove that n2/2-3n= Q(n2)

© André de Carvalho - ICMC/USP 38

Q(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Example

 Is 3n3 Q(n4) ?

 How about 22n Q(2n) ?

© André de Carvalho - ICMC/USP 39

Q(g(n)) = {f(n) : positive constants c1, c2, and n0,
such that n n0, 0 c1g(n) f(n) c2g(n)}

Asymptotic Notation

 Simple Rule: Drop lower order terms and
constant factors

 50 n log n is ...

 7n - 3 is ...

 8n2 log n + 5n2 + n is ...

40© André de Carvalho - ICMC/USP

Asymptotic Notation

 Simple Rule: Drop lower order terms and
constant factors

 50 n log n is O(n log n)

 7n - 3 is O(n)

 8n2 log n + 5n2 + n is O(n2 log n)

41© André de Carvalho - ICMC/USP

Asymptotic Notation (2)

© André de Carvalho - ICMC/USP 42

O(g(n)) = {f(n) : positive constants
c and n0, such that n n0, we have
0 f(n) cg(n) }

For a function g(n), we define
O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n)

Intuitively: Set of all functions whose
rate of growth is the same as or lower
than that of g(n).

f(n) = Q(g(n)) f(n) = O(g(n))
Q(g(n)) O(g(n))

)(nf
()c g n

0n Input Size

R
un

ni
ng

 T
im

e

CHOROCHRONOS Midter Review

Timos Sellis 8

Example

 Any linear function an + b is in O(n2) ?

 Why?

 Show that 3n3 =O(n4) (3n3 O(n4)) for
appropriate values of c and n0

© André de Carvalho - ICMC/USP 43

O(g(n)) = {f(n) : positive constants c and n0,
such that n n0, we have 0 f(n) cg(n) }

Asymptotic Notation (3)

44© André de Carvalho - ICMC/USP

g(n) is an asymptotic lower bound for f(n)

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n)

f(n) = Q(g(n)) f(n) = W(g(n))
Q(g(n)) W(g(n))

W(g(n)) = {f(n) : positive constants
c and n0, such that n n0, we have
0 cg(n) f(n)}

For function g(n), we define (g(n)),
big-Omega of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

()c g n

0n

 f(n) = Q(g(n)) if and only if f(n) = O(g(n)) and
f(n) = (g(n))

 O(f(n)) is often misused instead of Q(f(n))

Relations Between Q, O,

45© André de Carvalho - ICMC/USP

Input Size

R
un

ni
ng

 T
im

e

)(nf

0n

)(ngc 2

)(ngc 1

)(nf
()c g n

0n
Input Size

R
un

ni
ng

 T
im

e

Input Size

R
un

ni
ng

 T
im

e

)(nf

()c g n

0n

f(n) = Q(g(n)) f(n) = O(g(n)) f(n) = (g(n))

Asymptotic Notation (5)

 "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

 Used for comparisons of running times

 If f(n)=o(g(n)), it is said that g(n) dominates
f(n)

46© André de Carvalho - ICMC/USP

o(g(n)) = {f(n): c > 0, n0 > 0 such

that n n0, we have 0 f(n) < cg(n) }

O(g(n)) = {f(n) : positive constants c and n0, such
that n n0, we have 0 f(n) cg(n) }

Big-Oh

Asymptotic Notation (6)

 "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega

47© André de Carvalho - ICMC/USP

o(g(n)) = {f(n): c > 0, n0 > 0 such

that n n0, we have 0 f(n) < cg(n) }

W(g(n)) = {f(n) : positive constants c and n0, such
that n n0, we have 0 cg(n) f(n)}

Big-Omega

Asymptotic properties

 Analogy with real numbers

 f(n) = O(g(n)) @ a b

 f(n) = (g(n)) @ a b

 f(n) = Q(g(n)) @ a =b

 f(n) = o(g(n)) @ a <b

 f(n) = w(g(n)) @ a >b

 Abuse of notation: f(n) = O(g(n)) actually
means f(n) O(g(n))

48© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 9

Limits

 lim [f(n) / g(n)] = 0 f(n) o(g(n))
n

 lim [f(n) / g(n)] < f(n) O(g(n))
n

 0 < lim [f(n) / g(n)] < f(n) Q(g(n))
n

 0 < lim [f(n) / g(n)] f(n) (g(n))
n

 lim [f(n) / g(n)] = f(n) w(g(n))
n

 lim [f(n) / g(n)] undefined Not possible to say
n

49© André de Carvalho - ICMC/USP

Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Transitivity
f(n) = Q(g(n)) & g(n) = Q(h(n)) f(n) = Q(h(n))

f(n) = O(g(n)) & g(n) = O(h(n)) f(n) = O(h(n))

f(n) = (g(n)) & g(n) = (h(n)) f(n) = (h(n))

f(n) = o(g(n)) & g(n) = o (h(n)) f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n)) f(n) = w(h(n))

50© André de Carvalho - ICMC/USP

Properties

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = (f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = (f(n))

f(n) = o(g(n)) iff g(n) = w((f(n))

51© André de Carvalho - ICMC/USP 52

Brief
Mathematical
review

© André de Carvalho - ICMC/USP

Monotonicity

 f(n) is

 monotonically increasing if m n f(m)
f(n)

 monotonically decreasing if m n f(m)
f(n)

 strictly increasing if m < n f(m) < f(n)

 strictly decreasing if m > n f(m) > f(n)

53© André de Carvalho - ICMC/USP

Exponentials and Logarithms

 Properties of

logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

 Properties of

exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

© André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

Bases of logarithms and exponentials

 The base of a logarithm can be changed
multiplying the logarithm by a constant

 E.g. log10 n * log210 = log2 n

 Base of logarithm is not important in
asymptotic notation

 Exponentials with different bases differ by
a exponential (not a constant)

 E.g. 2n = (2/3)n*3n

55© André de Carvalho - ICMC/USP

Summations

 Constant series

 Given integers a and n, a n

 Arithmetic progression (linear series)

 Given an integer n

0

(1)
1 2 3 ...

2

n

i

n n
i n

56

n

ai

an 11

© André de Carvalho - ICMC/USP

Summations

57

Arithmetic
Progression (n even)

© André de Carvalho - ICMC/USP

Summations

 Quadratic Series

 Given an integer n 0

 Cubic Series

 Given an integer n 0

58

n

i

nnn
ni

1

2222

6

)12)(1(
21

n

i

nn
ni

1

22
3333

4

)1(
21

© André de Carvalho - ICMC/USP

Summations

 Geometric progression (series)

 Given an integer n and a real number 0< a 1

 Geometric progressions exhibit exponential
growth behaviour

 For |a| < 1

59

0 1

1

i

i

a
a

n

i

n
ni

a

a
aaaa

0

1
2

1

1
1

© André de Carvalho - ICMC/USP

Summations

 Linear-Geometric Series

 Given an integer n 0 and a real c 1

 Harmonic Series

 Given a nth harmonic number, nI+

60

n
Hn

1

3

1

2

1
1

n

i

n
i1

1)ln(
1

n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2

© André de Carvalho - ICMC/USP

Popular with architects,
mainly in the Baroque
period, to define
Harmonic relations
between interior and
exterior architecture
of churches and palaces

CHOROCHRONOS Midter Review

Timos Sellis 11

Summations

 The running time of insertion sort is
determined by a nested loop

 Nested loops correspond to summations

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

2

2
(1) ()

n

j
j O n

61© André de Carvalho - ICMC/USP

Proof by Induction

 Correctness estimation and time complexity
estimation can be proved by mathematical
induction

 Important mathematical tool for proofs

 Allow simple proofs

© André de Carvalho - ICMC/USP 62

Proof by Induction (1)

 We want to show that property P is true for all
integers n n0

 Basis: prove that P is true for n0

 Inductive step: prove that if P is true for all k
such that n0 k n – 1 then P is also true for n

 Example

 Basis

0

(1)
() for 1

2

n

i

n n
S n i n

1

0

1(1 1)
(1)

2i

S i

63© André de Carvalho - ICMC/USP

Proof by Induction (2)

0

1

0 0

2

(1)
() for 1 k 1

2

() (1)

(1 1) (2)
(1)

2 2

(1)

2

k

i

n n

i i

k k
S k i n

S n i i n S n n

n n n n
n n

n n

 Inductive Step

64© André de Carvalho - ICMC/USP

Next Week

 Divide-and-conquer

 Merge sort

 Writing recurrences to describe the running
time of divide-and-conquer algorithms

65© André de Carvalho - ICMC/USP

Acknowledgement

 A large part of this material were adapted from
 Simonas Šaltenis, Algorithms and Data Structures,

Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 66

CHOROCHRONOS Midter Review

Timos Sellis 12

Questions

67© André de Carvalho - ICMC/USP

