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 Correctness of algorithms

 Growth of functions and asymptotic 
notation

 Revision of some basic math

 Conclusion
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
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Correctness of Algorithms

 An algorithm is correct if 

 For any allowed input, it terminates and 
produces the desired output

 Automatic proof of correctness is not 
possible

 But there are practical techniques and rigorous 
formalisms that help to reason about the 
correctness of algorithms
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Partial and Total Correctness

 Partial correctness

Any allowed input Algorithm Output

IF this point is reached, THEN this is the desired output

 Total correctness

Any allowed input Algorithm Output

IF this point is reached, AND this is the desired output
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Correctness

 Difficult to prove

 How to test for all possible inputs?

 Test algorithm with sample of possible 
inputs

 Software testing

 Even more difficult is to prove total 
correctness
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Assertions

 To prove partial correctness 
 Associate a number of assertions (statements about 

the state of the execution) with specific checkpoints in 
the algorithm

 E.g.: i=k, A[1], …,A[k] form an increasing sequence (IS)

 Other important assertions:
 Preconditions

 Assertions that must be true before the execution of an 
algorithm or a subroutine (INPUT)

 Postconditions
 Assertions that must be true after the execution of an 

algorithm or a subroutine (OUTPUT)
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and 

 For each i [1..n], m1  A[i] and, if A[i] m1, then 

m2 A[i] 

 If there is no m2 satisfying these conditions, then …
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and 

 For each i [1..n], m1  A[i] and, if A[i] m1, then 

m2 A[i] 

 If there is no m2 satisfying these conditions, then m2 

= m1
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Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid 
any time they are reached

 Are valid many times during the execution of an 
algorithm

 E.g., in loops, a property or condition is true before and after 
each iteration

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant 
in this algorithm?
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Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid 
any time they are reached

 Are valid many times during the execution of an 
algorithm

 E.g., in loops, a property or condition is true before and after 
each iteration
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int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant 
in this algorithm?
a + b = 5

Loop Invariants

 Three facts about a loop invariant:

 Initialization

 It is true before the first loop iteration

 Maintenance

 If it is true before a loop iteration, then it remains 
true before the next iteration

 Termination

 When the loop finishes, the invariant gives a useful 
property to show the correctness of the algorithm
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Binary Search

 Very simple search algorithm

© André de Carvalho - ICMC/USP 16

https://brilliant.org/wiki/binary-search/

Example: Binary Search (1) 
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop,     
q > A[i] for all i
[1..left-1] and q < A[i] 
for all i [right+1..n]
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Example: Binary Search (1) 
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]

Floor
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Example: Binary Search (1) 

 Initialization: left = 1, right = n, the invariant holds 
 Because there are no elements in A neither to the left of left nor 

to the right of right

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]
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Example: Binary Search (2)

 Maintenance: if q < A[j], then q <A[i] for each i [j..n]
 Because the array is sorted, the algorithm assigns j-1 to right (the 

second part of the invariant holds)

 The first part of the invariant could similarly be shown to hold

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]
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Example: Binary Search (3)

 Termination: the loop terminates when left > right
 The invariant states that q is smaller than all elements of A to the 

left of left and larger than all elements of A to the right of right

 This covers all elements of A, i.e. q is either smaller or larger 
that any element of A

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]
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Insertion Sort

 One of the simplest sorting algorithms

 Is not the simplest

 People use it to sort cards in their hands

 E.g. Suppose you have the following cards in 
your hand:

 And received the card

© André de Carvalho - ICMC/USP 22

Example: Insertion Sort

23

To insert 12, it is necessary 
to make room for this card 
by moving first 36 and 
then 24
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Example: Insertion Sort
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Example: Insertion Sort
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Example: Insertion Sort
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Insertion Sort

27

5      2      4      6      1      3

Input array 

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

Sorted Unsorted

© André de Carvalho - ICMC/USP

Insertion Sort

28© André de Carvalho - ICMC/USP

Insertion Sort
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https://upload.wikimedia.org/wikipedia/commons/0/0f/Inserti
on-sort-example-300px.gif

Example: Insertion Sort (1)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

30

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP
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Example: Insertion Sort (2)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Initialization: j = 2, the invariant trivially holds because 
A[1] is a sorted array

31

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (3)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Maintenance: the while loop moves elements A[j-1], 
A[j-2], …, A[j-k] one position to the right without 
changing their order
 Then the former A[j] element is inserted into k-th position so that 

A[k-1]  A[k] < A[k+1]

 A[1…j-1] sorted + A[j] A[1…j] sorted 

32

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (4)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Termination: the loop terminates, when j=n+1. Then 
the invariant states: “A[1…n] consists of elements 
originally in A[1…n] but in sorted order” 
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 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

Asymptotic analysis

 Goal: 
 Simplify analysis of running time by ignoring ”details” that 

may be affected by specific implementation and hardware 

 Like “rounding” for numbers:  1,000,001  1,000,000

 “Rounding” for functions: 3n2  n2

 Captures the essence: 
 How the running time of an algorithm increases with the 

size of the input in the limit

 Algorithms asymptotically more efficient are the best for all 
but small inputs

 Written using asymptotic notation 
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Asymptotic notation

 For Q, O, W, o, w

 Defined for functions over the natural numbers.

 E.g.: f(n)  =  Q(n2).

 Describes how f(n) grows in comparison to n2

 Define a set of functions

 In practice used to compare two function sizes

 Describe different rate-of-growth relations 
between a defining function and a defined set of 
functions

© André de Carvalho - ICMC/USP 35

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 36

Q(g(n)) = {f(n) :  positive constants 
c1, c2, and n0, such that n  n0, we 
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)), 
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e )(nf

0n

)(ngc 2

)(ngc 1

Intuitively: Set of all functions that
have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n)
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Asymptotic notation (1)
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Q(g(n)) = {f(n) :  positive constants 
c1, c2, and n0, such that n  n0, we 
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)), 
big-Theta of n, as the set:

Input Size

R
un

ni
ng
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im

e )(nf

0n

)(ngc 2

)(ngc 1

Technically, f(n)  Q(g(n))
Old use,  f(n) = Q(g(n))
Both can be used in this course

f(n) and g(n) are nonnegative, for large n

Example

 10n2 - 3n = Q(n2)

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading 
coefficient, and c2 a little bigger.
 To compare orders of growth, look at the 

leading term

 Exercise: Prove that n2/2-3n= Q(n2)
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Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Example

 Is 3n3  Q(n4) ?

 How about 22n Q(2n) ?
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Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,
such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Asymptotic Notation

 Simple Rule: Drop lower order terms and 
constant factors

 50 n log n is ...

 7n - 3 is ...

 8n2 log n + 5n2 + n is ...
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Asymptotic Notation

 Simple Rule: Drop lower order terms and 
constant factors

 50 n log n is O(n log n)

 7n - 3 is O(n)

 8n2 log n + 5n2 + n is O(n2 log n)
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Asymptotic Notation (2)

© André de Carvalho - ICMC/USP 42

O(g(n)) = {f(n) :  positive constants 
c and n0, such that n  n0, we have 
0  f(n)  cg(n) }

For a function g(n), we define 
O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n)

Intuitively: Set of all functions whose 
rate of growth is the same as or lower 
than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n))
Q(g(n))   O(g(n))

)(nf
( )c g n

0n Input Size

R
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ng
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Example

 Any linear function an + b is in O(n2) ?

 Why?

 Show that 3n3 =O(n4)  (3n3  O(n4) )  for 
appropriate values of c and n0

© André de Carvalho - ICMC/USP 43

O(g(n)) = {f(n) :  positive constants c and n0,
such that n  n0, we have 0  f(n)  cg(n) }

Asymptotic Notation (3)

44© André de Carvalho - ICMC/USP

g(n) is an asymptotic lower bound for f(n)

Intuitively: Set of all functions 
whose rate of growth is the same 
as or higher than that of g(n)

f(n) = Q(g(n))  f(n) = W(g(n))
Q(g(n))   W(g(n))

W(g(n)) = {f(n) :  positive constants 
c and n0, such that n  n0, we have 
0  cg(n)  f(n)}

For function g(n), we define (g(n)), 
big-Omega of n, as the set:

Input Size

R
un

ni
ng

 T
im

e )(nf

( )c g n

0n

 f(n) = Q(g(n)) if and only if f(n) = O(g(n))  and        
f(n) = (g(n))

 O(f(n)) is often misused instead of Q(f(n)) 

Relations Between Q, O, 
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Input Size
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)(nf
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0n
Input Size
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Input Size

R
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ng
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)(nf

( )c g n

0n

f(n) = Q(g(n)) f(n) = O(g(n)) f(n) = (g(n))

Asymptotic Notation (5)

 "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

 Used for comparisons of running times

 If f(n)=o(g(n)), it is said that g(n) dominates 
f(n)
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o(g(n)) = {f(n):  c > 0,  n0 > 0 such 

that  n  n0, we have 0  f(n) < cg(n) }

O(g(n)) = {f(n) :  positive constants c and n0, such 
that n  n0, we have 0  f(n)  cg(n) }

Big-Oh

Asymptotic Notation (6)

 "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega
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o(g(n)) = {f(n):  c > 0,  n0 > 0 such 

that  n  n0, we have 0  f(n) < cg(n) }

W(g(n)) = {f(n) :  positive constants c and n0, such 
that n  n0, we have 0  cg(n)  f(n)}

Big-Omega

Asymptotic properties

 Analogy with real numbers

 f(n) = O(g(n)) @ a b

 f(n) = (g(n)) @ a  b

 f(n) = Q(g(n)) @ a =b

 f(n) = o(g(n)) @ a <b

 f(n) = w(g(n)) @ a >b

 Abuse of notation: f(n) = O(g(n)) actually 
means f(n)  O(g(n)) 
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Limits

 lim [f(n) / g(n)] = 0  f(n)  o(g(n))
n

 lim [f(n) / g(n)] <   f(n)  O(g(n))
n

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n))
n

 0 < lim [f(n) / g(n)]  f(n)  (g(n))
n

 lim [f(n) / g(n)] =   f(n)  w(g(n))
n

 lim [f(n) / g(n)] undefined  Not possible to say
n
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Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Transitivity
f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))

f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

f(n) =  o(g(n)) & g(n) = o (h(n))  f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))
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Properties

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = (f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = (f(n))

f(n) =  o(g(n)) iff g(n) = w((f(n))
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Brief 
Mathematical 
review
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Monotonicity

 f(n) is 

 monotonically increasing if m  n  f(m) 
f(n)

 monotonically decreasing if m  n  f(m) 
f(n)

 strictly increasing if m < n  f(m) < f(n)

 strictly decreasing if m > n  f(m) > f(n)
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Exponentials and Logarithms 

 Properties of 

logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

 Properties of 

exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

© André de Carvalho - ICMC/USP 54
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Bases of logarithms and exponentials

 The base of a logarithm can be changed 
multiplying the logarithm by a constant 

 E.g. log10 n * log210 = log2 n

 Base of logarithm is not important in 
asymptotic notation

 Exponentials with different bases differ by 
a exponential (not a constant)

 E.g. 2n = (2/3)n*3n
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Summations

 Constant series

 Given integers a and n, a  n

 Arithmetic progression (linear series)

 Given an integer n

0

(1 )
1 2 3 ...

2

n

i

n n
i n




     

56





n

ai

an 11
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Summations

57

Arithmetic
Progression (n even)
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Summations

 Quadratic Series  

 Given an integer n  0

 Cubic Series  

 Given an integer n  0

58
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Summations

 Geometric progression (series)

 Given an integer n and a real number 0< a  1

 Geometric progressions exhibit exponential 
growth behaviour

 For |a| < 1

59
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Summations

 Linear-Geometric Series

 Given an integer n  0 and a real c  1

 Harmonic Series

 Given a nth harmonic number, nI+

60

n
Hn

1

3

1

2

1
1   




n

i

n
i1

1)ln(
1











n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2 

© André de Carvalho - ICMC/USP

Popular with architects, 
mainly in the Baroque 
period, to define 
Harmonic relations 
between interior and 
exterior architecture 
of churches and palaces
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Summations

 The running time of insertion sort is 
determined by a nested loop

 Nested loops correspond to summations

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

2

2
( 1) ( )

n

j
j O n
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Proof by Induction

 Correctness estimation and time complexity 
estimation can be proved by mathematical 
induction

 Important mathematical tool for proofs

 Allow simple proofs

© André de Carvalho - ICMC/USP 62

Proof by Induction (1)

 We want to show that property P is true for all 
integers n  n0 

 Basis: prove that P is true for n0

 Inductive step: prove that if P is true for all k
such that n0  k  n – 1 then P is also true for n

 Example
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Proof by Induction (2)
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 Inductive Step
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Next Week

 Divide-and-conquer

 Merge sort 

 Writing recurrences to describe the running 
time of divide-and-conquer algorithms
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