

What is this course about?

- Solving problems
- Get me from home to work (and vice-versa)
- Balance my check book
- Know where is the party
- Graduate from USP
- Using a computer to help solve problems
- Design programs (architecture, algorithms)
- Write programs
- Verify programs
- Document programs

This course is not about

- Programming languages
- Computer architecture
- Software architecture
- Software design and implementation principles
- Issues concerning small and large scale programming
- We will only touch upon the theory of complexity and computability

History

- Name: Persian mathematician Mohammed al-Khowarizmi, in Latin became Algorismus
- First algorithm: Euclidean Algorithm, greatest common divisor, 400-300 B.C.
- $19^{\text {th }}$ century - Charles Babbage, Ada Lovelace
- $20^{\text {th }}$ century - Alan Turing, John von Neumann

Al-Khwarizmi

- Persian mathematician, lived around 800AD
- Wrote a book about how to multiply with Arabic numerals
- His ideas came to Europe in the $12^{\text {th }}$ century
- Originally, "Algorisme" (old French) referred to just the Arabic number system
- Eventually it came to mean "Algorithm" as know today
© André de Carvalho - ICMC/USP
6

Importance of algorithms

- Algorithms were invented by nature - DNA
- Algorithms are fundamental to Computing
- Algorithms are useful
- Algorithms can be fun!

Algorithms are useful

- Imagine yourself without them
- As we get more data and problem sizes get bigger, algorithms become more important
- Will help you get a good job

Importance of algorithms

- Consider sorting a file of social insurance numbers for all population of São Paulo state
- Population (n) = 44,000,000 ($n^{2} \sim 10^{15}$)
- An algorithm running in $\mathrm{O}\left(n^{2}\right)$ in a computer able to do a billion operations per second will take 10^{6} seconds
- About 11 days
- An algorithm running in O(nlogn)time will take only about a second on the same file
- Algorithms matter!

Video

How algorithms shape our world - Kevin Slavin
© André de Carvalho - ICMC/USP

Data Structures and Algorithms

- Algorithm
- Outline, the essence of a computational procedure, step-by-step instructions
- Program
- An implementation of an algorithm in some programming language
- Data structure
- Organization of data needed by the program
© André de Carvalho - ICMC/USP

Algorithmic problem

- Infinite number of input instances satisfying a specification
- Example:
- A sorted, non-decreasing sequence of natural numbers The sequence is of non-zero, finite length:
$1,20,908,909,100000,1000000000$ (sequence of 6 numbers) 3. (sequence of 1 number) © André de Carvalho - ICMC/USP

Algorithmic problem

Algorithm describes actions on the input instances

- There are infinitely many correct algorithms for the same algorithmic problem

Insertion Sort

- Initial partially sorted vector has first vector item
- Insert one item at a time
- In the correct position of a partially sorted vector
- Example
- Suppose all elements are different
- How to sort, using insertion sort, the vector below?

Analysis of algorithms

- Efficiency:
- Running time
- Space used
- Efficiency as a function of input size:
- Number of data elements (numbers, points)
- Number of bits in an input number
- Number of vertices and edges (graphs)

Analysis of Insertion Sort

- Time to compute the running time as a function of the input size

	cost	times
for $\mathrm{j}=2$ to length(A$)$	C_{1}	
do key=A [j]	C_{2}	n -1
"insert $A[j]$ into the sorted sequence A[1..j-1]"	,	n -1
$i=j-1$	C_{3}	n^{-1}
while i>0 and A[i]>key	C_{4}	$\sum_{i=2} t_{j}$
do $\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]$	C_{5}	$\sum_{i=2}\left(t_{j}-1\right)$
i--	C_{6}	$\sum_{j=2}^{n-2}\left(t_{j}-1\right)$
A[i+1]:=key	C_{7}	n -1

Analysis of Insertion Sort

$\mathrm{T}(\mathrm{n})=\mathrm{c}_{1} \mathrm{n}+\mathrm{c}_{2}(\mathrm{n}-1)+\mathrm{c}_{3}(\mathrm{n}-1)$
$+\mathrm{c}_{4}(\mathrm{n}(\mathrm{n}+1) / 2-1)+$
$=\mathrm{c}_{5}[\mathrm{n}(\mathrm{n}-1) / 2]+\mathrm{c}_{6}[\mathrm{n}(\mathrm{n}-1) / 2]$
$+\mathrm{c}_{7}(\mathrm{n}-1)$
$=\mathrm{a} * \mathrm{n}^{2}+\mathrm{b} * \mathrm{n}+\mathrm{c}$
(quadratic function of \mathbf{n})
Why c_{1} occurs n times?

cost	times
c_{1}	
c_{2}	n-1
0	n -1
c_{3}	$\sum^{n-1}{ }^{1}$
C_{4}	$\sum_{i=2} i^{-2} t_{j}$
c_{5}	$\left.\sum_{i=2}=2 t_{j}-1\right)$
c_{6} c_{7}	$\left.\sum_{\mathrm{n}-1} \mathrm{l}^{(} t_{j}-1\right)$

Best/Worst/Average Case

- Best case:

- Elements already sorted $\rightarrow t_{j}=1$, running time $=f(n)$, i.e., linear time
- Worst case:
- Elements are sorted in inverse order $\rightarrow t_{j}=j$, running time $=f\left(n^{2}\right)$, i.e., quadratic time
- Average case:
- $t_{j}=j / 2$, running time $=f\left(n^{2}\right)$, i.e., quadratic time

Best/Worst/Average Case (3)

- For inputs of all sizes:

Best/Worst/Average Case (4)

- Worst case is usually used:
- It is an upper-bound
- In some applications knowing the worst-case time complexity is of crucial importance E.g., air traffic control, surgery
- For some algorithms worst case occurs fairly often
- The average case is often as bad as the worst case
- Finding the average case can be very difficult

That's it?

- Is insertion sort the best approach for sorting?
- Alternative strategy based on divide and conquer
- MergeSort
- Sorting the numbers $\langle 4,1,3,9>$ is split into sorting $\langle 4,1\rangle$ and $<3,9>$ and merging the results
- Running time $f(n \log n)$

Binary search - analysis

- How many times the loop is executed?
- With each execution its length is cult in half
- How many times do you have to cut n in half to get 1 ?
- lg n
- Complexity: $O(\lg n)$

```
left=1
right=length(A)
do
    j=(left+right)/2
        if A[j]==q then return j
        else if A[j]>q then right=j-1
        else left=j+1
while left<=right
return NIL
```


