
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Algorithms

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor:

© André de Carvalho - ICMC/USP 1

Today

 History of algorithms

 Importance of algorithms

 Main goal

 Sorting

 Conclusion

© André de Carvalho - ICMC/USP 2

What is this course about?

 Solving problems
 Get me from home to work (and vice-versa)

 Balance my check book

 Know where is the party

 Graduate from USP

 Using a computer to help solve problems
 Design programs (architecture, algorithms)

 Write programs

 Verify programs

 Document programs

© André de Carvalho - ICMC/USP 3

This course is not about

 Programming languages

 Computer architecture

 Software architecture

 Software design and implementation
principles
 Issues concerning small and large scale

programming

 We will only touch upon the theory of
complexity and computability

© André de Carvalho - ICMC/USP 4

History

 Name: Persian mathematician Mohammed
al-Khowarizmi, in Latin became Algorismus

 First algorithm: Euclidean Algorithm,
greatest common divisor, 400-300 B.C.

 19th century – Charles Babbage, Ada
Lovelace

 20th century – Alan Turing, John von
Neumann

© André de Carvalho - ICMC/USP 5

Al-Khwarizmi

 Persian mathematician, lived
around 800AD

 Wrote a book about how to
multiply with Arabic numerals

 His ideas came to Europe in the 12th century

 Originally, “Algorisme” (old French)
referred to just the Arabic number system

 Eventually it came to mean “Algorithm” as
know today

© André de Carvalho - ICMC/USP 6

2

Video

© André de Carvalho - ICMC/USP 7

Video

© André de Carvalho - ICMC/USP 8

Importance of algorithms

 Algorithms were invented by nature

 DNA

 Algorithms are fundamental to
Computing

 Algorithms are useful

 Algorithms can be fun!

© André de Carvalho - ICMC/USP 9

Algorithms are fundamental

Operating Systems

Compilers Networks

Machine Learning

Cryptography

Bioinformatics

The
Computational

Lens

© André de Carvalho - ICMC/USP 10

Algorithms are useful

 Imagine yourself without
them

 As we get more data and
problem sizes get bigger,
algorithms become more
important

 Will help you get a good
job

© André de Carvalho - ICMC/USP 11

Algorithms are fun

 Algorithm design is both an art and a
science

 Many surprises!

 A young area, lots of exciting research
questions and opportunities!

 Will help you get a job you like!

© André de Carvalho - ICMC/USP 12

3

Importance of algorithms

 Consider sorting a file of social insurance
numbers for all population of São Paulo state

 Population (n) = 44,000,000 (n2 ~ 1015)

 An algorithm running in O(n2) in a computer able
to do a billion operations per second will take 106

seconds

 About 11 days

 An algorithm running in O(nlogn) time will take
only about a second on the same file

 Algorithms matter!

© André de Carvalho - ICMC/USP 13

Video

© André de Carvalho - ICMC/USP 14

How algorithms shape our world - Kevin Slavin

Video

© André de Carvalho - ICMC/USP 15

 Algorithm

 Outline, the essence of a computational
procedure, step-by-step instructions

 Program

 An implementation of an algorithm in some
programming language

 Data structure

 Organization of data needed by the program

Data Structures and Algorithms

© André de Carvalho - ICMC/USP 16

Main goals

Correctness

Efficiency

Robustness

Adaptability Reusability

© André de Carvalho - ICMC/USP 17

Quiz

 Mention some measures of efficiency

© André de Carvalho - ICMC/USP 18

4

Algorithmic problem

 Infinite number of input instances satisfying a
specification

 Example:

 A sorted, non-decreasing sequence of natural numbers

 The sequence is of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000000 (sequence of 6 numbers)

 3. (sequence of 1 number)

?
Specification of
output as
function of input

Specification of
input

© André de Carvalho - ICMC/USP 19

Algorithmic problem

 Algorithm describes actions on the input
instances

 There are infinitely many correct algorithms for
the same algorithmic problem

Output related
to the input as
required

Input instance,
obeying problem
specification

Algorithm

© André de Carvalho - ICMC/USP 20

Example: sorting

 Correctness
 For any given input, the algorithm

halts with the output:

 b1 < b2 < b3 < …. < bn

 b1, b2, b3, …., bn is a
permutation of a1, a2, a3,….,an

Output:
Permutation of
the sequence

Input:
Sequence of
numbers

2 5 4 10 7 2 4 5 7 10
a1 a2 a3 a4 an b1 b2 b3 b4 bn

 Running time
 Depends on

 Number of elements (n)

 How (partially) sorted they are

 Algorithm used

© André de Carvalho - ICMC/USP 21

Insertion Sort

 Initial partially sorted vector has first vector
item

 Insert one item at a time

 In the correct position of a partially sorted vector

 Example

 Suppose all elements are different

 How to sort, using insertion sort, the vector
below?

© André de Carvalho - ICMC/USP 22

6 4 3 8 5

Example: Insertion Sort

© André de Carvalho - ICMC/USP 23

46 3 8 5

6 4 3 8 5

64 3 8 5

Start with the second element (the first
element is sorted within itself…)

Pull “4” back until it is in the
right place

64 3 8 5 Now look at “3”

4 63 8 5
Pull “3” back until it is in the right place

43 6 8 5 “8” is good…look at 5

43 6 85 Fix “5” and the sequence sorted

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start with one card in your
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

Strategy

• Start with one card in your
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

© André de Carvalho - ICMC/USP 24

5

Analysis of algorithms

 Efficiency:

 Running time

 Space used

 Efficiency as a function of input size:

 Number of data elements (numbers,
points)

 Number of bits in an input number

 Number of vertices and edges (graphs)

© André de Carvalho - ICMC/USP 25

The RAM model

 Very important to choose the level of
detail

 The RAM model:

 Instructions (each taking constant time):

 Arithmetic (add, subtract, multiply, etc.)

 Data movement (load, storage copy)

 Control (conditional/unconditional branch,
subroutine call, return)

 Data types – integers and floats
© André de Carvalho - ICMC/USP 26

Analysis of Insertion Sort

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n

jj
t

2
(1)

n

jj
t

2
(1)

n

jj
t

 Time to compute the running time as
a function of the input size

© André de Carvalho - ICMC/USP 27

n: length(A)
ti: #times the

while loop
is tested in
in line 5 for
the value of j

Analysis of Insertion Sort

© André de Carvalho - ICMC/USP 28

T(n) = c1 n + c2 (n-1) + c3 (n-1)
+ c4 (n(n+1)/2 - 1) +

= c5 [n(n-1)/2] + c6 [n(n-1)/2]
+ c7 (n-1)

= a * n2 + b * n + c
(quadratic function of n)

Why c1 occurs n times?

times
n
n-1
n-1

n-1

n-1

2

n

jj
t

2
(1)

n

jj
t

2
(1)

n

jj
t

cost
c1
c2
0

c3
c4
c5
c6
c7

Best/Worst/Average Case

 Best case:

 Elements already sorted tj=1, running time
= f(n), i.e., linear time

 Worst case:

 Elements are sorted in inverse order tj=j,
running time = f(n2), i.e., quadratic time

 Average case:

 tj=j/2, running time = f(n2), i.e., quadratic
time

© André de Carvalho - ICMC/USP 29

Best/Worst/Average Case (3)

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 t
im

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

Best-case

Average-case

 For inputs of all sizes:
Worst-case

© André de Carvalho - ICMC/USP 30

6

Best/Worst/Average Case (4)

 Worst case is usually used:
 It is an upper-bound

 In some applications knowing the worst-case
time complexity is of crucial importance

 E.g., air traffic control, surgery

 For some algorithms worst case occurs
fairly often

 The average case is often as bad as the
worst case

 Finding the average case can be very
difficult

© André de Carvalho - ICMC/USP 31 © André de Carvalho - ICMC/USP 32

O(1) – constant time, the time is independent of n, e.g.
array look-up
O(log n) – logarithmic time, usually the log is base 2,
e.g. binary search
O(n) – linear time, e.g. linear search
O(n*log n) – e.g. efficient sorting algorithms
O(n2) – quadratic time, e.g. selection sort
O(nk) – polynomial (where k is a constant)
O(2n) – exponential time, very slow!

Order of growth of some common functions
O(1) < O(log n) < O(n) < O(n * log n) < O(n2) < O(n3) < O(2n)

Complexities

Growth Functions

© André de Carvalho - ICMC/USP 33

Growth Functions

© André de Carvalho - ICMC/USP 34

Growth Functions

© André de Carvalho - ICMC/USP 35

Growth rates

© André de Carvalho - ICMC/USP 36

7

That’s it?

 Is insertion sort the best approach for
sorting?

 Alternative strategy based on divide and
conquer
 MergeSort

 Sorting the numbers <4, 1, 3, 9> is split into
 sorting <4, 1> and <3, 9> and

 merging the results

 Running time f(n log n)

© André de Carvalho - ICMC/USP 37

Example 2: Searching

a1, a2, a3,….,an; q j

2 5 4 10 7; 5 2

2 5 4 10 7; 9 NIL

© André de Carvalho - ICMC/USP 38

Output
 Index of the number

found or NIL

Input
 A sequence of numbers

(database)

 A single number (query)

Searching (2)

 Worst-case running time: f(n)

 Average-case: f(n/2)

 We cannot do better

 This is a lower bound for the problem of
searching in an arbitrary sequence

© André de Carvalho - ICMC/USP 39

j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

Example 3: Searching

© André de Carvalho - ICMC/USP 40

a1, a2, a3,….,an; q j

2 5 4 7 10; 5 2

2 5 4 7 10; 9 NIL

Output
 Index of the number

found or NIL

Input
 Sorted non-decreasing

sequence of numbers
(database)

 A single number (query)

Binary search

 Idea: Divide and conquer, one of the
key design techniques

© André de Carvalho - ICMC/USP 41

left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1

while left<=right
return NIL

left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1

while left<=right
return NIL

Binary search – analysis

 How many times the loop is executed?

 With each execution its length is cult in
half

 How many times do you have to cut n in
half to get 1?

 lg n

 Complexity: O(lg n)

© André de Carvalho - ICMC/USP 42

8

Animations

© André de Carvalho - ICMC/USP 43

http://cs.armstrong.edu/liang/animation/web/InsertionSort.html

http://www.algomation.com/algorithm/insertion-sort-animated

Conclusion

 Algorithms

 Sorting

 Insertion sort

 Merge sort

 Binary search

© André de Carvalho - ICMC/USP 44

Next Week

 Correctness of algorithms

 Asymptotic analysis, big O notation

© André de Carvalho - ICMC/USP 45

Acknowledgement

 A large part of this material were
adapted from

 Simonas Šaltenis, Algorithms and Data
Structures, Aalborg University, Denmark

 Mary Wootters, Design and Analysis of
Algorithms, Stanford University, USA

© André de Carvalho - ICMC/USP 46

Questions

© André de Carvalho - ICMC/USP 47

