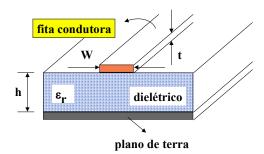


Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Engenharia Elétrica e de Computação


SEL-369: Micro-ondas

Prof. Amílcar Careli César

Lista número 4	Data:	
Nome	Número USP:	

Questão 1. Determinar a largura, W, de uma microfita de 50 ohms para substrato dielétrico de $\varepsilon_r=9.5~{\rm e}~h=0.635~{\rm mm}$. Se a frequência de operação é 1 GHz, calcular o comprimento de onda na microfita.

Questão 2. Uma microfita é feita com Duroid 5880 ($\varepsilon_r=2,2~{\rm e}~h=20~{\rm mil}$). Operando em 10 GHz, a espessura é $W=5~{\rm mm}$. Determinar: a impedância característica; o comprimento de onda, a perda no dielétrico e no metal, em dB/mm.

Questão 3. Os parâmetros de um BJT em um sistema de 50 ohms, V_{CE} =10 V, I_{C} =4 mA e f= 750 MHz, são:

Parâmetro S	Módulo	Fase (graus)
S ₁₁	0,277	-59
S ₁₂	0,078	93
S_{13}	1,92	64
S ₁₄	0,848	-31

Se o transistor for conectado a uma admitância de carga normalizada, $y_L = 0.4 - j0.2$, utilizar a técnica de gráfico de fluxo de sinais para determinar o coeficiente de reflexão na entrada e a impedância de entrada.