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The computer commands most useful in this book are given in both the
Mathematica and Maple systems. More specialized commands appear in the
answers to several computer exercises. For each system, we assume a famil-
iarity with how to access the system and type into it.

In recent versions of Mathematica, the core commands have generally
remained the same. By contrast, Maple has made several fundamental
changes; however most older versions are still recognized. For both systems,
users should be prepared to adjust for minor changes.

Mathematica

1. Fundamentals

Basic features of Mathematica are as follows:

(a) There are no prompts or termination symbols—except that a final
semicolon suppresses display of the output. Input (new or old) is acti-
vated by the command Shift-return (or Shift-enter), and the input and
resulting output are numbered.

(b) Parentheses (. . .) for algebraic grouping, brackets [. . .] for arguments
of functions, and braces {. . .} for lists.

(c) Built-in commands typically spelled in full—with initials capitalized—
and then compressed into a single word. Thus it is preferable for user-
defined commands to avoid initial capitals.

(d) Multiplication indicated by either * or a blank space; exponents indi-
cated by a caret, e.g., x^2. For an integer n only, nX = n*X, where X
is not an integer.



(e) Single equal sign for assignments, e.g., x = 2; colon-equal (:=) for
deferred assignments (evaluated only when needed); double equal signs
for mathematical equations, e.g., x + y == 1.

(f) Previous outputs are called up by either names assigned by the user or
%n for the nth output.

(g) Exact values distinguished from decimal approximations (floating
point numbers). Conversion using N (for “numerical”). For example,
E^2*Sin[Pi/3] returns ; then N[%] gives a decimal 
approximation.

(h) Substitution by slash-dot. For example, if expr is an expression
involving x, then expr/.xÆu^2 + 1 replaces x everywhere in the
expression by u2 + 1.

Mathematica has excellent error notification and online help. In particu-
lar, for common terms, ?term will produce a description. Menu items give
formats for the built-in commands. The complete general reference book—
exposition and examples—is The Mathematica Book [W]. For our purposes,
the outstanding reference is Alfred Gray’s book [G].

> Some basic notation. Functions are given, for example, by

f[x_]:= x^3-2x+1 or
g[u_,v_]:= u*Cos[v]-u^2*Sin[v]

Here, as always, an underscore “_” following a letter (or string) makes it a
variable. Thus the function f defined above can be evaluated at u or 3.14 or
a2 + b2.
> Basic calculus operations.
Derivatives (including partial derivatives) by D[f[x],x] or
D[g[u,v],v]
Definite integrals by Integrate[f[x],{x,a,b}]. For numerical inte-
gration, prefix an N thus: NIntegrate.

> Linear algebra. A vector is just an n-tuple, that is, a list v={v1,...,vn},
whose entries can be numbers or expressions. Addition is given by v+w and
scalar multiplication by juxtaposition, with sv=s{v1,...,vn} yielding
{s*v1,...,s*vn}. The dot product is given by v.w and, for n = 3, the
cross product is Cross[v,w].

Mathematica describes a matrix as a list of lists, the latter being its rows.
For example, {{a,b},{c,d}} is a matrix and is treated as such in all contexts.

To make it look like , apply the command MatrixForm. The 

determinant of a square matrix m is given by Det[m].

a b
c d
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The full power of the dot operator (.) appears only when matrices are
involved. First, if p and q are properly sized matrices, then p.q is their
product. Next, if m is an m ¥ n matrix and v is an n-vector, then m.v gives
the usual operation of m on v. Taking m = n = 3 for example, if m1, m2,
m3 are the rows of m and v={v1,v2,v3}, then Mathematica defines

m.v to be {m1.v,m2.v,m3.v}

This can be seen to be the result of m (in 3 ¥ 3 form) matrix-multiplying the
column-vector corresponding to v, with the resulting column-vector restated
as an n-tuple. In this sense, Mathematica obeys the “column-vector conven-
tion” from the end of Section 3.1, which identifies n-tuples with n ¥ 1 matrices.

If A is any array—say, a vector or matrix—then for most commands,
cmd[A] will apply the command cmd to each entry of A.

2. Curves

A curve in R3 can be described by giving its components as expressions in a
single variable. Example:

c[t_]:= {Cos[t],Sin[t],2t}

Then the vector derivative (i.e., velocity) is returned by D[c[t],t].

> Curves with parameters. For example, the curve c above can be generalized
to

helix[a_,b_][t_]:= {a*Cos[t],a*Sin[t],b*t}

Then helix[1,2]=c.

The following formulas, drawn from Theorem 4.3 of Chapter 2, illustrate
aspects of vector calculus in Mathematica.

The curvature and torsion functions k and t of a curve c ª g are given by

kappa[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]].
Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]^(1/2)/
Simplify[D[c[tt],tt].D[c[tt],tt]]^(3/2)/.tt->t

(Note the description of second derivatives.) The use of the dummy variable
tt makes kappa[c] a real-valued function R Æ R. Otherwise, it would be
merely an expression in whichever single variable was used.

“Simplify” is the principal Mathematica simplification weapon; however, it
cannot be expected to give ideal results in every case. (“FullSimplify” is more
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powerful but slower.) Thus human intervention is often required, either to do
hands-on simplification or to use further computer commands such as
“Together” or “Factor” or trigonometric simplifications.

tau[c_][t_]:=Simplify[
Det[{D[c[tt],tt],D[c[tt],{tt,2}],D[c[tt],
{tt,3}]}]]/

Simplify[Cross[D[c[tt],tt],D[c[tt],{tt,2}]].
Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]/.tt->t

Here the determinant gives a triple scalar product.
Note: The distinction between functions and mathematical expressions 

is basic. Thus, with notation as above, tau applied to a curve, say,
helix[1,2], is a real-valued function tau[helix[1,2]] whose value
on any variable or number s is tau[helix[1,2]][s].

The unit tangent, normal, and binormal vector fields T, N, B of a curve
with k > 0 are given by

tang[c_][t_]:=D[c[tt],tt]/
Simplify[D[c[tt],tt].D[c[tt],tt]]^(1/2)/.tt->t

nor[c_][t_]:=Simplify[Cross[binor[c][t],
tang[c][t]]]

binor[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]]]/

Simplify[Factor[Cross[D[c[tt],tt],D[c[tt],
{tt,2}]].

Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]]^(1/2)/.tt->t

Here is how to preserve any such commands for future use: Type (or copy)
them into a Mathematica notebook, say frenet, and use the Cell menu to
designate the cells containing them as initialization cells. When this notebook
is saved, a choice will be offered letting you save, not only frenet, but also
a new file frenet.m that contains only the commands. Then these can be
read into later work by <<frenet.m

3. Surfaces

A coordinate patch, say x, is given by listing its components as expressions
in two variables. For example,

x[u_,v_]:= {u*Cos[v],u*Sin[v],2v}
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> Parameters can be handled as above for curves. For example, the 2 in this
formula can be replaced by an arbitrary parameter using

helicoid[b_][u_,v_]:={u*Cos[v],u*Sin[v],b*v}

Then helicoid[2] gives the original x.

For a patch, the following commands return , and
, , . We elect to represent our capital letters (E) by double lowercase letters
(ee), since many capitals have special meaning for Mathematica (for example,
E = 2.7183 . . .).

ee[x_][u_,v_]:=
Simplify[D[x[uu,vv],uu].D[x[uu,vv],uu]]/.
{uu->u,vv->v}

ff[x_][u_,v_]:=
Simplify[D[x[uu,vv],uu].D[x[uu,vv],vv]]/.
{uu->u,vv->v}

gg[x_][u_,v_]:=
Simplify[D[x[uu,vv],vv].D[x[uu,vv],vv]]/.
{uu->u,vv->v}

ww[x_][u_,v_]:=
Simplify[Sqrt[ee[x][u,v]*gg[x][u,v]-
ff[x][u,v]^2]]

The variant command, say www, in which Sqrt[...] is replaced by 
PowerExpand[Sqrt[...]] will often give decisively simpler square
roots. But one must check that its results are positive, since for example,
PowerExpand[Sqrt[x^2]] yields x.

11[x_][u_,v_]:=Simplify[Det[{D[x[uu,vv],uu,uu],
D[x[uu,vv],uu],D[x[uu,vv],vv]}]/ww[x][u,v]]/.
{uu->u,vv->v}

The formulas for mm and nn are the same except that the double derivative
uu, uu is replaced by uu, vv and vv, vv, respectively.

> Gaussian curvature K. When the commands for E, F, G and , ,  have
been read in, commands for K and H follow directly from Corollary 4.1 of
Chapter 5 (see Exercise 18 of Section 5.4). However, the fastest way to find
K for a given patch in R3 is by the following command, based on Exercise 20
of Section 5.4. In it, “Module” creates an enclave in which temporary defin-
itions can be made that let the final formula be expressed more simply.

gaussK[x_][u_,v_]:= Module[{xu,xv,xuu,xuv,xvv},
xu=D[x[uu,vv],uu];xv= D[x[uu,vv],vv];

E F G W EG F, , , = - 2
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xuu=D[x[uu,vv],uu,uu];
xuv=D[x[uu,vv],uu,vv];
xvv=D[x[uu,vv],vv,vv];
Simplify[(Det[{xuu,xu,xv}]*Det[{xvv,xu,xv}]-
Det[{xuv,xu,xv}]^2)/
(xu.xu*xv.xv-(xu.xv)^2)^2]]/.{uu->u,vv->v}

As with other useful commands, this should be saved for future use.

4. Plots

There are four basic types: Plot and Plot3D plot the graphs of functions
of one and two variables respectively. Examples:

Plot[f[x]//Evaluate,{x,a,b}]
Plot3D[g[x,y]//Evaluate,{x,a,b},{y,c,d}]

Here //Evaluate improves the speed of plotting.
ParametricPlot plots the image of a parametrized curve in the plane

R2.
ParametricPlot3D plots the image of a parametrized curve or patch.

For example, a parametrized curve c(t) in R3 is plotted for a � t � b by

ParametricPlot3D[c[t]//Evaluate,{t,a,b}]

and if x is an explicitly defined patch or parametrization, its image on the
rectangle 0 � u � 1, 0 � v � 2p is plotted by

ParametricPlot3D[x[u,v]//Evaluate,{u,0,1},
{v,0,2Pi}]

Various refinements are available for plots. For example, if the end of the
command above is altered to

...{v,0,2Pi},AspectRatio->Automatic]

then the same scale is imposed on height and width. Formally, the option
“AspectRatio” has been reset from its default value. Various adjuncts to a
plot can be also be changed. For example, the box surrounding the preced-
ing plot is eliminated by Boxed->False. The plot can be made smoother
by using PlotPoints->{m,n}, where the integers increase the default
values governing smoothness in the u and v directions, respectively.

The options available for a command cmd are given, along with their
default values, by Options[cmd]. Then ?opt will describe a particular
option.

Previously drawn plots can be shown on the same page by

Show[plot1,plot2,plot3]
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5. Differential Equations

Explicit solutions in terms of elementary functions are inherently rare, so we
describe how to find and plot numerical solutions, which are all that is needed
in many contexts. In the command for such a solution, Mathematica lumps
equations and initial conditions into a single list, then specifies the dependent
variables and the interval of the dependent variable.

Example: Solve numerically the differential equations

subject to the initial conditions

on the interval tmin � t � tmax. The format is

soln = NDSolve[{x9[t]==f[x[t],y[t],t],
y9[t]==g[x[t],y[t],t],
x[t0]==x0,y[t0]==y0},{x,y},{t,tmin,tmax}]

Note the double equal signs. Without the N for “numerical,” an exact solu-
tion would be sought.
NDSolve expresses x and y in terms of Interpolating Functions, data suf-

ficient for subsequent plots. If soln is an explicit result from the preceding
command, the solution is plotted by

ParametricPlot[Evaluate[{x[t],y[t]}/.soln],
{t,tmin,tmax}]

Here “/.” substitutes soln into the coordinates. Note the general equiva-
lence: Evaluate[X] is the same as X//Evaluate.

Maple

1. Fundamentals

Basic features of Maple are as follows:

(a) Input is typed after a prompt and must be terminated by a semicolon—
or colon, to suppress display of the output. We do not show these
below. Then press  (or ).

(b) Parentheses used for algebraic grouping and arguments of functions;
braces {. . .} for sets; brackets [. . .] for lists.

x t x y t y0 0 0 0( ) = ( ) =, ,

¢ = ( ) ¢ = ( )x f x y t y g x y t, , , , , ,
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(c) Built-in commands are abbreviated, with multiword commands com-
pressed into a single word; most are written in lower case.

(d) Multiplication always indicated by *, exponents by a caret, e.g., x^2.
(e) Assignments indicated by colon-equal, e.g., x:=2; equations by single

equal, e.g., x+y=1.
(f) Previous outputs are called up by names assigned by the user. (Naming

is important since input/outputs are not numbered.) Also, the percent
symbol (%) gives the immediately preceding output, and two of these
give the one before that.

(g) Exact values distinguished from decimal approximations (floating
point numbers). Conversion is accomplished by the “evalf” command.
For example, exp(2)*sin(Pi/3) returns ; then 
evalf(%) gives a decimal approximation.

(h) Substitution by the “subs” command. If expr is an expression involv-
ing x, then subs(x=u^2+1, expr) replaces every x in the expres-
sion by u2 + 1.

(i) If A is an array—say a matrix or vector—then to apply an operation
F to each entry of A, use the command “map” thus: map(F,A).

Maple has a distinctive command “unapply” that converts mathematical
expressions into functions. For example, if expr is an expression involving 
u and v, then unapply(expr,u,v) is the corresponding function of
u and v.

Many specialized Maple commands are collected in packages, which are
loaded, for example, by with(plots). A list of the commands in the
package appears unless output is suppressed. We rarely use packages other
than plots and LinearAlgebra (which is replacing linalg).

Maple has reasonable error notification and excellent on-line help. For
common terms, ?term will produce a detailed description (no semicolon
required).

The Maple Learning Guide is a good introduction to the most recent
version of Maple; it may be obtained from the website maplesoft.com. Of
course, there are a variety of more advanced books.

Some basic notations.

Functions can be produced by the arrow notation. Examples:

f:= x->x^3-2*x+1 or
g:= (u,v)->u*cos(v)-u^2*sin(v)

Derivatives (including partials):

diff(f(x),x) or diff(g(u,v),v)

e2 3 2
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Definite integral:

int(f(x),x=a..b) or
int(g(x,y),x=a..b,y=c..d)

If an explicit integral cannot be found, then evalf(%) gives a numerical
result. Direct numerical integration is given by evalf(Int(f(x),x=a..b)).

Linear algebra. Recent versions of Maple have changed considerably (though
it still recognizes many old forms). Currently, its commands, whether new or
not, are often signalled by new names. Typically, the new command begins
with a capital letter and is not abbreviated. These changes are most evident
in the package LinearAlgebra that is replacing linalg.

Maple has always made a fundamental distinction between an n-tuple
[v1,..,vn]—which is a list—and a vector, in any notation. The two types
cannot directly interact. In the new version, vector is replaced by Vector
(capital V).

Lists are the easiest to deal with. For instance, the usual sum of n-tuples
v=[v1,..,vn] and w=[w1,..,wn] is given by v+w, and scalar multi-
plication of an n-tuple by a number s uses an asterisk, with s*v giving
[s*v1,..,s*vn].

A matrix is produced by applying the command Matrix to a list whose
entries are lists, the latter being the rows of the matrix. Thus

Matrix([[a,b],[c,d]]).

With the package LinearAlgebra loaded, the determinant of a square matrix
m is given by Determinant(m).

When an n ¥ n matrix C is considered as a linear transformation on Rn, it
cannot directly attack [v1,..,vn] to give the image [w1,..,wn]. The
list [v1,..,vn] must first be stood on end as Vector([v1,..,vn]),
which is, in fact, an n ¥ 1 matrix. Now matrix multiplication is valid, and,
with LinearAlgebra installed, Multiply(C,Vector([v1,..,vn]) is
the n ¥ 1 matrix that convert(%,list) turns into [w1,..,wn]. This
identification of an n-tuple with a column vector is just the “column vector
convention” at the end of Section 3.1.

Since curves and surfaces are described in terms of lists, we can largely avoid
the list/Vector conflict by defining three basic vector operations directly in
terms of lists. First, note that the entries of a list p:=[p1,p2,. . .,pn]
can be any expressions, and the ith entry is displayed by the command p[i].

a b

c d
Maple

Ê
ËÁ

ˆ
¯̃

is described by as
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An operation applied to a list is automatically applied to each entry. (By con-
trast, other arrays require the command map.)

Dot product: dot:=(p,q)–> simplify(p[1]*q[1]+

p[2]*q[2]+p[3]*q[3])

Cross product: cross:=(p,q)–> simplify

([p[2]*q[3]–p[3]*q[2],p[3]*q[1]–

p[1]*q[3],p[1]*q[2]–p[2]*q[1]])

Triple scalar product: tsp:=(p,q,r)–> dot(p,cross(q,r))

The built-in simplify above will reduce the number needed in later com-
mands. Note that tsp(p,q,r) is just the determinant of the matrix with
rows p,q,r, so reversal of any two entries gives (only) a sign change.

The three commands can be saved in Maple’s concise machine language by:

save dot,cross,tsp,99dotcrosstsp.m99

(Any name ending in “.m” will do as well.) These commands can then be
introduced into later sessions by

read 99dotcrosstsp.m99

(Formerly, save and read were expressed by save(cmd1,cmd2,
’filename.m’) and read(’filename.m’), using backquotes.)

> Differential forms. The package difforms provides the essentials, including
the exterior derivative operator d. The command defform is used to specify
the degree of the forms involved. For example, defforms(x=0,y=0) tells
Maple that x and y are 0-forms, that is, real-valued functions. Then the
command d(x^2*sin(y)) yields 2x sin(y)d(x)+x2 cos(y)d(y).

2. Curves

A curve in R3 is described by giving its components as expressions in a single
variable, for example, c:= t–>[3*cos(t),3*sin(t),2*t]. Then the
vector derivative (i.e., velocity) of c is returned by diff(c(t),t), which
differentiates each component of the curve by t.

> Curves with parameters. For example, using the unapply command, the
curve c can be generalized to

helix:=(a,b)–> unapply([a*cos(t),a*sin(t),b*t]

Then helix(3,2) gives c as above.
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> Frenet apparatus. We now show how the Frenet formulas in Theorem 4.3
of Chapter 2 can be expressed in terms of Maple.

The curvature function k of a curve c ~ g is given by

kappa:= c –> unapply(simplify(
dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t)))^(1/2)/
dot(diff(c(t),t),diff(c(t),t))^(3/2)),t)

Here “unapply” makes kappa(c) a real-valued function on the domain of
c. Otherwise, it would merely be an expression in t and could not be evalu-
ated on real numbers or other variables.

The command “simplify” is the principal Maple simplification weapon, but
it not a panacea. It can be augmented by related commands such as “factor”
or “expand.” Use ?simplify for information about these.

No set pattern of commands will give good results in every case, and
human intervention is often required to get reasonable simplification.

The torsion function tau of a curve c is given by

tau := c -> unapply(simplify(
tsp(diff(c(t),t),diff(c(t),t,t),
diff(c(t),t,t,t))/factor(

dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t))))),t)

The distinction between functions and mathematical expressions is always
important. Thus, with notation as above, tau, applied to a curve, say
helix(3,2), is a real-valued function whose value at a number or variable
s is given by tau(helix(3,2))(s).
Maple has several varieties of scalar multiplication when LinearAlgebra is
installed, however, since we are working with lists, s*v suffices.

The Frenet frame of a curve. The unit tangent, normal, and binormal vector
fields T, N, B of a curve c are given by

tang:=c->unapply(
dot(diff(c(t),t),diff(c(t),t))^(-1/2)
*diff(c(t),t),t)

nor:=c->unapply(cross(binor(c)(t),tang(c)(t)),t)

binor:=c->unapply(simplify(factor(
dot(cross(diff(c(t),t),diff(c(t),t,t)),
cross(diff(c(t),t),diff(c(t),t,t)))))^(-1/2)*
cross(diff(c(t),t),diff(c(t),t,t)),t)
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The presence of square roots in these formulas means that we cannot expect
simple results unless the curve itself is quite simple. However, individual
values of the vector fields are usually readable.

Once the Frenet commands have been typed, they can be saved in a Maple
dot-m file by

save kappa,tau,tang,nor,binor,99frenet.m99

and, as usual, these commands can be installed in later work by read
99frenet.m99.

3. Surfaces

A coordinate patch, say x, in R3 is defined as a list-valued function whose
entries are expressions in two variables. For example,

x:=(u,v)–>[3*u*cos(v),3*u*sin(v),2*v]

Parameters in a patch can be handled as above for curves. For example, the
3 and 2 in this formula can be replaced by an arbitrary parameters a and b
using

helicoid:=(a,b)–> unapply([a*u*cos(v),a*u*sin(v),
b*v],u,v)

Then helicoid(3,2) gives the original patch x.

The following commands, applied to a patch x, return E, F, G, W = EG
- F 2, and , , . We elect to represent these capital letters (E) by double
lowercase letters (ee) since some capitals have special meaning for Maple (for
example, I = -1).

ee := x–> unapply(dot(diff(x(u,v),u),
diff(x(u,v),u)),u,v)

ff := x–> unapply(dot(diff(x(u,v),u),
diff(x(u,v),v)),u,v)

gg := x–> unapply(dot(diff(x(u,v),v),
diff(x(u,v),v)),u,v)

(Recall that simplify is built into the dot command, defined earlier.)

ww := x–> unapply(simplify(
ee(x)(u,v)*gg(x)(u,v)–ff(x)(u,v)^2)^
(1/2),u,v)
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ll := x–> unapply(tsp(diff(x(u,v),u,u),
diff(x(u,v),u),diff(c(u,v),v))/
ww(x)(u,v),u,v)

The formulas for mm and nn are the same, except that the double derivative
u,u is replaced by u,v and v,v, respectively.

As before, these commands can be saved by

save ee,ff,gg,ww,ll,mm,nn,99efgwlmn.m99

> Gaussian and mean curvature. When the commands above for E, F, G and
, ,  have been read in, commands for K and H follow immediately from
Corollary 4.1 of Chapter 5. However, a faster way to find K for a given patch
in R3 is to use the following command, based on Exercise 20 of Section 5.4.
In it, proc, for “procedure”, begins an enclave—terminated by end proc—
within which definitions can be made that do not escape to the outside.
These temporary definitions allow the final formula to be expressed more
concisely.

gaussK := proc(x)local xu,xv,xuu,xuv,xvv;
xu := diff(x(u,v),u);xv := diff(x(u,v),v);
xuu := diff(x(u,v),u,u);
xuv := diff(x(u,v),u,v);
xvv := diff(x(u,v),v,v);

unapply(simplify(factor(
tsp(xuu,xu,xv)*tsp(xvv,xu,xv)–
tsp(xuv,xu,xv)^2)/

(dot(xu,xu)*dot(xv,xv)–dot(xu,xv)^2)^2),u,v)
end proc

Here tsp is the triple scalar product, defined earlier. As usual, gaussK can
be saved for future use.

4. Plots

Maple has three basic plot commands.

(1) The command plot has two uses:
(i) Graphs. If f is a real-valued function defined on a � t � b, then

plot(f(t),t=a..b) draws its graph.
(ii) Parametric plots. If g is another such function, then the curve

with c(t) = [f(t),g(t)] is plotted in R2 by plot(c(t),
t=a..b). Alternatively, plot([f(t),g(t)],t=a..b)
gives the same result.
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Plots can be modified by options, thus: plot([c(t),t=a..b],
<option>), where, for example, the option numpoints=200 would
increase the smoothness of the plot, and scaling=constrained
imposes the same scale on the axes. Use ?plot[options] to get many
others.

(2) The command plot3d also has two uses. Let D be a region a � u �
b, c � v � d in R2. Then
(i) Graphs. If ƒ is a real-valued function defined on D, its graph is

plotted by plot3d(f(u,v),u=a..b,v=c..d).
(ii) Parametric plots. If x:D Æ R3 is a list-valued patch or parame-

trization, its image is plotted by plot3d(x(u,v),u=a..b,
v=c..d).

Again, ?plot3d describes a number of ways to specify plot style.
(3) Parametrized curves in R3 are plotted using the command “spacecurve”

from the plots package. As an example: spacecurve(c(t),
t=–2..4)

To show more than one plot on the same page, each plot should be
named, say, A:= plot3d(x(u,v),u=0..1,v=0..Pi): with termi-
nal colon to avoid a flood of numbers. Then use “display” from the plots
package: display([A,B,C]).

5. Differential Equations

Explicit solutions in terms of elementary functions are rare, so we describe
how to find and plot numerical solutions, which are just as useful in many
contexts. In the command for a numerical solution, Maple lumps equations
and initial conditions into a single set, then gives the dependent variables (as
follows).

For example, suppose we want to solve numerically the equations

subject to the initial conditions

on the interval a � t � b. The format is

numsol:= dsolve(
{diff(x(t),t)=f(x(t),y(t),t),
diff(y(t),t)=g(x(t),y(t),t),
x(t0)=x0,y(t0)=y0},{x(t),y(t)},type=numeric)

x t x y t y0 0 0 0( ) = ( ) =,

¢ = ( ) ¢ = ( )x f x y t y g x y t, , , , ,
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This solution is plotted by a command from the plots package:

odeplot(numsol,[x(t),y(t)],a..b)

Only now is the domain a � t � b of the solution specified.

Computer Exercises

Chapter 2: 2.2/9, 2.4/11, 14, 15, 19, 20, 2.7/7
Chapter 3: 3.2/5, 3.5/4, 5, 9, 10
Chapter 4: 4.2/5, 6, 11, 4.3/6, 11, 4.6/6, 4.8/10
Chapter 5: 5.4/16, 18–21, 5.6/16, 18, 5.7/8, 9
Chapter 6: 6.5/6, 6.8/11, 13
Chapter 7: 7.2/13, 7.5/9–12, 7.7/12, 13
Chapter 8: 8.1/8
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These answers are not complete; and in some cases where a proof is required,
we give only a hint.

Chapter 1

Section 1.1

1. (a) x2y3 sin2 z.
(c) 2x2y cosz.

3. (b) 2xeh cos(eh), h = x2 + y2 + z2.

Section 1.2

1. (a) -6U1(p) + U2(p) - 9U3(p).
3. (a) V = (2z2/7)U1 - (xy/7)U3.

(c) V = xU1 + 2yU2 + xy2U3.
5. (b) Use Cramer’s rule.

Section 1.3

1. (a) 0.
(b) 7 · 27.
(c) 2e2.



3. (a) y3.
(c) yz2(y2z - 3x2).
(e) 2x(y4 - 3z5).

5. Use Exercise 4.

Section 1.4

1.

3.
5. The lines meet at (11, 7, 3).
7. vp = (1, 0, 1)p at p = (0, 1, 0).

Section 1.5

1. (a) 4.
(b) -4.
(c) -2.

3. Use Exercise 2 and f((1/x)V + (1/y)W) = f(V )/x + f(W )/y.
5. (b) (x dy - y dx)/(x2 + y2).
7. (a) dx - dz.

(b) not a 1-form.
(c) zdx + xdy.

9. ±(0, 1, 1/2).
11. (a) Consider the Taylor series for t Æ f(p + tv).

(b) Exact: -.420, approximate: -.500.

Section 1.6

1. (a) f Ÿy = yz cosz dx dy - sinz dx dz - cosz dy dz.
(b) df = -z dx dy - y dx dz, since d(dz) = 0.

7. Apply this definition to the formula following Definition 6.3.
9. For the alternation rule, set f = y, g = x.

Section 1.7

1. (c) (0, 0), (1, 0).
3. F* (v) = F(p + tv)¢(0) = 2(p1v1 - p2v2, v1p2 + v2p1) at F(p).
5. F* (vp) = F(p + tv)¢(0) = (F(p) + tF(v))¢(0) = F(v)F(p).

b s s s s( ) = + - -( )1 1 2 12, , .

¢( ) = -( ) ( )a p 2 1 0 1 2 1 1 2, , at , , .
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7. Using Lemma 4.6 gives vp[g(F)] = (d/dt)|0 g(F(p + tv)) = F(p + tv)¢(0)[g]
= F* (vp)[g].

9. (a) GF = (g1(f1, f2), g2(f1, f2)).
(b) (GF)* (a ¢(0)) = (GF(a))¢(0) = G* (F(a)¢(0)) = G*F* (a ¢(0)).
(c) F-1 is one-to-one and onto. To show it is regular, start from 

F(F -1) = I, the identity map. Hence F* (F -1)* = I* = identity map
on tangent vectors. So (F -1)* cannot carry a nonzero vector to zero.

Chapter 2

Section 2.1

1. (a) -4.
(b) (6, -2, 2).

(c)

(d) .

(e) .
5. If v ¥ w = 0, then u • v ¥ w = 0 for all u; use Exercise 4.
7. v2 = v - (v • u) u.

Section 2.2

1. (b) s(t) = 2t + t3/3.

3. .

7. For (ii), |h¢| = -h¢ � 0, so the change of variables formula in an

integral gives 

9. L(a) ª 12.9153 < 14.1438 ª L(b).

Section 2.3

1. k = 1, t = 0, B = -(3, 0, 4)/5, center (0, 1, 0), radius 1.
7. (a) 1 = ||a(h)¢|| = ||a ¢(h)h¢|| = |h¢|, hence h¢ = ±1.

(b) Let e = ±1. Then = a(h) implies T = a ¢(h)h¢ = eT(h). Hence 
= k (h)N(h), and so on.Nk

a

dt dt L
b

a

a

b

a a a- ¢ = ¢ = ( )Ú Ú .

L h h ds h h ds h ds
c

d

c

d

c

d

a a a a( )( ) = ( ) = ¢( ) - ¢( ) = - ¢ ¢ =Ú Ú Ú¢

b s s s s( ) = + ( )( -1 2 2 22 1/ / ,sinh /,

-2 15/

2 11

1 2 1 6 1 0 3 10, , , ,-( ) -( )/ , / .

470 Answers to Odd-Numbered Exercises



9. For the rectifying plane. From the formula for in the text, delete b (0)
and the N0 term. The remaining terms give the same general shape as
the curve (s, ±s3).

11. (b) First differentiate B = ; consider the two ± cases and differentiate
again.

Section 2.4

1. (a) Let f = t2 + 2. Then k = t = 2/f 2 and B = (t2, -2t, 2)/f.
(c) All the limits are natural unit vectors, ±(1, 0, 0), . . .

3. (a) N = (0, -1, 0), t(0) = 3/4.
7. (a) (g (t) - a (t0)) • u = 0.

(b) g has constant speed, so use Exercise 5.
9. Evidently, a is a cylindrical helix. By Exercise 7 its cross-sectional curve

g is a plane curve with constant curvature, hence g lies in a circle.
11. (c) (Mathematica):

helix[a_,b_][t_]:={a*Cos[t],a*Sin[t],b*t}
ParametricPlot3D[{helix[2,1][t],helix[–.5,1]
[t]}//Evaluate,{t,0,6Pi}]
(Maple): With the plots package installed,
helix:=(a,b)–>[a*cos(t),a*sin(t),b*t]
spacecurve({helix(2,1)(t),helix(–.5,1)(t)},
t=0..6*Pi,numpoints=100)
Recall that we do not show Maple’s mandatory terminal semicolon.

13. (b) lt(s) = a (t) + s(a ¢(t) • a ¢(t)/a ≤(t) • J(a ¢(t)) J(a ¢(t)) for 0 � s � 1.
(c) For a unit speed, lt(s) = a + s(1/ )N. Hence dlt/ds = (1/ )N (inde-

pendent of s). Evidently this is normal to a at a (t). Since a* =
a + (1/ )N, we get (a*)¢ = T + (1/ )¢N - T = (1/ )¢N, in agree-
ment with dlt/ds at a* (1).

15. (a) For the rectifying plane (orthogonal to N):
(Mathematica):
viewN[a_,eps_]:=ParametricPlot[{(a[t]–a[0]).
tang[a][0],
(a[t]–a[0]).binor[a][0]}//Evaluate,
{t,–eps,eps}]

(Maple)
viewN:=(a,eps)–>plot([dot((a(t)–a(0)),
tang(a)(0)),
dot((a(t)–a(0)),binor(a)(0)),t=–eps..eps])

k̃k̃k̃

k̃k̃

B

b̃
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(b) (iii) For all curves with t(0) π 0 there are essentially only two cases,
depending on the sign of t.

17. (a) .
(b) •.

(c) .
(d) 2p (see Exercise 18).

19. (c) For a suitable n, let tn be t with new z-component (1/n) sin3t. Here
= k, and in the notation of Exercise 12, .

21. Use Theorem 4.6. By hand computation (easy, if k and t are first found
by computer), we get t/k = (3ac/2b2)(P/Q)3/2, where

Thus t /k is constant if and only if 4b2 = 9a2c2/b2, that is, 3ac = ±2b2.
(Hence t /k = ±1).

Section 2.5

1. (a) 2U1(p) - U2(p).
(b) U1(p) + 2U2(p) + 4U3(p).

5.

Section 2.6

1. Show that V · = 0, and use Lemma 1.8.
3. For instance, E2 = -sinzU2 + coszU3 and E3 = E1 ¥ E2.

Section 2.7

1. w12 = 0,
3. w12 = -df, w13 = cos f df, w23 = sin f df.
5. By Corollary 5.4(3),
7. (Mathematica):

(a) connform[A_]:=Simplify[Dt[A].Transpose[A]]
(b) In A, write q for J and f for j. Then in MatrixForm

[connform[A]], read Dt[q] as dq.

(Maple): Install the packages LinearAlgebra and difforms. With q and 
f as above, write defform(q=0,f=0) to identify them as real-valued 
functions.
(a) connform:=A–>simplify(Multiply(map(d,A),

Transpose(A)))

— ( ) = [ ] + —V i i i i i V if E V f E f ES S

w w13 23 2= = df / .

W̃

— = Â ¢( )[ ] = Â( ) ( )( )( ) = ( )¢ ( )¢( )a aa at i i i iW t w U d dt w t U W t/ .

P c t b t a Q c t a c b t a= + + = + ( ) +9 4 9 92 4 2 2 2 2 4 2 2 2 2 2and

ds dt x y= ¢ + ¢2 2k̃

p / 2

p / 2
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Section 2.8

3. (a) Compute q = Adx, as in the text. (A was found in Section 7.)
(b) For example, E1[r] = dr[E1] = q1(E1) = 1.
(c) Use the appropriate form of the chain rule.

Chapter 3

Section 3.1

3. (Ta)-1 = T-a, and since C is orthogonal, C-1 = tC. Thus F-1 = (TaC)-1 =
C -1 (Ta)-1 = tCT-a. By Exercise 1, this equals TtC (-a)

tC = T-tC(a)
tC.

5. (b) Using Exercise 3 we find 
7. Use Exercises 2 and 3.
9. (a) For J such that C(1, 0) = (cosJ, sinJ), C has matrix

(b) O(1) consists of +1 and -1, so F(t) = a ± t for any number a.

Section 3.2

1. T(vp) = vT(p).
3. The middle row of C is (-2, 1, 2)/3, and T is translation by

5. (Mathematica):
Let ame={e1,e2,e3} and amf={f1,f2,f3} be the attitude
matrices of the frames in Exercise 3.
(b) Set cc:=Simplify[Transpose[amf].ame] Then Sim-

plify[cc.e1] is f1, etc.
(Maple):
Install the package LinearAlgebra, and let ame=Matrix([e1,e2,
e3]) and amf=Matrix([f1,f2,f3]) be the attitude matrices of
the frames in Exercise 3.
(b) Set cc:=simplify(Multiply(Transpose(amf), ame)).

Then simplify(Multiply(cc,Vector(e1))) is
Vector(f1), etc.

3 1 2 2 3, 4/3,- -( )/

cos sin

sin cos
.

J J
J J

m

±
Ê
ËÁ

ˆ
¯̃

F - ( ) = -( )1 5 2 2 3 2p , ,
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Section 3.3

1. If the orthogonal parts of F and G are A and B, then by Exercise 2 of
Section 1, sgn(FG) = det AB = (detA)(det B) = det BA = sgn(GF ).
Then +1 = sgnI = sgn(FF -1) = sgn(F )sgn(F -1).

5. C is rotation through angle p/2 about the axis given by a.

Section 3.4

1. (b) By definition, s(s) is the point canonically corresponding to T(s);
hence by Exercise 1 of Section 2, C(s ) corresponds to F* (T ), the
unit tangent of F(b ).

3. Translate each triangle so that its new first vertex is at the origin. A sketch
will show that the required C is orientation-reversing, and we find C =

5. For a tangent vector v at p,

Section 3.5

3. Take a = 2, b = ±2.
5. Yes, since c has constant speed, curvature, and torsion.

7.

9. For simplicity, assume a � 0 � b; then:
(Mathematica):
(a) kdetc[f_,a_,b_]:=

NDSolve[{x’[s]==Cos[phi[s]],
y’[s]==Sin[phi[s]],
phi’[s]==f[s],x[0]==0,y[0]==0,
phi[0]==0},{x,y,phi},{s,a,b}]

(b) draw[f_,a_,b_]:=ParametricPlot[Evaluate
[{x[s],y[s]}/.kdetc[f,a,b]],{s,a,b},
AspectRatio–>Automatic]

(Maple):
(a) kdetc:=f–>dsolve({diff(x(s),s)=cos(phi(s)),

diff(y(s),s)=sin(phi(s)),diff(phi(s),s)=f(s),
x(0)=0,y(0)=0,phi(0)=0},{x(s),y(s),
phi(s)},type=numeric)

b j j js s ds s ds s f s ds( ) = ( ) ( )( ) ( ) = ( )ÚÚ Úcos sin, , where

F W F W t W F tC Wv F v* *( ) ( .
*

—( ) = +( )¢ ( ) = ( ) + ( )( )¢ ( ) = — ( )p v p v0 0

-Ê
ËÁ

ˆ
¯̃

3 5 4 5

4 5 3 5

/ /

/ /
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(b) Install plots. Define draw:=(f,a,b)–>odeplot(kdetc(f),
[x(s),y(s)],a..b,scaling=constrained).

Chapter 4

Section 4.1

1. (a) The vertex.
(b) All points on the circle x2 + y2 = 1.
(c) All points on the z axis.

5. (b) c π -1.
9. Use Exercise 7.

11. q is in F(M) if and only if F-1(q) is in M, that is, g(F-1(q)) = c. Use the
Hint to apply Theorem 1.4.

Section 4.2

1. (c) The Monge patch x(u, v) = (u, v, u2 + v2) covers the entire surface;
a parametrization based on Example 2.4 omits the point (0, 0, 0).

3. xu ¥ xv = vd ¢ (u) ¥ d(u).
5. (a) EG - F 2 = b2 + u2 is never zero.

(b) Helices and straight lines (rulings).
(c) H: xsin(z/b) - ycos(z/b).
(d) For x as given:

(Mathematica): ParametricPlot3D[x[u,v]//
Evaluate, {u,–1,1},{v,0,2Pi}]

(Maple): plot3d(x(u,v),u=–1..1,v=0..2*Pi)
7. (b) x(u, v) = (cosu - vsinu, sinu + vcosu, v).
9. In all cases, (i) check that the three partial derivatives of the defining 

function g are never zero simultaneously on M: g = 1 (Theorem 1.4),
and (ii) First, check that the components of x satisfy the equation 
g = 1.

11. (c) x ± (u, v) = (acosu, bsinu, 0) ± v(-asinu, bcosu, c).
(d) (Mathematica):

xplus[u_,v_]:={1.5*(Cos[u]–v*Sin[u]),
Sin[u]+v*Cos[u],2v}

ParametricPlot3D[xplus[u,v]//Evaluate,
{u,0,2Pi},{v,–1,1}]

(Maple): xplus:=(u,v)Æ[1.5*(cos(u)–v*sin(u)),
sin(u)+v*cos(u),2*v]
plot3d(xplus(u,v),u=0..2*Pi,v=–1..1)
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Section 4.3

1. (a) r2 cos2 v.
(b) r2(1 - 2cos2 v cosu sinu).

3. (a) and are the Euclidean coordinate functions of x-1y.
(b) Express y = x( , ) in terms of Euclidean coordinates, and 

differentiate.
5. (a) M is given by g = z - f(x, y) = 0, with —g = (-fx, -fy, 1), and v is

tangent to M at p if and only if v • —g(p) = 0.
7. —g = (-y, -x, 1) is a normal vector field; V is a tangent vector field if

and only if V • —g = 0, for example, V = (0, 1, x).
9. (a) p(M) consists of all points r such that (r - p) • z = 0; hence vp is

in Tp(M) (that is, v • z = 0) if and only if p + v is in p(M).
11. (a) If a/b = m/n for integers m, n, consider Dt = 2p m/a = 2p n/b.

(b) Assume a(s) = a(t) for s π t, so x(as, bs) = x(at, bt). Equality for
z components and for x2 + y2 implies as - at = 2pm and bs -
bt = 2pn for some integers m, n. Thus a/b = m/n, a contradiction.

Section 4.4

1.

3. If a is a curve with initial velocity v at p, then

5. On the overlap of Ui and Uj, dfi - dfj = d(fi - fj) = 0.

7. (b) .

Section 4.5

1. If x: D Æ M is a patch, then F(x): D Æ N is (by Theorem 3.2) a dif-
ferentiable mapping. Hence y-1Fx is differentiable for any patch y in N.

3. If and are patches in M and N, respectively, note that -1F =
( -1y)(x-1 ) is differentiable, being a composition of differentiable 
functions.

5. By Exercise 1, A is differentiable. Since A2 = I, A-1 = A, so A is a dif-
feomorphism. For A*, consider its effect on a curve t Æ cos tp + sin tu
in S .

7. Theorem 5.4.

xy
xyyx

du u
u

u
u
uu u˜ ˜

˜
x x

x( ) = [ ] =
∂ ( )( )

∂
=

∂
∂

= 1

v p vp pg f gf g f f g f f( )[ ] = ( )¢( ) = ¢( )( )( )¢( ) = ¢ ( )( ) [ ]a a a0 0 0 .

df fd u vf f= Ÿ +( )( )x x, .

d f
f

u
f

v
f

u vu v v u v uf f f f f( )( ) =
∂ ( )( )

∂
( ) -

∂ ( )( )
∂

( ) + ( ) ∂
∂

( ) -
∂
∂

( )È
ÎÍ

˘
˚̇

x x
x
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x

x x x x,
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T
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9. (a) Use Exercise 8.
(b) F* (axu + bxv) = ayu + byv implies linearity.

11. M is diffeomorphic to a torus if the profile curve a of M is closed, and
to a cylinder if a is one-to-one. With parametrizations as suggested,
F(x(u, v)) = y(u, v) is a diffeomorphism.

13. (a) If p in M, there is a q in such that p = G(q). By consistency,
F(p) = (q) is a valid definition. G is regular, hence locally has 
differentiable inverse mappings. Thus, locally F = G-1 so F is 
differentiable.

(b) If F(p1) = F(p2), then for q1, q2 in such that G(q1) = p1, G(q2) =
p2, we have F(G(q1) = F(G(q2)). Thus (q1) = (q2). Then the
hypothesis gives G(q1) = G(q2), that is, p1 = p2.

Section 4.6

3. (b) Use Theorem 6.2.
5. (a) Let r(t) = ||a(t)||. Then let f = U1 • a/||a || and g = U2 • a/||a ||. Apply

Exercise 12 of Section 2.1 to get J.
(b) J(a) and J(b) measure the same angle; hence they differ by some

integer multiple of 2p.
(c) Use Exercise 1 to evaluate y on the polar expression for a in (a).

(d)

7. (a) Since (F*(f))(a¢) = f((F*)(a ¢)) = f(F(a)¢), we get

9. (a) 2pm, (b) 2pn.
13. The text shows that if f is the dual of V, then The dual

of curl V is df, and dA ª W du dv. It follows that 

Section 4.7

1. (a) Connected, not compact.
(c) Not connected and not compact.
(e) Connected and compact.

3. If v is nonvanishing on N, show that F*(v) is nonvanishing on M.
5. (a) All—by Definition 7.1.

(b) Sphere, torus—by Lemma 7.2.

U V dA V
W

W du dv du dvu v
u v• • .curl curl ,=

¥
= ( )x x

x xf

V ds• .Ú Ú= f

F F dt
a

b

F
* .f f a f

a a
( ) = ( )¢Ê

Ë
ˆ
¯ =Ú Ú Ú ( )

det

•
.

a a
a a

, ¢( )
=

¢ ¢
+( ) =

¢ - ¢
+

f g

f g
f g

fg gf
f g

2 2
2 2

F̃F̃
M̃

F̃
F̃

M̃
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(c) All—by Proposition 7.5
(d) Plane, sphere (see text).

9. (c) If M is connected, then path-connectedness (Definition 7.1) follows
using parts (a) and (b). If M is path-connected, let U and M - U

be open sets of M such that U contains a point p.
Assume that M - U contains a point q. There is a curve segment

a:[a, b] Æ M from p to q. Since a is continuous, a-1(U ) and a-1

(M - U ) are disjoint open sets filling [a, b]. This contradicts the
stated connectedness of [a, b].

11. Fix q in M - R; then by the Hausdorff axiom, for each p in R, there
are disjoint neighborhoods Up of p and Uq,p of q. By compactness, a
finite number of the neighborhoods Up cover R. Then the intersection
of the corresponding neighborhoods Up,q is a neighborhood of q that
does not meet R.

Section 4.8

1. If M is orientable it has a nonvanishing 2-form m. Then f(t) = m(a ¢(t),
Y(t)) is a differentiable function on [a, b]. By (ii), f(a) f(b) < 0; hence f is
somewhere zero on a < t < b. This contradicts (i).

5. (a) The function p Æ d(0, p) is continuous on M, hence takes on a
maximum.

7. (i) Since M is nonorientable, there is a reversing loop (as in the hint)
at some point q. Fix Uq. Then every point Up in M̂ can be connected
to Uq by a curve in M̂. Proof: Move Up along a curve from p to q.
If the result is -Uq, move it around the reversing loop.

9. (b) B - b is diffeomorphic to an ordinary band.
11. (a) Recall that a neighborhood in a surface is the image under a coor-

dinate patch of a neighborhood in R2. Evidently every neighbor-
hood x(U ) of 0 meets every neighborhood y(V ) of 0*.

(b) The sequence {(1/n, 0)} converges to 0 when expressed in terms of
x, and to 0* in terms of y.

(c) Relative to x and y, the coordinate form of F is the identity map.
13. (a) In terms of the natural coordinates, a¢(t) = V(a(t)) becomes

(b) The differential equations are u¢ = -u2, v¢ = uv, and the initial 
conditions are u(0) = 1, v(0) = -1. The first differential equation 
integrates to 1/u = t + A. But u(0) = 1, so u = 1/(t + 1). Thus we
get v¢ = v/(t + 1), which integrates to v = B(t + 1). Then v(0) =
-1 implies v = -(t + 1).

¢ + ¢ = ( ) + ( )u U v U f u v U f u vU1 2 1 1 2 2, , .
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15. Smooth overlap follows from the identity

Chapter 5

Section 5.1

1. Use Method 1 in the text.
3. (a) 2.

(c) 1.
5. Meridians go to meridians (great circles through the poles), parallels to

parallels—except for the top and bottom circles of the torus.
7. Use Method 1 and the definition of tangent map in Chapter 1.

Section 5.2

1. (b) If e1, , then S(e1) = e1 and S(e2) = -e2.

Section 5.3

1. k1k2 � 0 and k1 = k2 imply k1 = k2 = 0.
5. (b) K > 0: an ellipse on one side and no points on the other. K < 0: the

two branches of a hyperbola. K = 0, nonplanar: two parallel lines
on one side, no points on the other.

7. (a) If a is a curve with initial velocity v at p, then F*(v) = F(a)¢(0) =
(a + eUa)¢(0) = v - eS(v) at F(p).

Section 5.4

1. W = r2 cosv > 0, U = x/r, K = 1/r2, H = -1/r.
5. Use a ¢ = a¢1xu + a¢2xv to find speed.
7. K = -36r2/(1 + 9r4)2.
9. Expand S(v) ¥ v. This vector is zero if and only if its dot product with

xu ¥ xv is zero. Use the Lagrange identity (Exercise 6 of Section 3).
11. k(u) = S(v) • v/v • v. Substitute v = v1xu + v2xv.
15. (a) K is negative except at the origin, but this is a planar point, hence

an umbilic with k = 0.

e u u2 1 2 2= ±( ) /

x y x y xx yy¥( ) ¥( ) = ( ) ¥ ( )- - -1 1 1 .
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(b) The hint leads to . These two 
umbilics reduce to one for the paraboloid of rotation, a = b, where
(by symmetry) we expect 0 to be umbilic.

17. (b) Since k < B, if e < 1/B, then xu ¥ xv π 0.
(c) S(xu) ¥ S(xv) = -kcosvT ¥ xv/e.

19. (Mathematica):
(b) hyperboloid[a_,b_,e_][u_,v_]:=

{u,v,u^2/a^2+e*v^2/b^2}
(c) monkeypolar[r_,q_]:=monkey[r*Cos[q],

r*Sin[q]]
(Maple):
(b) hyperboloid:=(a,b,e)–>unapply([u,v,u^2/a^2+

e*v^2/b^2],u,v)
(c) monkeypolar:=(r,q)–>monkey(r*cos(q),

r*sin(q))
21. Maple has a built-in tube command in the plots package. For (c), with

t defined as in the exercise referred to, the tube is plotted by 
tubeplot(t(t),t=0..2*Pi,radius=0.5)
(Mathematica):
(a) With the commands for unit normal and binormal installed (see

Appendix), a tube formula is
tube[c_,r_][t_,phi_]:=c[t]+r*(Cos[phi]*
nor[c][t]+Sin[phi]*binor[c][t])
This is plotted—in (b), for example—by
ParametricPlot3D[tube[helix,1/2][t,phi]//
Evaluate,{t,0,4Pi},{phi,0,2Pi},
PlotPoints–>{40,20},Axes–>None,Boxed–>
False]

(c) If the general approach in (a) is slow in this case, a faster way is to
copy the outputs of binor[t][t,phi] and nor[t][t,phi]
into an explicit definition of the tube function of t.

Section 5.5

3. (a) The critical points of K are those of h. They occur at the intercepts
of M with the coordinate axes.

(b) For the ellipsoid, c2/(a2b2) � K � a2/(b2c2). (Note again the effect of
a = b = c.)

5. (c) Use Z = grad(ez cosx - cosy) and W = Z ¥ V. Then —VZ ¥
W + V ¥ —W Z = 0 and V • —VZ ¥ —WZ = -e2z.

0 2 42 2 2 2, ,± ( ) - -( )( )b a b a b
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7. (a) Use 
(b) The tangency condition for a vector v at p is 

Section 5.6

3. Use Remark 6.10.
5. Since U • V is constant, U¢ • V + U • V¢ = 0. If a is principal in M, then

using Lemma 6.2, U¢ • V = 0, hence V • U¢ = 0. Continue as for Lemma
6.3.

7. S(T) = -U¢; hence by orthonormal expansion, U¢ = -S(T) • T T -
S(T) • V V. Continue as in the proof of the Frenet formulas.

11. (a) Set s = a + fd. Then f is determined using the equation s ¢ • d¢ = 0.
(b) d ¢ ^ d, a ¢ implies that a ¢ ¥ d and d ¢ are collinear. Then a ¢ ¥ d =

pd ¢. Hence xu ¥ xv = pd ¢ + vd ¢ ¥ d, so W 2 = (p2 + v2)d ¢ • d ¢.
Now use Exercise 12 of Section 4.

(c) On each ruling, K has a unique minimum point; the striction curve
meets the ruling at this point.

13. (a) Since s (u + e) - s (u) ª es¢(u), the Hint gives de = es¢ (u) • d(u) ¥
d ¢(u)/||d (u) ¥ d ¢(u)||. However ||d (u) ¥ d ¢(u)||e ª ||d (u) ¥ d(u + e)||
= sinJe ª Je. Since ||d(u) ¥ d ¢(u)||2 = d ¢ • d ¢, we see that limeÆ0de/Je

= s ¢ • d ¥ d¢/d ¢ • d ¢ = p.
15. Compute E, F, G and , , . (Computer formulas for these are given

in the Appendix.) Then EG - F 2 π 0 proves (a), and F =  = 0 proves
(b).

17. (a) K = -h¢2J ¢2/W 4, H = u(h¢J ≤ -J ¢h≤)/(2W3), where W2 = h¢2 + u2J ¢2.
(b) d ¥ d ¢ = J ¢U3. Since K is a minimum when u = 0, the z axis is 

the striction curve, and p = h¢/J ¢, reciprocal of turn rate (Exercise
13 of Section 6).

19. Use W = ||xu ¥ xv||.

Section 5.7

1. K = (1 - x2)(1 + x2exp(-x2))-2. Hence K > 0 ¤ -1 < x < 1.
3. In a canonical parametrization, if g is constant, the profile curve is

orthogonal to the axis, so the surface M is part of a plane. Otherwise,
K = 0 ¤ h≤ = 0 ¤ h¢ is constant. If h¢ = 0, the profile curve lies in a
line parallel to the axis, so M is part of a cylinder. If h¢ π 0, the profile
curve is a slanting line, so M is part of a cone.

5. M has parametrization x(r, v) = (rcosv, rsinv, f(r)). Then E = 1 + f ¢2,
F = 0, G = r2, and WL = rf ≤, WM = 0, WN = r2f ¢, with W 2 = EG -
F 2 = r2(1 + f ¢2).

Â =v p ai i i
2 0.

Z x a Ui i i= Â( ) .



7. (a) h(u) = asinh(u/c) satisfies the given differential equation with 
K = -1/c2. Use the integral formula for g(u). Then as u Æ 0, the 
slope angle tanj = h¢/g¢ approaches .
The curve becomes vertical when g¢ = 0, hence the integrand of g
vanishes. There cosh2(u*/c) = c2/a2, so 

(b) h(u) = ce-u/c satisfies the differential equation and initial condition
in Example 7.6.

Chapter 6

Section 6.1

1. (a) a ≤ = w12(T)E2 + w 13(T)E3. Hence a ≤ is normal to M if and only
if w12(T ) = 0.

3. Apply the symmetry equation to E1, E2. Then use Corollary 1.5.

Section 6.2

1. (a) q 1 = dz, q 2 = rdJ.
(d) K = 0 and H = -1/2r.

Section 6.3

1. If K = H = 0, then k1k2 = k1 + k2 = 0. Thus k1 = k2 = 0, so S = 0.
3. In the proof of Liebmann’s theorem, replace the constancy of K = k1k2

by that of 2H = k1 + k2.
5. In the case k1 π k2, use Theorem 2.6 to show that, say, k1 = 0. By Exer-

cise 2 the k1 principal curves are straight lines. Show that the k2 princi-
pal curves are circles and that the (k1) straight lines are parallel in R3.

Section 6.4

1. (d) fi (b): If z is an arbitrary tangent vector at p, write z = av + bw.
Then

F a F abF F b F

a ab b

* * * • * *

• .

z v v w w

v v w w z

2 2 2 2 2

2 2 2 2 2

2

2

= + +

= + + =

h a u c c amax sin * .= ( ) = -h 2 2

a c a c a c a/ / / /( ) - = -1 2 2 2 2
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3. (b) Monotone reparametrization does not affect length of curves.
(c) By the definition of r, given any e > 0 there is a curve segment a

from p to q of length < r(p, q) + e, and an analogous b for q and
r. Combining a and b gives a piecewise differentiable curve segment
from p to r. (If only everywhere-differentiable curves are allowed,
there is no change in r, but proofs are harder.)

5. (a) Define F(a (u) + vT(u)) = b(u) + vT(u).
(b) Choose b in R2 with plane curvature equal to k.

7. By the exercise mentioned, a shortest curve in R2 joining the points
parametrizes a straight line segment. Thus any curve in M joining the
points has length L > 2.

9. F*((F-1)*v) = (FF-1)*v = I*v = v. Since F is an isometry, ||(F-1)*v|| = ||v||.
11. Write F(x(u, v)) = (f(u), g(v)) for suitable parametrizations.
13. For y, show that the conditions E = G and F = 0 are equivalent 

to g¢ = cosg, which has solution g(v) = 2tan-1 (ev) - p /2 such that 
g(0) = 0. Use criteria suggested by Exercise 8.

15. F(x(u, v)) = ( f(u)cosv, f(u) sinv), where x is a canonical parametriza-

tion and 

Section 6.5

1. First show that a is a geodesic if and only if w12(a ¢) = 0. Let 1, 2

be the transferred frame field, with connection form 12. Since 1 =
F*(a¢) = F(a)¢, Lemma 5.3 gives

3. There is no local isometry of the saddle surface M (-1 � K < 0) onto a
catenoid with -1 � < 0—or vice versa—since K has an isolated
minimum point, at 0, while takes on each of its values on entire
circles. Many other examples are possible.

5. (b) Follows from Lemma 4.5, since computation for xt shows Et =
cosh2 u = Gt and Ft = 0.

(d) For Mt, Ut = (s, -c, S)/C, so the Euclidean coordinates of Ut are 
independent of t.

7. A local isometry must carry minimum points of KH to minimum points
of KC, and also preserve orthogonality and geodesics.

Section 6.6

1. (b) q q w1
2

2 12
2 2 2

1 1 1 1= + = = + = +( )u du u dv dv u K u, , ,/ / .

K
K

0 12 12 12 12= ¢( ) = ( ) ¢( ) = ¢( )( ) = ( )¢w a w a w a w aF F F* * .( )

Ew
EE

f u dt h t
u

( ) = ( )Ê
Ë

ˆ
¯Úexp .

1

x̃
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3. (b) Substitution into dw 13 = w 12 Ÿ w 23 leads to

Section 6.7

1. 1 + fu
2 + fv

2 � 1.

3. (a)

(b) xu ¥ xv points inward, and thus 

. Hence 

5. F carries positively oriented pavings of M to positively oriented pavings
of N. Apply the suggested exercise to each 2-segment.

Section 6.8

1. (a) F*(du Ÿ dv) = F*(du) Ÿ F*(dv) = df Ÿ dg = (fudu + fvdv) Ÿ (gudu +
gvdv) = (fugv - fvgu)du Ÿ dv.

(b)
3. (a) Recall that G* ª -S. Let e1, e2 be a principal frame at a point of M.

Then G*(e1) • G*(e2) = 0. Thus G is conformal if and only if
||G*(e1)||2 = ||G*(e2)||2 > 0 at every point.

5. Using a canonical parametrization,

7. (a) For a small patchlike 2-segment,

If this always equals , then taking limits as x shrinks to a 

point p gives JF (p) = ±1. F must be one-to-one, for otherwise two small
regions of total area 2e could map to a single region of area e.

Conversely, we can suppose F is orientation-preserving; hence JF = 1.
Then use Exercise 5 of Section 7.

(b) An isometry carries frames to frames. We have seen that cylindrical
projection of a sphere is area-preserving (Exercise 6 of Section 7).

A dM
x

x( ) = ÚÚ

A F dN J dM
F

Fx
x x

( )( ) = = ±
( )ÚÚ ÚÚ .

KdM dv h h h ds

h b h a

a

b

a b

ÚÚ Ú Ú= - ¢¢( )

= - ¢( ) - ¢( )( )
= -( )

0

2

1 1

1

1

2

2

p

p

p j jsin sin .

x x x* .dM dM du dv EG F du dvu v( ) = ( ) Ÿ = ± - Ÿ, 2

v T Rr
TÚ = - ( ) = -area 4 2p .EG F= - - 2

U u v u v• x x x x¥ = - ¥
v dv R r Rr u du R r

TÚÚ Ú Ú= + +( ) = +( )
0

2
2 2 2 2 2

0

2

2 4
p p

pcos .

L
L N

v
v

v

E
E G

HE= +Ê
Ë

ˆ
¯ =

2
.

484 Answers to Odd-Numbered Exercises



9. (a) See text.
(b) See Example 4.3(1) of Chapter 5.
(c) First show that on one of the vertical lines, exactly four directions

are omitted by U. Total curvatures: -4p, -•, -•.

13.

Section 6.9

5. (a)

.

7. (a) Example 4.3(2) of Chapter 5 shows that K has a unique minimum
at 0. Hence every Euclidean symmetry F must carry 0 to 0, so F is
an orthogonal transformation C.

(b) C must carry asymptotic unit vectors to asymptotic unit vectors,

and carry Uz to ±Uz. One such C is .

Chapter 7

Section 7.1

1. (a) The speed squared is ·a ¢, a ¢Ò = a ¢ • a ¢/h2(a).
(b) ·hUi, hUjÒ = Ui • Uj = d ij.

3. (a) The definition J(e1) = e2, J(e2) = -e1 is independent of the choice
of positively oriented frame field e1, e2, since for another positively
oriented frame field,

and this implies J(ê1) = ê2, J(ê2) = -ê1. Then for v π 0, choose e2 so
that e1 = v/|v|, e2 is positively oriented.
(b) V = f1E1 + f2E2, with f1, f2 differentiable. For the other two rela-

tions, first replace arbitrary vectors by e1, e2.
(c) If E1, E2 is positively oriented for dM, then E1, -E2 is positively ori-

ented for -dM.

ˆ cos sin ˆ sin cose e e e e e1 1 2 2 1 2= + = - +J J J J, ,

0 1 0

1 0 0

0 0 1

-

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

F = =

-

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

C

1 0 0

0 0 1

0 1 0

TC K r W r dr= ( ) ( ) = -
•

Ú2 4
0

p p.
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5. (a) Expand ||v ± w||2 = ·v ± w, v ± wÒ.
(b) Compute ·v, wÒ with the vectors expressed in terms of xu and xv.
(c) Direct computation with a ¢ = a¢1xu + a¢2xv, yields the same result as

applying ds2 to a ¢, since du(a ¢) = a¢1, dv(a ¢) = a¢2.
7. We have F*(U1) = fuU1 + guU2, F*(U2) = fvU1 + gvU2. If F is confor-

mal and orientation-preserving, then using Exercise 6,

So the Cauchy-Riemann equations hold. Conversely, if the Cauchy-
Riemann equations hold, then

This proves F is conformal (and shows that |dF/dz| is the scale factor).
F is orientation preserving since JF = fugv - fvgu = f 2

u + g2
u > 0.

9. (F*(v) • F*(w))/h2F(p) = v • w/h2(p).

Section 7.2

3. A = pa2/(1 - a2/4); hence total area is infinite.
5. Since x is an isometry, the area of T0 is the same as the area of a Euclid-

ean rectangle with sides 2pR and 2pr. Hence A(T0) = 4p2Rr, the same
as A(T ).

7. (c) Evidently, i = cq i, and hence 12 = w 12 follows by uniqueness in
the first structural equations.

(d) d = 1 Ÿ 2 = c2q1 Ÿ q2 = c2dM.
(e) Theorem 2.1 defines K.

9. (b) Since qi = qi (xu)du + qi (xv)dv = ·Ei, xuÒdu + ·Ei, xvÒdv, we find

(c) Substitute w12 = Pdu + Qdv and preceding results into the first
structural equations.

(d) Substitute into the second structural equation.

q q1 2= + =E du F E dv W E dv/ , / .

qqM

wq

F U F U f f g g f f f f

F U F U f g dF dz f g F U F U

u v u v u v u v

u u v v

* * ,

* , * * * .

1 2

1 1
2 2 2 2 2

2 2

0( ) ( ) = + = - =

( ) ( ) = + = = + = ( ) ( )

, and

,

f U g U F U

F JU

J F U

J f U g U

g U f U

v v

u u

u u

1 2 2

1

1

1 2

1 2

+ = ( )
= ( )
= ( )
= +( )
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*

*

*

.
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11. (b) K = -2/cosh3(2u).
13. (a) To define tensorK, first simplify the square root of E(u, v)G(u, v)

- F(u, v)2 to get W(u, v).
(b) The formulas for E, F, G in the Appendix are valid for arbitrary 

n, so evaluate tensorK on the functions ee[x],ff[x],gg[x]
for Mathematica; ee(x),ff(x),gg(x) for Maple.

Section 7.3

1. (a) First find the dual 1-forms.
(b) a≤ = -cot ta ¢.
(c) b¢ = c/(st)E1 + 1/tE2, and ·b¢, b¢Ò¢ = -2/(s2t3).

3. From the proof of Lemma 3.8,
5. (a) Let w12 be the connection form of a frame field on D. Since

Stokes’ theorem gives . From 

the text,

7. (a) If W = fE1, then —V(W ) = V [ f ]E1 + fw12(V )E2, hence

On the other hand,

But [ f(F-1)] = (F*V)[ f(F -1)] = V[ f(F -1F )] = V[ f ], and

where the last (crucial) step uses Lemma 5.3 of Chapter 6. This com-
pletes the proof.

Section 7.4

1. Since a ≤ = 0, we get which is 0 if and only if h≤ = 0.
3. If L is a line in the xy plane, consider the Euclidean plane passing through

both L and the north pole n of S 0; then use stereographic projection.
5. (a) Use Exercise 5 of Section 3. Since a ¢ is parallel on a, –a (a ¢(a),

a ¢(b)) is the holonomy angle ya.
(b) (ii) The image of the Gauss map of a paraboloid is an open 

hemisphere of S, hence any (finite) simple region in it has total 
curvature <2p.

7. (a) Fix p0 Œ M, and let U consist of all points that can be joined to p0

by a broken geodesic—include p0 in U. If p Œ U, then by the given
fact, U contains an e-neighborhood of p. Thus U is open. In a
similar way, M - U is open. Since U is not empty, M = U.

a ah h h( )¢¢ = ¢( ) ¢¢,

w w w w12 12 12 12V F V F V V( ) = ( )( ) = ( )( ) = ( )* * .

V

— ( ) = — ( )( ) = ( )[ ] + ( ) ( )- - -
V VW f F E V f F E f F V E1

1
1

1
1

12 2w .

— = — ( )( ) = [ ] + ( ) ( )-
v VW F W V f E f F V E* .1

1
12 2w

w y
a

a12Ú = - .

w
a

12Ú ÚÚ= - K dM
g

d K dMw12 = - ,

w12 3 3 1 3 1 3Y E E E E S Y E Ey( ) = -— ◊ = ( ) ◊
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Section 7.5

1. The coordinates u, v have E = G = 1/v2, F = 0, hence are Clairaut. With
the suggested reversals, geodesics are given by

Set w = 1 - c2v2 and integrate to get . Consequently,
(u - u0)2 + v2 = 1/c2.

3. At the meeting point, u1 = a1(t1). Since , the condition
G(u) = c2 implies sinj = ±1. Thus a1¢(t1) is tangent to the barrier curve,
so a1¢(t1) = 0.

The geodesic equation A1 = 0 in Theorem 4.2 reduces to a1≤ =
Gu a2¢2/(2E ). At the meeting point, Gu π 0 since barriers are not 
geodesic, and a2¢ π 0 since a1¢ = 0. Thus a2≤(t1) π 0. This means that 
a leaves the barrier curve instantly, remaining on the same side of
it.

5. (a) By Exercise 4, tangency to the top circle implies slant c = R (larger
of the radii of T ). Except for the inner and outer equators, no par-
allel is geodesic. Hence a leaves the top circle, necessarily entering
the outer half of T. As h increases, sinj decreases; hence a meets
and crosses the outer equator. By symmetry, it returns to tangency
with the top circle.

(b) Crossing the inner equator implies slant c < R - r.
7. Evidently all meridians approach the rim on a finite parameter interval.

In view of the exercises above, so do all other geodesics; even if initially
moving away from the rim, they will be turned back by a barrier curve.
They cannot asymptotically approach a parallel, since no parallels are
geodesic.

9. (a) E(u) = ee(u), G(u) = gg(u) will be given (for abstract surfaces) or
computed (for surfaces in R3).
(Mathematica):
clair[u0_,v0_,c_,tmin_,tmax_]:=
NDSolve[{u’[t]==Sqrt[gg[u[t]]–c^2]/Sqrt[ee[u[
t]]*gg[u[t]]],v’[t]==c/gg[u[t]],u[0]==u0,v[0]
==v0},{u,v},{t,tmin,tmax}]

(b) ParametricPlot3D[Evaluate[x[u[t],v[t]]/.
nsol],{t,tmin,tmax}]

where nsol is an explicit return from clair. (Delete “3D” in the
abstract case.)

c G a= ( )1 sinj

u u w c- =0 m /

du
dv

c G

E E c

cv

c v
=

±
-

=
±
-2 2 21

.
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(Maple)
(a) clair:=(u0,v0,c)–>dsolve({diff(u(t),t)=

(gg(u(t))–c^2)^(1/2)/(ee(u(t))*gg(u(t))^
(1/2),diff(v(t),t)=c/gg(u(t)),u(0)=u0,v(0)=
v0},{u(t),v(t)},type=numeric).

(b) With plots installed, if nsol is an explicit return from clair,
odeplot(nsol,x(u(t),v(t)),tmin..tmax)

11. (b) Since G(0) = f(0)2 = (3/4)2, the slant of this geodesic is ±3/4.
13. Since a ¢ = a ¢1xu + a¢2xv, we have . Hence 

cos2j = (U(a1) + V(a2))a ¢12, and sin2 j is similar. Thus we must show that
the function f = (U(a1) + V(a2)(U(a1)a¢22 - V(a2)a¢12) is constant.
Compute f ¢. The geodesic equations from Theorem 4.2 then give f ¢ = 0.

Section 7.6

1. In (a) and (c) the surface is diffeomorphic to a sphere, so TC = 4p. In
(b), there are four handles, so TC = -12p.

3. If h = 0, then M is a sphere, so TC > 0. If h = 1, then M is diffeo-
morphic to a torus; hence TC = 0. If h � 2, then TC < 0.

5. (c) For each polygon, draw lines from a central point to each vertex.
Thus each original n-sided face is replaced by n faces, and there are
n new edges and one new vertex. Thus for each polygon, the effect
on c(M ) is 1 Æ 1 - n + n, so there is no change.

7. The area of x(R) is . Three of the four edges are geodesics.
9. We count e = 6f /2 = 3f and v = 6f /3 = 2f; hence c = 0. So this is

impossible on the sphere, but a suitable diagram shows that the torus
has such a decomposition.

Section 7.7

1. Follows from Theorem 7.5 since a polygon has Euler characteristic +1.
3. (a) By the Gauss-Bonnet theorem, M is diffeomorphic to a sphere; hence

if two simply closed geodesics do not meet, they bound a region.
5. (a) The angle function from any X to Vt depends continuously on t;

hence the index depends continuously on t. But a continuous
integer-valued function on an interval is constant.

(b) Use (a).
7. (a) Approximate closely by a genuine polygon. In the limit, the in-

terior angles will all be p. Hence by Exercise 1, -An/r2 = (2 - n)p,
so An = (n - 2)pr2.

pr 2 4 2/ ( )

cos /j a= ¢ = ¢, xu E E a1
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(b) As n Æ •, An Æ •, so H(r) has infinite area.
9. (a) Let h = ||Va || > 0. Then f = hcosj, g = hsinj, so the integrand

reduces to j¢.
11. (a) The equations u¢ = -u, v¢ = v have general solutions u = Ae-t, v =

Bet, so A = a, B = b.
(b) Since uv = ab, the integral curves parametrize hyperbolas (when 

ab π 0); this is a meeting of two streams, with index -1.
(c) For the circle a(t) = (cos t, sin t), the integrand reduces to -1.

13. (a) (Mathematica): numsol[u0_,v0_,tmin_,tmax_]:=NDSolve
[{u’[t]==2u[t]^2–v[t]^2,v’[t]==–3u[t]*v[t],
u[0]==u0,v[0]==v0},{u,v},{t,tmin,tmax}]
draw[u0_,v0_,tmin_,tmax_]:=ParametricPlot
[Evaluate[{u[t],v[t]}/.numsol[u0,v0,tmin,
tmax]],{t,tmin,tmax}]

(b) (Maple): Take X = (1, 0); hence J(X) = (0, 1). Now apply Exercise
9. Evaluation on the circle a(t) = (cos t, sin t) gives
f:=t–>2*cos(t)^2–sin(t)^2,
g:=t–>–3*cos(t)*sin(t)
The integrand is
wint:=t–>(f(t)*diff(g(t),t)–
g(t)*diff(f(t),t))/(f(t)^2+g(t)^2) and int(wint
(t),t = 0..2*Pi) is -4p, so the index is -2.

Chapter 8

Section 8.1

1. (a) If q is in a normal e-neighborhood N of p, then by Theorem 1.8,
the radial geodesic from p to q has length r(p, q) < e. If q is not in
N, then any curve from p to q meets every polar circle of N; hence
r(p, q) � e.

3. n(x, y) = (rcos(x/r), rsin(x/r), y). To get the largest normal e-neighbor-
hood, fold an open Euclidean disk of radius pr around the cylinder.

5. (a) Any geodesic starting at p is initially tangent to a meridian;
hence (by the uniqueness of geodesics) parametrizes that 
meridian. It follows that the entire surface is a normal neighbor-
hood of p.

7. (a) By the triangle inequality, r(p, q) > r(p0, q) - r(p0, p). Reversing p
and q, we conclude that r(p, q) > |r(p0, q) - r(p0, p)|.
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(b) Show that if r(p0, p) < e and r(q0, q) < e, then it follows that 
|r(p0, q0) - r(p, q)| < 2e.

Section 8.2

1. Let M be an open disk in R2.
3. We can assume that C is parametrized by a(u) + vU3, with a a unit-

speed curve. If a is (smoothly) closed, let s have the same arc length
and parametrize a circle in R2. Then a(u) + vU3 Æ s(u) + vU3 is an
isometry. Circular cylinders of different radii are not isometric since
their closed geodesics have different lengths.

If a is one-to-one, then since it is a geodesic of C it is defined on the
entire real line. Then a(u) + vU3 Æ (u, v) is an isometry onto R2.

5. The profile curves all approach either a singularity of the curve or the
axis of rotation. Only for the sphere was the axis met orthogonally, thus
giving S as an augmented surface of revolution.

Section 8.3

1. For k = -1/r2, the general solution of the Jacobi equation g≤ - g/r2 =
0 can be written as g(u) = Acoshu/r + Bsinhu/r. The initial conditions
then determine A and B.

3. (a) L(e) = 2psinhe.
5. (a) xu(0, v) = X(v), and since x(0, v) = gx(v)(0) = b(v), we have xv(0, v) =

b¢(v). Thus EG - F2 is nonzero when u = 0, hence also for |u| small.
(b) (iii) b as base curve, X = d.

7. (a) The u-parameter curves of x are meridians of longitude.
(b) Since K = 0, the Jacobi equation becomes . Hence is

linear in u, and it follows that .

Section 8.4

1. Let E be the due-east unit vector field on the sphere S (undefined at the
poles). If A is the antipodal map, then A*(E) = E, so E transfers to P
via the projection S Æ P. The unique singularity has index 1.

3. The condition implies F(M) = N. If q is in N, then each point of F-1(q)
has a neighborhood mapped diffeomorphically onto a neighborhood of
q. The intersection V of all these neighborhoods of q is evenly covered;
the condition prevents its lifts from meeting.

G u v v ug,( ) = - ( )1 k

GG uu      ( ) = 0
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5. (a) Since covering maps are local diffeomorphisms and T is orientable,
T cannot be covered by a nonorientable surface (Exercise 3 of
Section 4.7). Thus any compact connected covering surface M of T
must also have c(M ) = 0. Hence by Theorem 6.8 of Chapter 7, M
is a torus.

(b) For the usual parametrization of T, let F(x(u, v)) = x(nu, v).

Section 8.5

1. If F: M Æ N is an isometry, define f: I(M) Æ I(N) by f(G) = FGF -1.
Show that f is a homomorphism and is one-to-one and onto.

3. Suppose p π q in M. Then any geodesic segment s from p to q has
nonzero speed, so F(s) is a nonconstant geodesic of N. If F(p) = F(q),
there are two geodesics from this point to the midpoint of F(s).

5. (a) Given points p and q in M, if F and G are isometries such that 
F(p0) = p and G(p0) = q, then the isometry GF-1 carries p to q.

(c) Given frames e1, e2 at p and f1, f2 at q, let F and G be isometries such
that F(p) = p0 and G(q) = p0. By hypothesis, there is an isometry 
H that carries the frame F*(e1), F*(e2) to G*(f1), G*(f2). Then the
isometry G-1HF carries e1, e2 to f1, f2.

7. (a) Since C on R3 is linear, C(-p) = -C(p). Then the mapping {p, -p} 
Æ {C(p), -C(p)} has the required properties.

(b) Because F is a local isometry, any two frames on P can be written
as F*(e) and F*(f), where e and f are frames on S. By Exercise 6
there is an orthogonal transformation C of R3 such that C*(e) = f.
Now use FC = CpF.

9. (a) .
(b) Use Exercise 1. The only derived isometries are those of the form 

F(x(u, v)) = x(±u + a, ±v).
11. Calculate ||F(p)||.

Section 8.6

1. (a) One handle implies c(M ) = 0, but by Gauss-Bonnet, K < 0 implies
c < 0.

(b) By the Gauss-Bonnet formula, the angle sum for a k = -1 rectan-
gle can never be 2p.

3. Only the projective plane satisfies all three axioms; the others fail on
axiom (ii), and S also fails (i).

5. For D, let e1, e2 be the frame at the common vertex of a and b such 
that e1 is tangent to a, and cosJe1 + sinJe2 is tangent to b. Let F be
the isometry carrying the frame e1, e2 to the corresponding frame on D¢.

x u v u v v E F G, , , has( ) = +( ) = = =-sinh , ,1 21 1 0 1
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Section 8.7

1. In the proof of assertion (3) in Lemma 7.4, the Jacobi equation now
reduces to g≤ = 0, so the initial conditions then give g(u) = u.

3. For a point p0 in M, the functions p Æ r(p0, p) and (when relevant) 
p Æ d(p0, p) are both continuous, hence take on maximum values.
Then use the triangle inequality.
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B

Barrier curve, 361 (Ex. 2)
Basis formulas, 269
Bending, 283, 286

helicoid to catenoid, 293 (Ex. 5)
Binormal, 59, 69, 72
Bonnet’s theorem, 438–439
Boundary

of a 2-segment, 176
of a polygonal region, 377

Bounded 198 (Ex. 5), 443, 449 (Ex. 3)
Bracket operation, 208 (Ex. 9)
Bugle surface, 259–260, 262 (Ex. 8), 299–313

C

Canonical isomorphism, 45, 62
Canonical parametrization, 256
Cartan, E., 43, 85, 95
Cartesian product, 200 (Ex. 15)
Catenoid, 254

Gauss map, 308
Gaussian curvature, 254, 256
local isometry onto, 283
as minimal surface, 254–255
total Gaussian curvature, 305–306,

309
Center of curvature, 67 (Ex. 6), 79 

(Ex. 11)
Circle, 61, 65
Clairaut parametrization, 33
Classical geometries, 440

▼

▲
Index
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A

Acceleration of a curve
in R3, 54–55, 70
in a surface, 203, 341

Adapted frame field, 264
Algebraic area, 307–308, 376 (Ex. 8)
All-umbilic surface, 275–276
Alternation rule, 28, 48, 159–160
Angle, 45, 322

coordinate, 224
exterior, 366
interior, 366
oriented, 311
turning, 366

Angle function, 52 (Ex. 12)
along a curve, 311–312
on a surface, 324
slope, 68 (Ex. 6), 351

Antipodal mapping, 173 (Ex. 5), 194
Antipodal points, 194
Arc length, 52–53, 231 (Ex. 5)

parametrization, 53
Area, 297–303
Area form, 301, 312
Area-preserving mapping, 304 (Ex. 6), 313

(Ex. 7)
Associated frame field

of a coordinate patch, 294, 336
of a vector field, 312

Asymptotic curve, 243–244
Asymptotic direction, 242–243
Attitude matrix, 47–48, 91–92



Classification of compact surfaces, 423
nonorientable, 422
orientable, 371

Closed differential form, 164–165
Closed surface in R3, 198 (Ex. 4), 404
Codazzi equations, 267, 272
Column-vector conventions, 105
Compactness, 184
Compact surface, 184–185, 276–277, 280
Complete surface, 350

geodesics, 400
Composite function, 4
Cone, 146 (Ex. 3), 233 (Ex. 13)
Conformal geometric structure, 323, 331
Conformal mapping, 286, 288 (Ex. 8)
Conformal patch, 288 (Ex. 8)
Congruence of curves, 121, 127 (Ex. 5)

determined by curvature and torsion,
121–123, 126

Congruence of surfaces, 314–315
Conjugate point, 405–410
Connected surface, 184, 192 (Ex. 9)
Connection equations

on Euclidean space, 89, 266
on a surface, 267, 38

Connection forms
on Euclidean space, 89
on a surface, 266, 289, 295, 324

Conoid, 251 (Exs. 17, 18)
Consistent formula for a mapping, 174 

(Ex. 13)
Constant curvature surface

flat, 435–437
negative, 437–438
positive, 435
standard, 433

Continuous function, 369, 384
Coordinate angle, 224
Coordinate expression, 149
Coordinate patch, See Patch
Coordinate system on a surface, 165 (Ex. 7),

295
Covariant derivative

Euclidean, 81–84, 121 (Ex. 5)
intrinsic, 337–340, 341
on a patch, 202–203
relation of Euclidean to intrinsic,

343–344
Covariant derivative formula, 93 (Ex. 5), 338
Covering map, 416–417

dent multiplicity, 419–420
Riemannian, 423–424

Covering manifold (surface), 417
Critical point, 28
Cross product, 48–50, 111, 113
Crosscap, 422
Cross-sectional curve, 78 (Exs. 7, 8)
Curvature, See also Gaussian curvature;

Geodesic curvature; Mean curvature
of a curve in R2, 68 (Ex. 8)
or a curve in R3, 58, 69, 72

Curve, 16, 150
closed, 188
coordinate functions, 150,
one-to-one, 21
periodic, 21, 156 (Ex. 2)
regular, 21
in a surface, 150
unparametrized, 21–22

Curve segment, 52–53
minimizing, 389
shortest, 389

Cylinder, 146 (Ex. 4)
geodesics, 246

Cylindrical frame field, 85
connection forms, 92–93
dual 1-forms, 97 (Ex. 3)

Cylindrical helix, 75–76, 78

D

Darboux, G., 85–86
Darboux frame field, 248 (Ex. 7)
Degree of a form, 29
Degree of a mapping, 376 (Ex. 8)
Diffeomorphic surfaces, 169, 371
Diffeomorphism

of Euclidean space, 40
of surfaces, 169,

Differentiability, 4 10 34 150–151
Differential form,

closed, 164–165
exact, 164–165
on a surface, 158–163
on R2, 163
on R3, 22–23, 28–29
pullback of, 171–172

Differential of a function, 25
Dini’s surface, 262
Direction, 209
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Directional derivative, 11–12, 155
computation of, 12, 26

Disk
polar, 414 (Ex. 2)
smooth, 192 (Ex. 6)

Distribution parameter, 249 (Ex. 11)
Domain, 1
Dot product, 43–44, 85, 224

preserved by isometries, 116
Dual 1-forms, 94–95, 266, 289, 297, 324
Dupin curves, 222 (Ex. 5)

E

E, F, G (metric components), 146 (Ex. 2),
224, 234 (Ex. 18), 337 (Ex. 4)

Edge (curve), 177, 369
Efimov’s theorem, 439
Ellipsoid, 148 (Ex. 9)

Euclidean symmetries, 319 (Ex. 8), 427
Gaussian curvature, 236–238
isometry group, 427
umbilics on, 240 (Ex. 7)

Elliptic paraboloid, 149 (Ex. 10), 232 
(Ex. 6)

geodesics, 356–357
Ennepers surface, 250–251 (Exs. 15, 16),

313–314 (Exs. 10, 11)
e-neighborhood, 44
Euclid, 360
Euclidean coordinate functions, 9, 16, 24, 33,

55
Euclidean distance, 44, 50 (Ex. 2), 383 

(Ex. 1), 399 (Ex. 7)
Euclidean geometry, 116–117
Euclidean plane, 5
Euclidean space, 3–5

natural coordinate functions, 4
natural frame field, 9

Euclidean symmetry group, 319 (Ex. 6)
Euclidean vector field, 153, 158 (Ex. 12)
Euler characteristic, 370–371
Euler’s formula, 214
Evolute, 79 (Exs. 17, 18)
Exact differential form, 164–165
Exponential map, 389–390

of the real line, 417
Exterior angle, 366
Exterior derivative, 30, 33 (Ex. 7),

161–163

F

Faces, 369
Fary-Milnor theorem, 81
Fenchel’s theorem, 80 (Ex. 18), 309
Flat surface, 220
Flat torus, 330

imbedded in R4, 430
Focal point, 416–417 (Ex. 6)
Form, See Differential form
Frame, 45
Frame field

adapted, 264
on a curve, 126
on R3, 85
natural, 9
principal, 271
on a surface, 264, 389
transferred, 290–291

Frame-homogeneous surface, 428, 440
Frenet, F., 84
Frenet apparatus, 66 (Ex. 1)

preserved by isometries, 118
for a regular curve, 69
for a unit speed curve, 58–59

Frenet approximation, 63, 68 (Ex. 9)
Frenet formulas, 60, 69, 350
Frenet frame field, 59
Function, 1–2

one-to-one, 2
onto, 2

Fundamental form, 222 (Ex. 4), 329 (Ex. 5)

G

Gauss, K. F., 263
Gauss-Bonnet formula, 367–368
Gauss-Bonnet theorem, 372–375, 378
Gauss equation, 267
Gauss map, 207–208 (Exs. 4–8), 308–309
Gaussian curvature, 216–218, 329, See also

Specific surfaces
formulas for

direct, 216–217, 219–220, 226, 273–274,
296–297, 336–337 (Ex. 9)

indirect, 219, 269–270, 413, 414 (Ex. 2)
and Gauss map, 308
and holonomy, 345 (Ex. 5)
of an implicitly defined surface, 236–237
isometric invariance, 291–292
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Gaussian curvature (continued)
and principal curvatures, 216
sign, 216–218

Geodesic curvature, 248 (Ex. 7), 350
Geodesic lift property, 423
Geodesic polar mapping, 391
Geodesic polar parametrization, 391–393
Geodesics, 245–246, 346, See also Specific

surfaces
broken, 353 (Ex. 7)
closed, 246
coordinate formulas for, 351–352
existence and uniqueness, 348–349
locally minimizing, 405
maximal, 349
minimizing, 394, 397–398
periodic, 246
preserved by (local) isometrics, 293 

(Ex. 1), 425
Geographical patch, 140
Geometric surface, 322. See also Constant

curvature surfaces
inextendible, 403

Gradient, 33 (Ex. 8), 51 (Ex. 11) as normal
vector field, 153

Group, 106
Euclidean, 106 (Ex. 7)
Euclidean symmetry, 319–320
isometry, 427
orthogonal, 106 (Ex. 8)

H

Hadamard’s theorem, 448
Handle, 371
Hausdorff axiom, 192 (Ex. 10), 193, 193

(Ex. 11)
Helicoid, 146 (Ex. 5)

local isometries, 284–286, 294 (Ex. 7)
patch computations, 227–228

Helix, 16, 60–61, 119–120, 124
Hilbert’s lemma, 278
Hilbert’s nonimbedding theorem, 439
Holonomy, 343

angle, 343
Homeomorphic surfaces, 369
Homogeneous surface, 428
Homotopy, 188

free, 191
Hopf’s degree theorem, 379 (Ex. 8)

Hopf-Rinow theorem, 400
Hyperbolic paraboloid, 149 (Ex. 10), 232

(Ex. 6)
Hyperbolic plane, 332–333, 335 (Ex. 4)

completeness, 397
geodesics, 358–359
frame-homogeneity, 364 (Ex. 14), 440

Hyperboloids, 148–149 (Ex. 9), 232 (Ex. 6),
238 (Ex. 1)

I

Identity map, 102
Image, 1
Image curve, 36
Imbedding, 201 (Ex. 16)

isometric, 429
Immersed surface, 201 (Ex. 17)
Immersion, 201 (Ex. 17)

isometric, 429
Improper integral, 303
Index of a singularity, See Singularity
Initial velocity, 22 (Ex. 6)
Inner product, 43, 321–322
Integral curve, 200 (Exs. 13, 14)
Integral of a function on a surface, 303
Integration of differential forms,
1-forms over 1-segments, 174–176,

178–180
of 2-forms over 2-segments, 177
of 2-forms over oriented regions, 303, 303

(Ex. 4)
Interior angle, 366
Intrinsic distance, 281, 287 (Ex. 3), 387 

(Ex. 7)
Intrinsic geometry, 289
Inverse function, 2
Inverse function theorem, 40, 169
Isometric imbedding, 429
Isometric immersion, 429
Isometric invariant, 289, 321
Isometric surfaces, 283
Isometry of Euclidean space, 100

decomposition theorem, 105
determined by frames, 109–110
tangent map, 107–108

Isometry group, See also Euclidean
symmetry group

of Euclidean space, 107 (Ex. 7)
of a geometric surface, 426
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Isometry of surfaces, 282
and Euclidean isometries, 314–316

Isothermal coordinates, 297 (Ex. 2)

J

J (rotation operator), 79 (Ex. 12), 311, 327
(Ex. 3)

Jacobi equation, 409–410
Jacobian (determinant), 156 (Ex. 3), 161,

306, 312 (Ex. 1)
Jacobian matrix, 40
Jacobi’s theorem, 407
Jordan curve theorem, 352

K

Klein bottle, 436
Kronecker delta, 25

L

L, M, N, 228, 230, 234 (Ex. 18)
Lagrange identity, 222 (Ex. 6)
Law of cosines, 441 (Ex. 4)
Leibnizian property, 14
Length

of a curve segment, See Arc length
of a vector, 322. See also Norm

Liebmann’s theorem, 280
Line of curvature, See Principal curve
Line-element, 328 (Ex. 5)
Liouville parametrization, 364 

(Ex. 13)
Liouville’s formula, 403
Local diffeomorphism, 173 (Ex. 6)
Local isometry, 283–284, 426

criteria for, 284
determined by differential map, 426

Local minimization of arc length, 405–407,
408

Loop, 188–189
Loxodrome, 234 (Ex. 16)

M

Manifold, 196, 201, 326
Mapping of Euclidean spaces, 34–35

of surfaces, 166–167
Massey, W. S., 404

Mean curvature, 216, 217–218, 221 (Ex. 3),
226, 237, 269–270

Mercator projection, 286 (Ex. 13)
Metric tensor, 322

components of, See E, F, G
coordinate description, 324, 328 (Ex. 4)
induced, 323

Milnor, T. K., 439
Minding’s theorem, 416 (Ex. 8)
Minimal surface, 221

examples, 255. See also Enneper’s surface;
Scherk’s surface

Gauss map, 313 (Ex. 9)
ruled, 251–252 (Ex. 19)
as surface of revolution, 255

Minimization of arc length, 389
local, 405

Möbius band, 1871, 198–199 (Exs. 8–10)
complete and flat, 436

Monge patch, 133, 229 (Exs. 2, 3)
Monkey saddle, 137, 218, 314 (Ex. 13)

Gaussian curvature, 230 (Ex. 7)

N

Natural coordinate functions, 4
Natural frame field, 9
Neighborhood, 44, 131. See also Open set

normal, 390
Norm, 44, 45, 85
Normal coordinates, 398 (Ex. 2)
Normal curvature, 209–212, 232 (Ex. 11)
Normal plane, 69 (Ex. 9)
Normal section, 210–211
Normal vector field, 153–154

O

One-to-one, 2
Onto, 2
Open interval, 16–17
Open set

in Euclidean space, 5, 44
in a surface, 158, 192

Orientable surface, 186–187, 198 (Ex. 7),
301

Orientation
determined by an area form, 301
determined by a unit normal, 186, 203,

208
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Orientation (continued)
of frames, 110, 311
of a patch, 301–303
of a paving, 302–303
of a region, 208

Orientation of a tangent frame fields
opposite, 324–3025
same, 324–325

Orientation covering surface, 198 (Exs. 6, 7),
423

Orientation-preserving (-reversing) 
isometry, 112, 115, 116, (Ex. 6),
306

Orientation-preserving (-reversing)
reparametrization of a curve, 54,
180–181

monotone, 57 (Ex. 7)
Oriented angle, 311–312
Oriented boundary, 177–178, 377
Orthogonal coordinates, 295–296

Gaussian curvature formula in, 296
Orthogonal matrix, 48
Orthogonal transformation, 102, 104
Orthogonal vectors, 45, 65–66, 322
Orthonormal expansion, 47
Orthonormal frame, See Frame
Osculating circle, 67 (Ex. 6)
Osculating plane, 63, 68 (Ex. 9)
Osserman, R., 314

P

Paraboloid, See Elliptic paraboloid
Parallel curves, 58 (Ex. 10), 69 (Ex. 11)
Parallel postulate, 360–361
Parallel surfaces, 223 (Ex. 7)
Parallel translation, 342
Parallel vector field, 56, 341–342
Parallel vectors in Euclidean space, 6
Parameter curves, 143
Parametrization

of a curve, 22
of a surface, 142–143
decomposable into patches, 173 (Ex. 7)

Partial velocities, 140, 141, 153, 168–169
Patch, 130

abstract, 193
geometric computations in, 224–226
Monge, 133
orthogonal, 232 (Ex. 8), 294

principal, 233 (Ex. 8), 293 (Ex. 3)
proper, 131, 136, 158 (Ex. 14)

Patchlike 2-segment, 297
Paving, 300, 302–303
Planar point, 218
Plane curvature, 68 (Ex. 8), 79 (Ex. 12)
Plane curve, 63

Frenet apparatus, 68 (Ex. 8)
Plane in R3, 62, 137 (Ex. 2), 245, 274–275

identified with R2, 132
Poincaré, H., 376
Poincaré half-plane, 327 (Ex. 2), 399 

(Ex. 8)
geodesics, 361 (Ex. 1)
isometric to hyperbolic plane, 362–363

(Ex. 8)
Poincaré-Hopf theorem, 381–382, 422
Poincaré’s lemma, 189
Point of application, 6
Pointwise principle, 9
Polar circle, 392
Polarization, 103–104, 328 (Ex. 5)
Polygonal decomposition, 370
Polygonal region, 376

boundary segment, 376
Pregeodesic, 352
Principal curvatures, 212

as eigenvalues, 213
formula for, 214, 220

Principal curve, 240–241, 247–249
Principal direction, 212
Principal frame field, 271–272
Principal normal, 59, 69, 72, 350
Principal vectors, 212, 232 (Ex. 9)

as eigenvectors, 213
Projective plane, 194–195, 334

frame-homogeneity, 432 (Ex. 7)
geodesics, 352–353 (Ex. 6)
isometric imbedding of, 432 (Ex. 10)
topological properties, 197 (Ex. 2)

Pseudosphere, See Bugle surface
Pullback

of a form, 170–171
of a metric, 323

Push forward of a metric, 333

Q

Quadratic approximation, 214–215
Quadric surface, 148
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R

Rectangular decomposition, 369
Rectifying plane, 68 (Ex. 9)
Reflection, 113
Regular curve, 22
Regular mapping, 39, 169
Reparametrization of a curve, 19–20

monotone, 57 (Ex. 7)
orientation-preserving, 54
orientation-reversing, 54
unit-speed, 53

Riemann, B., 321, 360
Riemannian geometry, 326
Riemannian manifold, 326
Rigid motion, See Isometry of Euclidean

space
Rigidity, 318 (Ex. 1)
Rotation, 101, 113, 115 (Ex. 4), 116 (Ex. 6)
Ruled surface, 145, 233 (Ex. 12), 244, 313

(Ex. 8)
flat, 233 (Ex. 13)
noncylindrical, 249–250 (Exs. 11–13)

Ruler function, 323
Ruling, 145

S

Saddle surface, 147 (Ex. 6)
Euclidean symmetries, 319 (Ex. 7)
Gauss map, 314 (Ex. 12)
patch computations, 229–230

Scalar multiplication, 8, 9
Scale change, 336 (Ex. 7)
Scale factor, 286
Scherk’s surface, 239 (Ex. 5)

Gauss map, 313 (Ex. 9)
Schwarz inequality, 45, 322
Serret, J. A., 84
Shape operator, 203–204

characteristic polynomial, 221 (Ex. 4)
and covariant derivative, 344
and Gauss map, 308–309
and Gaussian and mean curvature, 216
and normal curvature, 209
preserved by Euclidean isometries,

314–315
and principal curvatures and vectors, 213
proof of symmetry, 226–227, 269 (Ex. 3)
in terms of a frame field, 266

Shortest curve segment, 389

Sign of an isometry, 109
Simply connected surface, 188
Singularity, 380, 385 (Ex. 10)

index, 380, 385 (Ex. 9)
isolated, 380
removable, 384
sources and sinks, 380, 381

Slant of a geodesic, 354
Smooth disk, 192 (Ex. 5)
Smooth function, 4
Smooth overlap, 151–152, 194
Speed of a curve, 52
Sphere, 133

conjugate points, 407, 410
Euclidean symmetries, 319 (Ex. 4), 432

(Ex. 6)
Euler characteristic, 370–371
frame-homogeneity, 432 (Ex. 6), 440
Gaussian curvature, 221, 231 (Ex. 1),

270
geodesics, 245, 396–397
geographical patch, 140
computations, 230 (Ex. 1), 296
geometric characterizations, 275, 276, 280
holonomy, 343
isometries, 319 (Ex. 4)
rigidity, 318 (Ex. 1)
shape operator, 202–203
topological properties, 184, 188, 189

Sphere with handles, 371
Spherical curve, 66, 68 (Ex. 10), 81(Ex. 20)
Spherical frame field, 87, 97

adapted to sphere, 267–268
dual and connection forms, 97

Spherical image
of a curve, 74–75
of a surface, See Gauss map

Standard constant curvature surface, 433,
435

Stereographic plane, 331
Stereographic projection, 167, 169–170, 173

(Ex. 12)
as conformal mapping, 288 (Ex. 14)

Stereographic sphere, 331–332
Stokes’ theorem, 178–179, 183 (Ex. 13), 377
Straight line, 16, 58 (Ex. 11)

length-minimizing properties, 58 (Ex. 11)
Structural equations on R3, 95–96

on a surface, 267, 270, 329, 330
Support function, 238
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Surface
abstract, 195–196
geometric, 322
immersed, 201 (Ex. 16)
in Rn, 335
in R3, 131, 429

implicit definition, 133–134
simple, 133, 172 (Ex. 3)

Surface of revolution, 135, 243–253
area, 303 (Ex. 2)
augmented, 138 (Ex. 12)
of constant curvature, 257–259, 261–262

(Ex. 7)
diffeomorphism types, 191 (Ex. 5)
Gaussian curvature, 253, 256
geodesics, 3622 (Ex. 4)
local characterization, 288 (Ex. 12)
meridians and parallels, 135–136
parametrization canonical, 256

special, 148 (Ex. 8)
usual, 143–144

patch computations, 239–240
principal curvatures, 253
principal curves, 242, 239–240
profile curve, 135
total Gaussian curvature, 312–313 (Exs. 5,

6)
twisted, 262

Symmetry equation, 267

T

Tangent bundle, 196–197
Tangent direction, 209–210
Tangent line, 23 (Ex. 9), 63
Tangent map, 37, 40 (Ex. 9)

of a Euclidean isometry, 107–109
of a mapping of surfaces 168–169, 173

(Exs. 9, 10), 426
of a patch, 156 (Ex. 4)

Tangent plane, 152–153
Euclidean, 157 (Ex. 9)

Tangent space, 7
Tangent surface, 233 (Ex. 13), 335

local isometries, 287 (Ex. 5)
Tangent vector,

to R3, 6, 15,
to a surface, 152

Theorema egregium, 291–293, 329
3-curve, 17, 73–74

Topological invariants (properties), 184–191,
370

Torsion of a curve, 60, 69, 72
formula for,72
sign, 119

Torus of revolution, 144. See also Flat torus
Euler characteristic, 370
Gauss map, 308
Gaussian curvature, 217–218, 254
patch computations, 254–255
total Gaussian curvature, 305, 309–310
usual parametrization, 144–145

Total curvature of a curve in R3, 80 (Ex. 17)
Total Gaussian curvature, 304, 309–310

and Euler characteristic, 372
and Gauss map, 309–310

Total geodesic curvature, 364–366
Total rotation, 380
Transferred frame field, 290–291
Translation of Euclidean space, 100–101, 113
Trefoil knot, 80–81 (Ex. 19), 235 (Ex. 21)
Triangle, 378–379, 441 (Ex. 4)
Triangle inequality, 286 (Ex. 3)
Triangulation, 370
Triple scalar product, 4850
Tube, 234 (Ex. 17), 235 (Ex. 21)

2-segment, 176–177

U

Umbilic point, 212–213, 233 (Exs. 14, 15).
See also All-umbilic surface

Unit normal function, 225–226
Unit normal vector field, 186, 203
Unit points, 36
Unit-speed curve, 53
Unit sphere, 131–132
Unit tangent, 58, 69, 72–73
Unit vector, 45

V

Vector, See Tangent vector
Vector analysis, 33 (Ex. 8)
Vector field

on an abstract surface, 195
on a curve, 54, 332–333
on Euclidean space, 8
on a surface in R3, 153,
in terms of a patch, 158 (Ex. 12)
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normal, 153–154
tangent, 153

Vector part, 6
Velocity (vector), 18, 195
Vertices, 366
Volume element, 33 (Ex. 6)

W

Wedge product, 29–30, 160
Winding line on torus, 158 (Ex. 11)
Winding number, 181 (Exs. 5, 6), 191–192,

385–386
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