Appendix
 Computer Formulas

The computer commands most useful in this book are given in both the Mathematica and Maple systems. More specialized commands appear in the answers to several computer exercises. For each system, we assume a familiarity with how to access the system and type into it.

In recent versions of Mathematica, the core commands have generally remained the same. By contrast, Maple has made several fundamental changes; however most older versions are still recognized. For both systems, users should be prepared to adjust for minor changes.

Mathematica

1. Fundamentals

Basic features of Mathematica are as follows:
(a) There are no prompts or termination symbols-except that a final semicolon suppresses display of the output. Input (new or old) is activated by the command Shift-return (or Shift-enter), and the input and resulting output are numbered.
(b) Parentheses (. . .) for algebraic grouping, brackets [. . .] for arguments of functions, and braces $\{\ldots\}$ for lists.
(c) Built-in commands typically spelled in full—with initials capitalizedand then compressed into a single word. Thus it is preferable for userdefined commands to avoid initial capitals.
(d) Multiplication indicated by either $*$ or a blank space; exponents indicated by a caret, e.g., $x^{\wedge} 2$. For an integer n only, $n X=n * X$, where X is not an integer.
(e) Single equal sign for assignments, e.g., $x=2$; colon-equal (:=) for deferred assignments (evaluated only when needed); double equal signs for mathematical equations, e.g., $x+y==1$.
(f) Previous outputs are called up by either names assigned by the user or \%n for the nth output.
(g) Exact values distinguished from decimal approximations (floating point numbers). Conversion using \mathbf{N} (for "numerical"). For example, $\mathbf{E}^{\wedge} 2 * \operatorname{Sin}[\mathrm{Pi} / 3]$ returns $e^{2 \sqrt{3}} / 2$; then $\mathbf{N}[\%$] gives a decimal approximation.
(h) Substitution by slash-dot. For example, if expr is an expression involving x, then expr/. $\mathrm{x} \rightarrow \mathrm{u}^{\wedge} 2+1$ replaces x everywhere in the expression by $u^{2}+1$.

Mathematica has excellent error notification and online help. In particular, for common terms, ?term will produce a description. Menu items give formats for the built-in commands. The complete general reference bookexposition and examples-is The Mathematica Book [W]. For our purposes, the outstanding reference is Alfred Gray's book [G].
$>$ Some basic notation. Functions are given, for example, by

$$
\begin{gathered}
f\left[x_{-}\right]:=x^{\wedge} 3-2 x+1 \text { or } \\
g\left[u_{-}, v_{-}\right]:=u * \operatorname{Cos}[v]-u^{\wedge} 2 * \operatorname{Sin}[v]
\end{gathered}
$$

Here, as always, an underscore "_" following a letter (or string) makes it a variable. Thus the function f defined above can be evaluated at u or 3.14 or $a^{2}+b^{2}$.
$>$ Basic calculus operations.
Derivatives (including partial derivatives) by $\mathbf{D}[\mathbf{f}[\mathbf{x}], \mathbf{x}]$ or
D [g[u, v] , v]
Definite integrals by Integrate $[\mathbf{f}[\mathbf{x}],\{\mathbf{x}, \mathbf{a}, \mathbf{b}\}]$. For numerical integration, prefix an \mathbf{N} thus: NIntegrate.
$>$ Linear algebra. A vector is just an n-tuple, that is, a list $\mathbf{v}=\{\mathrm{v} \mathbf{1}, \ldots, \mathrm{vn}\}$, whose entries can be numbers or expressions. Addition is given by $\mathbf{v}+\mathbf{w}$ and scalar multiplication by juxtaposition, with $\mathbf{s v}=\mathbf{s}\{\mathbf{v} \mathbf{1}, \ldots, \mathrm{vn}\}$ yielding $\left\{\mathbf{s}^{*} \mathbf{v 1}, \ldots, \mathbf{s}^{*} \mathbf{v n}\right\}$. The dot product is given by $\mathbf{v} . \mathbf{w}$ and, for $\mathrm{n}=3$, the cross product is Cross [\mathbf{v}, \mathbf{w}].

Mathematica describes a matrix as a list of lists, the latter being its rows. For example, $\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}\}$ is a matrix and is treated as such in all contexts. To make it look like $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, apply the command MatrixForm. The determinant of a square matrix \mathbf{m} is given by Det [m].

The full power of the dot operator (.) appears only when matrices are involved. First, if \mathbf{p} and \mathbf{q} are properly sized matrices, then $\mathbf{p} . \mathbf{q}$ is their product. Next, if \boldsymbol{m} is an $m \times n$ matrix and \mathbf{v} is an n-vector, then $\mathbf{m} . \mathbf{v}$ gives the usual operation of \mathbf{m} on \mathbf{v}. Taking $\mathrm{m}=\mathrm{n}=3$ for example, if $\mathbf{m} \mathbf{1}, \mathrm{m} \mathbf{2}$, $\mathrm{m} \mathbf{3}$ are the rows of m and $\mathbf{v}=\{\mathbf{v} \mathbf{1}, \mathbf{v} \mathbf{2}, \mathbf{v} \mathbf{3}\}$, then Mathematica defines

```
m.v to be {m1.v,m2.v,m3.v}
```

This can be seen to be the result of \mathbf{m} (in 3×3 form) matrix-multiplying the column-vector corresponding to \mathbf{v}, with the resulting column-vector restated as an n-tuple. In this sense, Mathematica obeys the "column-vector convention" from the end of Section 3.1, which identifies n-tuples with $\mathrm{n} \times 1$ matrices.

If \mathbf{A} is any array-say, a vector or matrix-then for most commands, cmd [A] will apply the command cmd to each entry of \mathbf{A}.

2. Curves

A curve in \mathbf{R}^{3} can be described by giving its components as expressions in a single variable. Example:

$$
c\left[t_{-}\right]:=\{\operatorname{Cos}[t], \operatorname{Sin}[t], 2 t\}
$$

Then the vector derivative (i.e., velocity) is returned by $\mathbf{D}[\mathrm{c}[\mathrm{t}], \mathrm{t}]$.
$>$ Curves with parameters. For example, the curve c above can be generalized to

```
helix[a_,b_][t_]:= {a*Cos[t],a*Sin[t],b*t}
```

Then helix[1,2]=c.
The following formulas, drawn from Theorem 4.3 of Chapter 2, illustrate aspects of vector calculus in Mathematica.

The curvature and torsion functions κ and τ of a curve $c \approx \gamma$ are given by

```
kappa[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
    {tt,2}]].
    Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]^(1/2)/
    Simplify[D[c[tt],tt].D[c[tt],tt]]^(3/2)/.tt->t
```

(Note the description of second derivatives.) The use of the dummy variable tt makes kappa [c] a real-valued function $\mathbf{R} \rightarrow \mathbf{R}$. Otherwise, it would be merely an expression in whichever single variable was used.
"Simplify" is the principal Mathematica simplification weapon; however, it cannot be expected to give ideal results in every case. ("FullSimplify" is more
powerful but slower.) Thus human intervention is often required, either to do hands-on simplification or to use further computer commands such as "Together" or "Factor" or trigonometric simplifications.

```
tau[c_][t_]:=Simplify[
    Det[{D[c[tt],tt],D[c[tt],{tt,2}],D[c[tt],
    {tt, 3}]}]]/
    Simplify[Cross[D[c[tt],tt],D[c[tt],{tt,2}]].
    Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]/.tt->t
```

Here the determinant gives a triple scalar product.
Note: The distinction between functions and mathematical expressions is basic. Thus, with notation as above, tau applied to a curve, say, helix [1,2], is a real-valued function tau [helix[1,2]] whose value on any variable or number s is tau [helix[1,2]][s].

The unit tangent, normal, and binormal vector fields T, N, B of a curve with $\kappa>0$ are given by

```
tang[c_][t_]:=D[c[tt],tt]/
    Simplify[D[c[tt],tt].D[c[tt],tt]]^(1/2)/.tt->t
nor[c_][t_]:=Simplify[Cross[binor[c][t],
    tang[c][t]]]
binor[c_][t_]:=Simplify[Cross[D[c[tt],tt],D[c[tt],
    {tt,2}]]]/
    Simplify[Factor[Cross[D[c[tt],tt],D[c[tt],
        {tt,2}]].
    Cross[D[c[tt],tt],D[c[tt],{tt,2}]]]]^(1/2)/.tt->t
```

Here is how to preserve any such commands for future use: Type (or copy) them into a Mathematica notebook, say frenet, and use the Cell menu to designate the cells containing them as initialization cells. When this notebook is saved, a choice will be offered letting you save, not only frenet, but also a new file frenet.m that contains only the commands. Then these can be read into later work by <<frenet.m

3. Surfaces

A coordinate patch, say \mathbf{x}, is given by listing its components as expressions in two variables. For example,

$$
x\left[u_{-}, v_{-}\right]:=\{u * \operatorname{Cos}[v], u * \operatorname{Sin}[v], 2 v\}
$$

$>$ Parameters can be handled as above for curves. For example, the 2 in this formula can be replaced by an arbitrary parameter using

```
helicoid[b_] [u_,v_] :={u*Cos[v],u*Sin[v],b*v}
```

Then helicoid[2] gives the original \mathbf{x}.
For a patch, the following commands return $E, F, G, W=\sqrt{E G-F^{2}}$, and L, M, N. We elect to represent our capital letters (E) by double lowercase letters (ee), since many capitals have special meaning for Mathematica (for example, $E=2.7183 \ldots$. .

```
ee[x_][u_,v_]:=
    Simplify[D[x[uu,vv],uu].D[x[uu,vv],uu]]/.
    {uu->u,vv->v}
ff[x_][u_,v_]:=
    Simplify[D[x[uu,vv],uu].D[x[uu,vv],vv]]/.
    {uu->u,vv->v}
gg[x_] [u_, v_]:=
    Simplify[D[x[uu,vv],vv].D[x[uu,vv],vv]]/.
    {uu->u,vv->v}
ww[\mp@subsup{x}{-}{\prime}][\mp@subsup{u}{-}{\prime},\mp@subsup{v}{-}{\prime}]:=
    Simplify[Sqrt[ee[x][u,v]*gg[x][u,v]-
    ff[x][u,v]^2]]
```

The variant command, say www, in which Sqrt [...] is replaced by PowerExpand[Sqrt[...]] will often give decisively simpler square roots. But one must check that its results are positive, since for example, PowerExpand[Sqrt[x^2]] yields \mathbf{x}.

```
11[x_] [u_,v_]:=Simplify[Det [{D[x[uu,vv],uu,uu],
    D[x[uu,vv],uu],D[x[uu,vv],vv]}]/ww[x][u,v]]/.
    {uu->u,vv->v}
```

The formulas for $\mathbf{m m}$ and nn are the same except that the double derivative $\mathbf{u u}, \mathbf{u u}$ is replaced by $\mathbf{u u}, \mathbf{v v}$ and $\mathbf{v v}, \mathbf{v v}$, respectively.
$>$ Gaussian curvature K. When the commands for E, F, G and $\mathrm{L}, \mathrm{m}, \mathrm{n}$ have been read in, commands for K and H follow directly from Corollary 4.1 of Chapter 5 (see Exercise 18 of Section 5.4). However, the fastest way to find K for a given patch in \mathbf{R}^{3} is by the following command, based on Exercise 20 of Section 5.4. In it, "Module" creates an enclave in which temporary definitions can be made that let the final formula be expressed more simply.

```
gaussK[x_][u_,v_]:= Module[{xu,xv, xuu, xuv,xvv},
    xu=D[x[uu,vv],uu];xv=D[x[uu,vv],vv];
```

```
xuu=D[x[uu,vv],uu,uu];
xuv=D[x[uu,vv],uu,vv];
xvv=D[x[uu,vv],vv,vv];
Simplify[ (Det [ {xuu,xu,xv}]*Det[{xvv,xu,xv}]-
Det[{xuv, xu,xv}]^2) /
(xu.xu*xv.xv-(xu.xv)^2)^2]]/. {uu->u,vv->v }
```

As with other useful commands, this should be saved for future use.

4. Plots

There are four basic types: Plot and Plot3D plot the graphs of functions of one and two variables respectively. Examples:

```
Plot[f[x]//Evaluate, {x,a,b}]
Plot3D[g[x,y]//Evaluate, {x,a,b},{y, c, d} ]
```

Here //Evaluate improves the speed of plotting.
ParametricPlot plots the image of a parametrized curve in the plane \mathbf{R}^{2}.

ParametricPlot3D plots the image of a parametrized curve or patch. For example, a parametrized curve $c(t)$ in \mathbf{R}^{3} is plotted for $a \leqq t \leqq b$ by

```
ParametricPlot3D[c[t]//Evaluate,{t,a,b}]
```

and if \mathbf{x} is an explicitly defined patch or parametrization, its image on the rectangle $0 \leqq u \leqq 1,0 \leqq v \leqq 2 \pi$ is plotted by

```
ParametricPlot3D[x[u,v]//Evaluate, {u,0,1},
{v,0,2Pi}]
```

Various refinements are available for plots. For example, if the end of the command above is altered to

```
...{v, 0,2Pi},AspectRatio->Automatic]
```

then the same scale is imposed on height and width. Formally, the option "AspectRatio" has been reset from its default value. Various adjuncts to a plot can be also be changed. For example, the box surrounding the preceding plot is eliminated by Boxed->False. The plot can be made smoother by using PlotPoints->\{m,n\}, where the integers increase the default values governing smoothness in the u and v directions, respectively.

The options available for a command cmd are given, along with their default values, by Options [cmd]. Then ?opt will describe a particular option.

Previously drawn plots can be shown on the same page by

```
Show[plot1,plot2,plot3]
```


5. Differential Equations

Explicit solutions in terms of elementary functions are inherently rare, so we describe how to find and plot numerical solutions, which are all that is needed in many contexts. In the command for such a solution, Mathematica lumps equations and initial conditions into a single list, then specifies the dependent variables and the interval of the dependent variable.

Example: Solve numerically the differential equations

$$
x^{\prime}=f(x, y, t), \quad y^{\prime}=g(x, y, t),
$$

subject to the initial conditions

$$
x\left(t_{0}\right)=x_{0}, \quad y\left(t_{0}\right)=y_{0},
$$

on the interval $t_{\min } \leqq t \leqq t_{\max }$. The format is

```
soln = NDSolve \(\left[\left\{x^{\prime}[t]==f[x[t], y[t], t]\right.\right.\),
    \(y^{\prime}[t]==g[x[t], y[t], t]\),
    \(x[t 0]==x 0, y[t 0]==y 0\},\{x, y\},\{t, t m i n, t m a x\}]\)
```

Note the double equal signs. Without the N for "numerical," an exact solution would be sought.

NDSolve expresses x and y in terms of Interpolating Functions, data sufficient for subsequent plots. If soln is an explicit result from the preceding command, the solution is plotted by

```
ParametricPlot[Evaluate[{x[t],y[t]}/.soln],
    {t,tmin,tmax}]
```

Here "/." substitutes soln into the coordinates. Note the general equivalence: Evaluate [X] is the same as X//Evaluate.

Maple

1. Fundamentals

Basic features of Maple are as follows:
(a) Input is typed after a prompt and must be terminated by a semicolonor colon, to suppress display of the output. We do not show these below. Then press enter (or Return).
(b) Parentheses used for algebraic grouping and arguments of functions; braces $\{\ldots$. . \} for sets; brackets [. . .] for lists.
(c) Built-in commands are abbreviated, with multiword commands compressed into a single word; most are written in lower case.
(d) Multiplication always indicated by *, exponents by a caret, e.g., $\mathbf{x}^{\wedge} \mathbf{2}$.
(e) Assignments indicated by colon-equal, e.g., $\mathbf{x}:=\mathbf{2}$; equations by single equal, e.g., $\mathbf{x}+\mathbf{y}=1$.
(f) Previous outputs are called up by names assigned by the user. (Naming is important since input/outputs are not numbered.) Also, the percent symbol (\%) gives the immediately preceding output, and two of these give the one before that.
(g) Exact values distinguished from decimal approximations (floating point numbers). Conversion is accomplished by the "evalf" command. For example, $\exp (2) * \sin (\mathrm{Pi} / 3)$ returns $e^{2} \sqrt{3} / 2$; then evalf($\%$) gives a decimal approximation.
(h) Substitution by the "subs" command. If expr is an expression involving x, then subs $\left(\mathbf{x}=\mathbf{u}^{\wedge} \mathbf{2 + 1}\right.$, expr $)$ replaces every x in the expression by $u^{2}+1$.
(i) If A is an array-say a matrix or vector-then to apply an operation F to each entry of A, use the command "map" thus: $\operatorname{map}(F, A)$.

Maple has a distinctive command "unapply" that converts mathematical expressions into functions. For example, if expr is an expression involving u and v, then unapply $(\operatorname{expr}, \mathbf{u}, \mathbf{v})$ is the corresponding function of u and v.

Many specialized Maple commands are collected in packages, which are loaded, for example, by with (plots). A list of the commands in the package appears unless output is suppressed. We rarely use packages other than plots and Linear Algebra (which is replacing linalg).

Maple has reasonable error notification and excellent on-line help. For common terms, ?term will produce a detailed description (no semicolon required).

The Maple Learning Guide is a good introduction to the most recent version of Maple; it may be obtained from the website maplesoft.com. Of course, there are a variety of more advanced books.

Some basic notations.
Functions can be produced by the arrow notation. Examples:

$$
\begin{aligned}
& f:=x->x^{\wedge} 3-2 * x+1 \text { or } \\
& g:=(u, v)->u * \cos (v)-u^{\wedge} 2 * \sin (v)
\end{aligned}
$$

Derivatives (including partials):

```
diff(f(x), x) or diff(g(u,v),v)
```

Definite integral:

```
int(f(x),x=a..b) or
int (g(x,y),x=a..b,y=c..d)
```

If an explicit integral cannot be found, then evalf($\%$) gives a numerical result. Direct numerical integration is given by $\operatorname{evalf}(\operatorname{Int}(f(\mathbf{x}), \mathbf{x}=\mathbf{a} . . \mathrm{b}))$.

Linear algebra. Recent versions of Maple have changed considerably (though it still recognizes many old forms). Currently, its commands, whether new or not, are often signalled by new names. Typically, the new command begins with a capital letter and is not abbreviated. These changes are most evident in the package Linear Algebra that is replacing linalg.

Maple has always made a fundamental distinction between an n-tuple [$\mathrm{v} 1, \ldots, \mathrm{vn}$] - which is a list-and a vector, in any notation. The two types cannot directly interact. In the new version, vector is replaced by Vector (capital V).
Lists are the easiest to deal with. For instance, the usual sum of n-tuples $\mathbf{v}=[\mathbf{v} 1, \ldots, \mathrm{vn}]$ and $\mathbf{w}=[\mathbf{w} 1, \ldots, w n]$ is given by $\mathbf{v}+\mathbf{w}$, and scalar multiplication of an n -tuple by a number \mathbf{s} uses an asterisk, with $\mathbf{s} * \mathrm{v}$ giving [s*v1,..,s*vn].
A matrix is produced by applying the command Matrix to a list whose entries are lists, the latter being the rows of the matrix. Thus

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { is described by Maple as Matrix }([[\mathbf{a}, \mathbf{b}],[\mathbf{c}, \mathrm{d}]]) .
$$

With the package LinearAlgebra loaded, the determinant of a square matrix m is given by Determinant (m).

When an $\mathrm{n} \times \mathrm{n}$ matrix \mathbf{C} is considered as a linear transformation on R^{n}, it cannot directly attack $[\mathbf{v} 1, \ldots, v n$] to give the image $[w 1, \ldots, w n]$. The list $[\mathrm{v} 1, \ldots, \mathrm{vn}]$ must first be stood on end as Vector ($[\mathrm{v} 1, \ldots, \mathrm{vn}])$, which is, in fact, an $\mathrm{n} \times 1$ matrix. Now matrix multiplication is valid, and, with Linear Algebra installed, Multiply (C,Vector ([v1, ., vn]) is the $\mathrm{n} \times 1$ matrix that convert ($\%$, list) turns into [w1,..,wn]. This identification of an n-tuple with a column vector is just the "column vector convention" at the end of Section 3.1.

Since curves and surfaces are described in terms of lists, we can largely avoid the list/Vector conflict by defining three basic vector operations directly in terms of lists. First, note that the entries of a list $\mathbf{p}:=[\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{pn}]$ can be any expressions, and the $i^{\text {th }}$ entry is displayed by the command $p[i]$.

An operation applied to a list is automatically applied to each entry. (By contrast, other arrays require the command map.)

```
Dot product: \(\quad \operatorname{dot}:=(p, q) \rightarrow\) simplify \((p[1] * q[1]+\)
\(p[2] * q[2]+p[3] * q[3])\)
Cross product: cross:=(p,q)-> simplify
([p[2]*q[3]-p[3]*q[2],p[3]*q[1]-
\(\mathrm{p}[1] * \mathrm{q}[3], \mathrm{p}[1] * \mathrm{q}[2]-\mathrm{p}[2] * \mathrm{q}[1]])\)
```

Triple scalar product: tsp:=(p,q,r) -> dot(p,cross(q,r))
The built-in simplify above will reduce the number needed in later commands. Note that $\mathbf{t s p}(\mathbf{p}, \mathbf{q}, \mathbf{r})$ is just the determinant of the matrix with rows $\mathbf{p}, \mathbf{q}, \mathbf{r}$, so reversal of any two entries gives (only) a sign change.
The three commands can be saved in Maple's concise machine language by:

```
save dot,cross,tsp,"dotcrosstsp.m"
```

(Any name ending in ". m " will do as well.) These commands can then be introduced into later sessions by

read "dotcrosstsp.m"

(Formerly, save and read were expressed by save (cmd1,cmd2, 'filename. m^{\prime}) and read('filename. m^{\prime}), using backquotes.)
> Differential forms. The package difforms provides the essentials, including the exterior derivative operator \mathbf{d}. The command defform is used to specify the degree of the forms involved. For example, defforms ($\mathbf{x}=0, \mathbf{y}=0$) tells Maple that x and y are 0 -forms, that is, real-valued functions. Then the command $d\left(x^{\wedge} 2 * \sin (y)\right)$ yields $2 x \sin (y) d(x)+x^{2} \cos (y) d(y)$.

2. Curves

A curve in \mathbf{R}^{3} is described by giving its components as expressions in a single variable, for example, $c:=t->[3 * \cos (t), 3 * \sin (t), 2 * t]$. Then the vector derivative (i.e., velocity) of c is returned by $\operatorname{diff}(c(t), t)$, which differentiates each component of the curve by t.
> Curves with parameters. For example, using the unapply command, the curve \mathbf{c} can be generalized to

```
helix:= (a,b) -> unapply([a*cos(t),a*sin(t),b*t]
```

Then helix $(3,2)$ gives \mathbf{c} as above.
> Frenet apparatus. We now show how the Frenet formulas in Theorem 4.3 of Chapter 2 can be expressed in terms of Maple.

The curvature function κ of a curve $c \sim \gamma$ is given by

```
kappa := c -> unapply(simplify (
    \(\operatorname{dot}(c r o s s(\operatorname{diff}(c(t), t), \operatorname{diff}(c(t), t, t))\),
    cross (diff(c(t), t), diff(c(t),t,t)) ^^(1/2)/
    \(\left.\left.\operatorname{dot}(\operatorname{diff}(c(t), t), \operatorname{diff}(c(t), t))^{\wedge}(3 / 2)\right), t\right)\)
```

Here "unapply" makes kappa (c) a real-valued function on the domain of c. Otherwise, it would merely be an expression in t and could not be evaluated on real numbers or other variables.

The command "simplify" is the principal Maple simplification weapon, but it not a panacea. It can be augmented by related commands such as "factor" or "expand." Use ?simplify for information about these.

No set pattern of commands will give good results in every case, and human intervention is often required to get reasonable simplification.

The torsion function tau of a curve \mathbf{c} is given by

```
tau := c -> unapply(simplify(
    tsp(diff(c(t),t), diff(c(t),t,t),
        diff(c(t),t,t,t)) /factor(
    dot(cross(diff(c(t),t), diff(c(t),t,t)),
    cross(diff(c(t),t), diff(c(t),t,t)))) ),t)
```

The distinction between functions and mathematical expressions is always important. Thus, with notation as above, tau, applied to a curve, say helix $(3,2)$, is a real-valued function whose value at a number or variable s is given by tau (helix $(3,2)$) (s).
Maple has several varieties of scalar multiplication when Linear Algebra is installed, however, since we are working with lists, $\mathbf{s}^{*} \mathbf{v}$ suffices.

The Frenet frame of a curve. The unit tangent, normal, and binormal vector fields T, N, B of a curve c are given by

```
tang:=c->unapply(
    dot(diff(c(t),t), diff(c(t),t))^(-1/2)
        *diff(c(t),t),t)
nor := c->unapply (cross (binor (c) (t),tang (c) (t)),t)
binor :=c->unapply(simplify(factor(
dot(cross(diff(c(t),t), diff(c(t),t,t)),
    cross(diff(c(t),t), diff(c(t),t,t)))))^(-1/2)*
    cross(diff(c(t),t), diff(c(t),t,t)),t)
```

The presence of square roots in these formulas means that we cannot expect simple results unless the curve itself is quite simple. However, individual values of the vector fields are usually readable.

Once the Frenet commands have been typed, they can be saved in a Maple dot-m file by

```
save kappa, tau,tang, nor,binor,"frenet.m"
```

and, as usual, these commands can be installed in later work by read "frenet.m".

3. Surfaces

A coordinate patch, say \mathbf{x}, in \mathbf{R}^{3} is defined as a list-valued function whose entries are expressions in two variables. For example,

$$
x:=(u, v) \rightarrow[3 * u * \cos (v), 3 * u * \sin (v), 2 * v]
$$

Parameters in a patch can be handled as above for curves. For example, the 3 and 2 in this formula can be replaced by an arbitrary parameters \mathbf{a} and \mathbf{b} using

$$
\begin{aligned}
& \text { helicoid: }=(a, b)->\text { unapply }([a * u * \cos (v), a * u * \sin (v), \\
& \text { b*v],u,v) }
\end{aligned}
$$

Then helicoid $(3,2)$ gives the original patch \mathbf{x}.
The following commands, applied to a patch \mathbf{x}, return $E, F, G, W=E G$ $-F^{2}$, and L, M, N. We elect to represent these capital letters (E) by double lowercase letters (ee) since some capitals have special meaning for Maple (for example, $I=-1$).

$$
\begin{aligned}
& \text { ee }:=x->\text { unapply }(\operatorname{dot}(\operatorname{diff}(x(u, v), u), \\
& \quad \operatorname{diff}(x(u, v), u)), u, v) \\
& f f:=x \rightarrow>\operatorname{unapply}(\operatorname{dot}(\operatorname{diff}(x(u, v), u), \\
& \quad \operatorname{diff}(x(u, v), v)), u, v) \\
& g g:=x \rightarrow>\operatorname{unapply}(\operatorname{dot}(\operatorname{diff}(x(u, v), v), \\
& \quad \operatorname{diff}(x(u, v), v)), u, v)
\end{aligned}
$$

(Recall that simplify is built into the dot command, defined earlier.)

```
ww := x-> unapply (simplify (
    ee (x) (u, v) *gg (x) (u, v) -ff(x) (u, v) ^2) ^
        (1/2) ,u,v)
```

```
ll := x-> unapply(tsp(diff(x(u,v),u,u) ,
    diff(x(u,v),u), diff(c(u,v),v)) /
    ww (x) (u,v),u,v)
```

The formulas for $\mathbf{m m}$ and nn are the same, except that the double derivative \mathbf{u}, \mathbf{u} is replaced by \mathbf{u}, \mathbf{v} and \mathbf{v}, \mathbf{v}, respectively.

As before, these commands can be saved by

```
save ee,ff,gg,ww,ll,mm,nn,"efgwlmn.m"
```

$>$ Gaussian and mean curvature. When the commands above for E, F, G and L, M, n have been read in, commands for K and H follow immediately from Corollary 4.1 of Chapter 5 . However, a faster way to find K for a given patch in \mathbf{R}^{3} is to use the following command, based on Exercise 20 of Section 5.4. In it, proc, for "procedure", begins an enclave-terminated by end procwithin which definitions can be made that do not escape to the outside. These temporary definitions allow the final formula to be expressed more concisely.

```
gaussK := proc(x) local xu,xv, xuu, xuv, xvv;
            xu := diff(x(u,v) ,u) ; xv := diff(x(u,v) ,v) ;
        xuu := diff(x(u,v),u,u) ;
        xuv := diff(x(u,v),u,v) ;
        xvv := diff(x(u,v),v,v) ;
unapply(simplify(factor(
tsp (xuu,xu,xv) *tsp (xvv, xu,xv) -
    tsp(xuv,xu,xv)^2) /
(dot (xu, xu)*dot (xv,xv) - dot (xu, xv)^2)^2),u,v)
end proc
```

Here tsp is the triple scalar product, defined earlier. As usual, gaussK can be saved for future use.

4. Plots

Maple has three basic plot commands.
(1) The command plot has two uses:
(i) Graphs. If f is a real-valued function defined on $a \leqq t \leqq b$, then plot ($\mathbf{f}(\mathrm{t}), \mathrm{t}=\mathrm{a}$. .b) draws its graph.
(ii) Parametric plots. If g is another such function, then the curve with $c(t)=[f(t), g(t)]$ is plotted in \mathbf{R}^{2} by plot (c ($\left.\mathbf{t}\right)$, $t=a . . b)$. Alternatively, plot ([f(t),g(t)],t=a..b) gives the same result.

Plots can be modified by options, thus: plot([c(t),t=a..b], <option>), where, for example, the option numpoints $=200$ would increase the smoothness of the plot, and scaling=constrained imposes the same scale on the axes. Use ?plot [options] to get many others.
(2) The command plot3d also has two uses. Let D be a region $a \leqq u \leqq$ $b, c \leqq v \leqq d$ in \mathbf{R}^{2}. Then
(i) Graphs. If f is a real-valued function defined on D, its graph is plotted by plot3d(f(u,v), u=a..b, v=c..d).
(ii) Parametric plots. If $\mathbf{x}: D \rightarrow \mathbf{R}^{3}$ is a list-valued patch or parametrization, its image is plotted by plot3d ($x(u, v$) , u=a. .b, $\mathrm{v}=\mathrm{c} . \mathrm{d}$).
Again, ?plot3d describes a number of ways to specify plot style.
(3) Parametrized curves in \mathbf{R}^{3} are plotted using the command "spacecurve" from the plots package. As an example: spacecurve (c(t), $\mathrm{t}=-2$. . 4)

To show more than one plot on the same page, each plot should be named, say, $\mathbf{A}:=\operatorname{plot} 3 d(x(u, v), u=0 . .1, v=0 . . P i):$ with terminal colon to avoid a flood of numbers. Then use "display" from the plots package: display ([A, B, C]).

5. Differential Equations

Explicit solutions in terms of elementary functions are rare, so we describe how to find and plot numerical solutions, which are just as useful in many contexts. In the command for a numerical solution, Maple lumps equations and initial conditions into a single set, then gives the dependent variables (as follows).

For example, suppose we want to solve numerically the equations

$$
x^{\prime}=f(x, y, t), \quad y^{\prime}=g(x, y, t)
$$

subject to the initial conditions

$$
x\left(t_{0}\right)=x_{0}, \quad y\left(t_{0}\right)=y_{0}
$$

on the interval $a \leqq t \leqq b$. The format is

```
numsol:= dsolve (
    \(\{\operatorname{diff}(x(t), t)=f(x(t), y(t), t)\),
    \(\operatorname{diff}(y(t), t)=g(x(t), y(t), t)\),
    \(x(t 0)=x 0, y(t 0)=y 0\},\{x(t), y(t)\}, t y p e=n u m e r i c)\)
```

This solution is plotted by a command from the plots package:

```
odeplot(numsol, [x(t),y(t)],a..b)
```

Only now is the domain $a \leqq t \leqq b$ of the solution specified.

Computer Exercises

Chapter 2: 2.2/9, 2.4/11, 14, 15, 19, 20, 2.7/7
Chapter 3: $3.2 / 5,3.5 / 4,5,9,10$
Chapter 4: 4.2/5, 6, 11, 4.3/6, 11, 4.6/6, 4.8/10
Chapter 5: 5.4/16, 18-21, 5.6/16, 18, 5.7/8, 9
Chapter 6: 6.5/6, 6.8/11, 13
Chapter 7: 7.2/13, 7.5/9-12, 7.7/12, 13
Chapter 8: 8.1/8

Bibliography

[dC] do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
[G] Gray, Alfred., Modern Differential Geometry of Curves and Surfaces, 2d ed., CRC Press, 1998.
[Ma] Massey, W. S., Algebraic Topology: An Introduction, Springer-Verlag, 1987.
[Mi] Milnor, John W., Morse Theory, Princeton University Press, 1963.
[Mu] Munkres, J. R., Topology, 2d ed., Prentice-Hall, 2000.
[ST] Singer, I. M., and J. A. Thorpe, Lectures on Elementary Topology and Geometry, Springer-Verlag, 1976.
[S] Struik, D. J., Lectures on Classical Differential Geometry, 2d ed., Addison-Wesley, 1961. Reprint, Dover, 1988.
[W] Wolfram, S., The Mathematica Book (various editions), Wolfram Media.
The book by do Carmo is a clearly written exposition of differential geometry with a viewpoint similar to this one, but at a more advanced level. Gray's book is recommended for readers interested in the use of computers, especially for differential geometry. Both these books have extensive bibliographies.

Answers to Odd-Numbered Exercises

These answers are not complete; and in some cases where a proof is required, we give only a hint.

Chapter 1

Section 1.1

1. (a) $x^{2} y^{3} \sin ^{2} z$.
(c) $2 x^{2} y \cos z$.
2. (b) $2 x e^{h} \cos \left(e^{h}\right), h=x^{2}+y^{2}+z^{2}$.

Section 1.2

1. (a) $-6 U_{1}(\mathbf{p})+U_{2}(\mathbf{p})-9 U_{3}(\mathbf{p})$.
2. (a) $V=\left(2 z^{2} / 7\right) U_{1}-(x y / 7) U_{3}$.
(c) $V=x U_{1}+2 y U_{2}+x y^{2} U_{3}$.
3. (b) Use Cramer's rule.

Section 1.3

1. (a) 0 .
(b) $7 \cdot 2^{7}$.
(c) $2 e^{2}$.
2. (a) y^{3}.
(c) $y z^{2}\left(y^{2} z-3 x^{2}\right)$.
(e) $2 x\left(y^{4}-3 z^{5}\right)$.
3. Use Exercise 4.

Section 1.4

1. $\alpha^{\prime}(\pi / 2)=(-1,0,1 / \sqrt{2})$ at $(1,1, \sqrt{2})$.
2. $\beta(s)=\left(1+s, \sqrt{1-s^{2}}, \sqrt{2} \sqrt{1-s}\right)$.
3. The lines meet at $(11,7,3)$.
4. $\mathbf{v}_{p}=(1,0,1)_{p}$ at $\mathbf{p}=(0,1,0)$.

Section 1.5

1. (a) 4 .
(b) -4 .
(c) -2 .
2. Use Exercise 2 and $\phi((1 / x) V+(1 / y) W)=\phi(V) / x+\phi(W) / y$.
3. (b) $(x d y-y d x) /\left(x^{2}+y^{2}\right)$.
4. (a) $d x-d z$.
(b) not a 1-form.
(c) $z d x+x d y$.
5. $\pm(0,1,1 / 2)$.
6. (a) Consider the Taylor series for $t \rightarrow f(\mathbf{p}+t \mathbf{v})$.
(b) Exact: -.420 , approximate: -.500 .

Section 1.6

1. (a) $\phi \wedge \psi=y z \cos z d x d y-\sin z d x d z-\cos z d y d z$.
(b) $d \phi=-z d x d y-y d x d z$, since $d(d z)=0$.
2. Apply this definition to the formula following Definition 6.3.
3. For the alternation rule, set $f=y, g=x$.

Section 1.7

1. (c) $(0,0),(1,0)$.
2. $F *(\mathbf{v})=F(\mathbf{p}+t \mathbf{v})^{\prime}(0)=2\left(p_{1} v_{1}-p_{2} v_{2}, v_{1} p_{2}+v_{2} p_{1}\right)$ at $F(\mathbf{p})$.
3. $F *\left(\mathbf{v}_{p}\right)=F(\mathbf{p}+t \mathbf{v})^{\prime}(0)=(F(\mathbf{p})+t F(\mathbf{v}))^{\prime}(0)=F(\mathbf{v})_{F(p)}$.
4. Using Lemma 4.6 gives $\mathbf{v}_{p}[g(F)]=\left.(d / d t)\right|_{0} g(F(\mathbf{p}+t \mathbf{v}))=F(\mathbf{p}+t \mathbf{v})^{\prime}(0)[g]$ $=F *\left(\mathbf{v}_{p}\right)[g]$.
5. (a) $G F=\left(g_{1}\left(f_{1}, f_{2}\right), g_{2}\left(f_{1}, f_{2}\right)\right)$.
(b) $(G F) *\left(\alpha^{\prime}(0)\right)=(G F(\alpha))^{\prime}(0)=G *\left(F(\alpha)^{\prime}(0)\right)=G * F *\left(\alpha^{\prime}(0)\right)$.
(c) F^{-1} is one-to-one and onto. To show it is regular, start from $F\left(F^{-1}\right)=I$, the identity map. Hence $F *\left(F^{-1}\right) *=I *=$ identity map on tangent vectors. So $\left(F^{-1}\right) *$ cannot carry a nonzero vector to zero.

Chapter 2

Section 2.1

1. (a) -4 .
(b) $(6,-2,2)$.
(c) $(1,2,-1) / \sqrt{6},(-1,0,3) / \sqrt{10}$.
(d) $2 \sqrt{11}$.
(e) $-2 / \sqrt{15}$.
2. If $\mathbf{v} \times \mathbf{w}=0$, then $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}=0$ for all \mathbf{u}; use Exercise 4 .
3. $\mathbf{v}_{2}=\mathbf{v}-(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}$.

Section 2.2

1. (b) $s(t)=2 t+t^{3} / 3$.
2. $\beta(s)=\left(\sqrt{1+s^{2} / 2}, s / \sqrt{2}, \sinh ^{-1}(s / \sqrt{2})\right.$.
3. For (ii), $\left|h^{\prime}\right|=-h^{\prime} \geqq 0$, so the change of variables formula in an integral gives $L(\alpha(h))=\int_{c}^{d}\left\|\alpha(h)^{\prime}\right\| d s=\int_{c}^{d}\left\|\alpha^{\prime}(h)\right\|\left(-h^{\prime}\right) d s=-\int_{c}^{d}\left\|\alpha^{\prime}\right\| h^{\prime} d s=$ $-\int_{b}^{a}\left\|\alpha^{\prime}\right\| d t=\int_{a}^{b}\left\|\alpha^{\prime}\right\| d t=L(\alpha)$.
4. $L(\alpha) \approx 12.9153<14.1438 \approx L(\beta)$.

Section 2.3

1. $\kappa=1, \tau=0, B=-(3,0,4) / 5$, center $(0,1,0)$, radius 1 .
2. (a) $1=\left\|\alpha(h)^{\prime}\right\|=\left\|\alpha^{\prime}(h) h^{\prime}\right\|=\left|h^{\prime}\right|$, hence $h^{\prime}= \pm 1$.
(b) Let $\varepsilon= \pm 1$. Then $\bar{\alpha}=\alpha(h)$ implies $T=\alpha^{\prime}(h) h^{\prime}=\varepsilon T(h)$. Hence $\bar{\kappa} \bar{N}=\kappa(h) N(h)$, and so on.
3. For the rectifying plane. From the formula for $\tilde{\beta}$ in the text, delete $\beta(0)$ and the N_{0} term. The remaining terms give the same general shape as the curve $\left(s, \pm s^{3}\right)$.
4. (b) First differentiate $B=\bar{B}$; consider the two \pm cases and differentiate again.

Section 2.4

1. (a) Let $f=t^{2}+2$. Then $\kappa=\tau=2 / f^{2}$ and $B=\left(t^{2},-2 t, 2\right) / f$.
(c) All the limits are natural unit vectors, $\pm(1,0,0), \ldots$
2. (a) $N=(0,-1,0), \tau(0)=3 / 4$.
3. (a) $\left(\gamma(t)-\alpha\left(t_{0}\right)\right) \cdot \mathbf{u}=0$.
(b) γ has constant speed, so use Exercise 5.
4. Evidently, α is a cylindrical helix. By Exercise 7 its cross-sectional curve γ is a plane curve with constant curvature, hence γ lies in a circle.
5. (c) (Mathematica):
helix[a_,b_][t_]: =\{a*Cos[t],a*Sin[t],b*t\}
ParametricPlot3D[\{helix[2,1][t],helix[-.5,1]
[t]\}//Evaluate, $\{\mathrm{t}, 0,6 \mathrm{Pi}\}$]
(Maple): With the plots package installed,
helix: $=(a, b)->[a * \cos (t), a * \sin (t), b * t]$
spacecurve (\{helix (2, 1) (t), helix (-. 5, 1) (t) \},
t=0..6*Pi, numpoints=100)
Recall that we do not show Maple's mandatory terminal semicolon.
6. (b) $\lambda_{t}(s)=\alpha(t)+s\left(\alpha^{\prime}(t) \cdot \alpha^{\prime}(t) / \alpha^{\prime \prime}(t) \cdot J\left(\alpha^{\prime}(t)\right) J\left(\alpha^{\prime}(t)\right)\right.$ for $0 \leqq s \leqq 1$.
(c) For α unit speed, $\lambda_{t}(s)=\alpha+s(1 / \tilde{\kappa}) N$. Hence $d \lambda_{l} / d s=(1 / \tilde{\kappa}) N$ (independent of s). Evidently this is normal to α at $\alpha(t)$. Since $\alpha^{*}=$ $\alpha+(1 / \tilde{\kappa}) N$, we get $\left(\alpha^{*}\right)^{\prime}=T+(1 / \tilde{\kappa})^{\prime} N-T=(1 / \tilde{\kappa})^{\prime} N$, in agreement with $d \lambda_{t} / d s$ at $\alpha^{*}(1)$.
7. (a) For the rectifying plane (orthogonal to N):
(Mathematica):
```
viewN[a_,eps_]:=ParametricPlot[{(a[t]-a[0]).
tang[a][0],
    (a[t]-a[0]).binor[a][0]}//Evaluate,
            {t,-eps,eps}]
(Maple)
viewN:=(a,eps) ->plot([dot((a(t)-a(0)),
tang(a)(0)),
    dot((a(t)-a(0)),binor(a)(0)),t=-eps..eps])
```

(b) (iii) For all curves with $\tau(0) \neq 0$ there are essentially only two cases, depending on the sign of τ.
17. (a) $\pi / \sqrt{2}$.
(b) ∞.
(c) $\pi / \sqrt{2}$.
(d) 2π (see Exercise 18).
19. (c) For a suitable n, let τ_{n} be τ with new z-component $(1 / n) \sin 3 t$. Here $\tilde{\kappa}=\kappa$, and in the notation of Exercise 12, $d s / d t=\sqrt{x^{\prime 2}+y^{\prime 2}}$.
21. Use Theorem 4.6. By hand computation (easy, if κ and τ are first found by computer), we get $\tau / \kappa=\left(3 a c / 2 b^{2}\right)(\mathrm{P} / \mathrm{Q})^{3 / 2}$, where

$$
P=9 c^{2} t^{4}+4 b^{2} t^{2}+a^{2} \text { and } Q=9 c^{2} t^{4}+\left(9 a^{2} c^{2} / b^{2}\right) t^{2}+a^{2}
$$

Thus τ / κ is constant if and only if $4 b^{2}=9 a^{2} c^{2} / b^{2}$, that is, $3 a c= \pm 2 b^{2}$. (Hence $\tau / \kappa= \pm 1$).

Section 2.5

1. (a) $2 U_{1}(\mathbf{p})-U_{2}(\mathbf{p})$.
(b) $U_{1}(\mathbf{p})+2 U_{2}(\mathbf{p})+4 U_{3}(\mathbf{p})$.
2. $\nabla_{\alpha^{\prime}(t)} W=\sum \alpha^{\prime}(t)\left[w_{i}\right] U_{i}=\sum(d / d t)\left(w_{i}(\alpha)\right)(t) U_{i}=\left(W_{\alpha}\right)^{\prime}(t)$.

Section 2.6

1. Show that $V \cdot \tilde{W}=0$, and use Lemma 1.8.
2. For instance, $E_{2}=-\sin z U_{2}+\cos z U_{3}$ and $E_{3}=E_{1} \times E_{2}$.

Section 2.7

1. $\omega_{12}=0, \omega_{13}=\omega_{23}=d f / \sqrt{2}$.
2. $\omega_{12}=-d f, \omega_{13}=\cos f d f, \omega_{23}=\sin f d f$.
3. By Corollary 5.4(3), $\nabla_{V}\left(\Sigma f_{i} E_{i}\right)=\Sigma V\left[f_{i}\right] E_{i}+f_{i} \nabla_{V} E_{i}$
4. (Mathematica):
(a) connform[A_]:=Simplify[Dt[A].Transpose[A]]
(b) In A, write q for ϑ and f for φ. Then in MatrixForm [connform[A]], $\operatorname{read} \operatorname{Dt}[q]$ as dq.
(Maple): Install the packages Linear Algebra and difforms. With q and f as above, write $\operatorname{defform}(\mathbf{q}=\mathbf{0}, \mathbf{f}=0$) to identify them as real-valued functions.
(a) connform:=A->simplify (Multiply (map(d,A), Transpose (A)))

Section 2.8

3. (a) Compute $\theta=A d \xi$, as in the text. (A was found in Section 7.)
(b) For example, $E_{1}[r]=d r\left[E_{1}\right]=\theta_{1}\left(E_{1}\right)=1$.
(c) Use the appropriate form of the chain rule.

Chapter 3

Section 3.1

3. $\left(T_{a}\right)^{-1}=T_{-a}$, and since C is orthogonal, $C^{-1}={ }^{t} C$. Thus $F^{-1}=\left(T_{a} C\right)^{-1}=$ $C^{-1}\left(T_{a}\right)^{-1}={ }^{t} C T_{-a}$. By Exercise 1, this equals $T_{t C(-a)}{ }^{t} C=T_{-t C(a)}{ }^{t} C$.
4. (b) Using Exercise 3 we find $F^{-1}(\mathbf{p})=(5 \sqrt{2},-2,3 \sqrt{2})$
5. Use Exercises 2 and 3.
6. (a) For ϑ such that $C(1,0)=(\cos \vartheta, \sin \vartheta), C$ has matrix

$$
\left(\begin{array}{cc}
\cos \vartheta & \mp \sin \vartheta \\
\sin \vartheta & \pm \cos \vartheta
\end{array}\right)
$$

(b) $O(1)$ consists of +1 and -1 , so $F(t)=a \pm t$ for any number a.

Section 3.2

1. $T\left(\mathbf{v}_{p}\right)=\mathbf{v}_{T(p)}$.
2. The middle row of C is $(-2,1,2) / 3$, and T is translation by $(3,-4 / 3,1-2 \sqrt{2} / 3)$
3. (Mathematica):

Let ame $=\{\mathbf{e} \mathbf{1}, \mathbf{e} \mathbf{2}, \mathbf{e} \mathbf{3}\}$ and $\operatorname{amf}=\{\mathbf{f 1}, \mathbf{f} \mathbf{2}, \mathbf{f} \mathbf{3}\}$ be the attitude matrices of the frames in Exercise 3.
(b) Set cc:=Simplify[Transpose[amf].ame] Then Simplify[cc.e1] is $\mathbf{f 1}$, etc.
(Maple):
Install the package LinearAlgebra, and let ame=Matrix([e1, e2, e3]) and amf=Matrix ([f1,f2,f3]) be the attitude matrices of the frames in Exercise 3.
(b) Set cc:=simplify (Multiply (Transpose (amf), ame)). Then simplify(Multiply(cc,Vector(e1))) is Vector (f1), etc.

Section 3.3

1. If the orthogonal parts of F and G are A and B, then by Exercise 2 of Section 1, $\operatorname{sgn}(F G)=\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)=\operatorname{det} B A=\operatorname{sgn}(G F)$. Then $+1=\operatorname{sgn} I=\operatorname{sgn}\left(F F^{-1}\right)=\operatorname{sgn}(F) \operatorname{sgn}\left(F^{-1}\right)$.
2. C is rotation through angle $\pi / 2$ about the axis given by \mathbf{a}.

Section 3.4

1. (b) By definition, $\sigma(s)$ is the point canonically corresponding to $T(s)$; hence by Exercise 1 of Section 2, $C(\sigma)$ corresponds to $F_{*}(T)$, the unit tangent of $F(\beta)$.
2. Translate each triangle so that its new first vertex is at the origin. A sketch will show that the required C is orientation-reversing, and we find $C=$

$$
\left(\begin{array}{cc}
-3 / 5 & 4 / 5 \\
4 / 5 & 3 / 5
\end{array}\right)
$$

5. For a tangent vector \mathbf{v} at \mathbf{p},

$$
F_{*}\left(\nabla_{v} W\right)=F_{*}\left(W(\mathbf{p}+t \mathbf{v})^{\prime}(0)\right)=\left(\bar{W}(F(\mathbf{p})+t C(\mathbf{v}))^{\prime}(0)=\nabla_{F_{*}(v)} \bar{W} .\right.
$$

Section 3.5

3. Take $a=2, b= \pm 2$.
4. Yes, since c has constant speed, curvature, and torsion.
5. $\beta(s)=\left(\int \cos \varphi(s) d s, \int \sin \varphi(s) d s\right)$, where $\varphi(s)=\int f(s) d s$
6. For simplicity, assume $a \leqq 0 \leqq b$; then:
(Mathematica):
(a) kdetc[f_,a_,b_]:= NDSolve[$\left\{\mathrm{x}^{\prime}\right.$ [s]==Cos[phi[s]], $y^{\prime}[s]==\operatorname{Sin}[p h i[s]]$, $\mathrm{phi}^{\prime}[\mathrm{s}]==\mathrm{f}[\mathrm{s}], \mathrm{x}[0]==0, \mathrm{y}[0]==0$, phi [0]==0\}, $\{x, y, p h i\},\{s, a, b\}]$
(b) draw[f_,a_,b_]:=ParametricPlot[Evaluate [\{x[s],y[s]\}/.kdetc[f,a,b]],\{s,a,b\}, AspectRatio->Automatic]
(Maple):
(a) kdetc:=f->dsolve (\{diff(x(s),s)=cos (phi (s)), $\operatorname{diff}(y(s), s)=s i n(p h i(s)), \operatorname{diff}(p h i(s), s)=f(s)$, $x(0)=0, y(0)=0, \operatorname{phi}(0)=0\},\{x(s), y(s)$, phi (s) \}, type=numeric)
(b) Install plots. Define draw: $=(\mathbf{f}, \mathbf{a}, \mathbf{b}) \rightarrow$ odeplot (kdetc (f), [x(s),y(s)],a.b,scaling=constrained).

Chapter 4

Section 4.1

1. (a) The vertex.
(b) All points on the circle $x^{2}+y^{2}=1$.
(c) All points on the z axis.
2. (b) $c \neq-1$.
3. Use Exercise 7.
4. \mathbf{q} is in $F(M)$ if and only if $F^{-1}(\mathbf{q})$ is in M, that is, $g\left(F^{-1}(\mathbf{q})\right)=c$. Use the Hint to apply Theorem 1.4.

Section 4.2

1. (c) The Monge patch $\mathbf{x}(u, v)=\left(u, v, u^{2}+v^{2}\right)$ covers the entire surface; a parametrization based on Example 2.4 omits the point $(0,0,0)$.
2. $\mathbf{x}_{u} \times \mathbf{x}_{v}=v \delta^{\prime}(u) \times \delta(u)$.
3. (a) $E G-F^{2}=b^{2}+u^{2}$ is never zero.
(b) Helices and straight lines (rulings).
(c) $H: x \sin (z / b)-y \cos (z / b)$.
(d) For \mathbf{x} as given:
(Mathematica): ParametricPlot3D[x[u,v]//
Evaluate, $\{u,-1,1\},\{v, 0,2 P i\}]$
(Maple): plot3d(x(u,v),u=-1..1,v=0..2*Pi)
4. (b) $\mathbf{x}(u, v)=(\cos u-v \sin u, \sin u+v \cos u, v)$.
5. In all cases, (i) check that the three partial derivatives of the defining function g are never zero simultaneously on $M: g=1$ (Theorem 1.4), and (ii) First, check that the components of \mathbf{x} satisfy the equation $g=1$.
6. (c) $\mathbf{x}_{ \pm}(u, v)=(a \cos u, b \sin u, 0) \pm v(-a \sin u, b \cos u, c)$.
(d) (Mathematica):
```
xplus[u_,v_]:=\{1.5*(Cos[u]-v*Sin[u]),
    \(\left.\operatorname{Sin}[u]+v^{*} \operatorname{Cos}[u], 2 v\right\}\)
ParametricPlot3D[xplus[u,v]//Evaluate,
    \(\{u, 0,2 P i\},\{v,-1,1\}]\)
    (Maple): xplus:=(u,v) \(\rightarrow[1.5 *(\cos (u)-v * \sin (u))\),
\(\sin (u)+v * \cos (u), 2 * v]\)
    plot3d(xplus (u, v) , u=0..2*Pi, v=-1..1)
```


Section 4.3

1. (a) $r^{2} \cos ^{2} v$.
(b) $r^{2}\left(1-2 \cos ^{2} v \cos u \sin u\right)$.
2. (a) \bar{u} and \bar{v} are the Euclidean coordinate functions of $\mathbf{x}^{-1} \mathbf{y}$.
(b) Express $\mathbf{y}=\mathbf{x}(\bar{u}, \bar{v})$ in terms of Euclidean coordinates, and differentiate.
3. (a) M is given by $g=z-f(x, y)=0$, with $\nabla g=\left(-f_{x},-f_{y}, 1\right)$, and \mathbf{v} is tangent to M at \mathbf{p} if and only if $\mathbf{v} \cdot \nabla g(\mathbf{p})=0$.
4. $\nabla g=(-y,-x, 1)$ is a normal vector field; V is a tangent vector field if and only if $V \cdot \nabla g=0$, for example, $V=(0,1, x)$.
5. (a) $\bar{T}_{p}(M)$ consists of all points \mathbf{r} such that $(\mathbf{r}-\mathbf{p}) \cdot \mathbf{z}=0$; hence \mathbf{v}_{p} is in $T_{p}(M)$ (that is, $\mathbf{v} \cdot \mathbf{z}=0$) if and only if $\mathbf{p}+\mathbf{v}$ is in $\bar{T}_{p}(M)$.
6. (a) If $a / b=m / n$ for integers m, n, consider $\Delta t=2 \pi m / a=2 \pi n / b$.
(b) Assume $\alpha(s)=\alpha(t)$ for $s \neq t$, so $\mathbf{x}(a s, b s)=\mathbf{x}(a t, b t)$. Equality for z components and for $x^{2}+y^{2}$ implies $a s-a t=2 \pi m$ and $b s-$ $b t=2 \pi n$ for some integers m, n. Thus $a l b=m / n$, a contradiction.

Section 4.4

1. $d(f \phi)\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right)=\frac{\partial(f(\mathbf{x}))}{\partial u} \phi\left(\mathbf{x}_{v}\right)-\frac{\partial(f(\mathbf{x}))}{\partial v} \phi\left(\mathbf{x}_{u}\right)+f(\mathbf{x})\left[\frac{\partial}{\partial u} \phi\left(\mathbf{x}_{v}\right)-\frac{\partial}{\partial v} \phi\left(\mathbf{x}_{u}\right)\right]$
$=(d f \wedge \phi+f d \phi)\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right)$.
2. If α is a curve with initial velocity \mathbf{v} at \mathbf{p}, then

$$
\mathbf{v}_{p}[g(f)]=(g f \alpha)^{\prime}(0)=g^{\prime}(f \alpha)(0)(f \alpha)^{\prime}(0)=g^{\prime}(f(\mathbf{p})) \mathbf{v}_{p}[f]
$$

5. On the overlap of \mathscr{U}_{i} and $\mathscr{U}_{j}, d f_{i}-d f_{j}=d\left(f_{i}-f_{j}\right)=0$.
6. (b) $d \tilde{u}\left(\mathbf{x}_{u}\right)=\mathbf{x}_{u}[\tilde{u}]=\frac{\partial(\tilde{u}(\mathbf{x}))}{\partial u}=\frac{\partial u}{\partial u}=1$.

Section 4.5

1. If $\mathbf{x}: D \rightarrow M$ is a patch, then $F(\mathbf{x}): D \rightarrow N$ is (by Theorem 3.2) a differentiable mapping. Hence $\mathbf{y}^{-1} F \mathbf{x}$ is differentiable for any patch \mathbf{y} in N.
2. If $\overline{\mathbf{x}}$ and $\overline{\mathbf{y}}$ are patches in M and N, respectively, note that $\overline{\mathbf{y}}^{-1} F \overline{\mathbf{x}}=$ $\left(\overline{\mathbf{y}}^{-1} \mathbf{y}\right)\left(\mathbf{x}^{-1} \overline{\mathbf{x}}\right)$ is differentiable, being a composition of differentiable functions.
3. By Exercise 1, A is differentiable. Since $A^{2}=I, A^{-1}=A$, so A is a diffeomorphism. For $A *$, consider its effect on a curve $t \rightarrow \cos t \mathbf{p}+\sin t \mathbf{u}$ in Σ.
4. Theorem 5.4.
5. (a) Use Exercise 8.
(b) $F_{*}\left(a \mathbf{x}_{u}+b \mathbf{x}_{v}\right)=a \mathbf{y}_{u}+b \mathbf{y}_{v}$ implies linearity.
6. M is diffeomorphic to a torus if the profile curve α of M is closed, and to a cylinder if α is one-to-one. With parametrizations as suggested, $F(\mathbf{x}(u, v))=\mathbf{y}(u, v)$ is a diffeomorphism.
7. (a) If \mathbf{p} in M, there is a \mathbf{q} in \tilde{M} such that $\mathbf{p}=G(\mathbf{q})$. By consistency, $F(\mathbf{p})=\tilde{F}(\mathbf{q})$ is a valid definition. G is regular, hence locally has differentiable inverse mappings. Thus, locally $F=\tilde{F} G^{-1}$ so F is differentiable.
(b) If $F\left(\mathbf{p}_{1}\right)=F\left(\mathbf{p}_{2}\right)$, then for $\mathbf{q}_{1}, \mathbf{q}_{2}$ in \tilde{M} such that $G\left(\mathbf{q}_{1}\right)=\mathbf{p}_{1}, G\left(\mathbf{q}_{2}\right)=$ \mathbf{p}_{2}, we have $F\left(G\left(\mathbf{q}_{1}\right)=F\left(G\left(\mathbf{q}_{2}\right)\right)\right.$. Thus $\tilde{F}\left(\mathbf{q}_{1}\right)=\tilde{F}\left(\mathbf{q}_{2}\right)$. Then the hypothesis gives $G\left(\mathbf{q}_{1}\right)=G\left(\mathbf{q}_{2}\right)$, that is, $\mathbf{p}_{1}=\mathbf{p}_{2}$.

Section 4.6

3. (b) Use Theorem 6.2.
4. (a) Let $r(t)=\|\alpha(t)\|$. Then let $f=U_{1} \cdot \alpha /\|\alpha\|$ and $g=U_{2} \cdot \alpha /\|\alpha\|$. Apply Exercise 12 of Section 2.1 to get ϑ.
(b) $\vartheta(a)$ and $\vartheta(b)$ measure the same angle; hence they differ by some integer multiple of 2π.
(c) Use Exercise 1 to evaluate ψ on the polar expression for α in (a).
(d) $\frac{\operatorname{det}\left(\alpha, \alpha^{\prime}\right)}{\alpha \cdot \alpha}=\left|\begin{array}{ll}f & g \\ f^{\prime} & g^{\prime}\end{array}\right| /\left(f^{2}+g^{2}\right)=\frac{f g^{\prime}-g f^{\prime}}{f^{2}+g^{2}}$.
5. (a) Since $\left(F_{*}(\phi)\right)\left(\alpha^{\prime}\right)=\phi\left(\left(F_{*}\right)\left(\alpha^{\prime}\right)\right)=\phi\left(F(\alpha)^{\prime}\right)$, we get

$$
\int_{\alpha} F *(\phi)=\int_{a}^{b} \phi\left(F(\alpha)^{\prime}\right) d t=\int_{F(\alpha)} \phi
$$

9. (a) $2 \pi \mathrm{~m}$, (b) $2 \pi \mathrm{n}$.
10. The text shows that if ϕ is the dual of V, then $\int V \cdot d s=\int \phi$. The dual of curl V is $d \phi$, and $d A \approx W d u d v$. It follows that

$$
U \cdot \operatorname{curl} V d A=\operatorname{curl} V \cdot \frac{\mathbf{x}_{u} \times \mathbf{x}_{v}}{W} W d u d v=\phi\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right) d u d v
$$

Section 4.7

1. (a) Connected, not compact.
(c) Not connected and not compact.
(e) Connected and compact.
2. If v is nonvanishing on N, show that $F^{*}(v)$ is nonvanishing on M.
3. (a) All—by Definition 7.1.
(b) Sphere, torus-by Lemma 7.2.
(c) All—by Proposition 7.5
(d) Plane, sphere (see text).
4. (c) If M is connected, then path-connectedness (Definition 7.1) follows using parts (a) and (b). If M is path-connected, let \mathscr{U} and $M-\mathscr{U}$ be open sets of M such that \mathscr{U} contains a point \mathbf{p}.

Assume that $M-\mathscr{U}$ contains a point \mathbf{q}. There is a curve segment $\alpha:[a, b] \rightarrow M$ from \mathbf{p} to \mathbf{q}. Since α is continuous, $\alpha^{-1}(\mathscr{U})$ and α^{-1} $(M-\mathscr{U})$ are disjoint open sets filling $[a, b]$. This contradicts the stated connectedness of $[a, b]$.
11. Fix \mathbf{q} in $M-\mathscr{R}$; then by the Hausdorff axiom, for each \mathbf{p} in \mathscr{R}, there are disjoint neighborhoods \mathscr{U}_{p} of \mathbf{p} and $\mathscr{U}_{q, p}$ of \mathbf{q}. By compactness, a finite number of the neighborhoods \mathscr{U}_{p} cover \mathscr{R}. Then the intersection of the corresponding neighborhoods $\mathscr{U}_{p, q}$ is a neighborhood of \mathbf{q} that does not meet \mathscr{R}.

Section 4.8

1. If M is orientable it has a nonvanishing 2-form μ. Then $f(t)=\mu\left(\alpha^{\prime}(t)\right.$, $Y(t)$) is a differentiable function on $[a, b]$. By (ii), $f(a) f(b)<0$; hence f is somewhere zero on $a<t<b$. This contradicts (i).
2. (a) The function $\mathbf{p} \rightarrow d(\mathbf{0}, \mathbf{p})$ is continuous on M, hence takes on a maximum.
3. (i) Since M is nonorientable, there is a reversing loop (as in the hint) at some point \mathbf{q}. Fix U_{q}. Then every point U_{p} in \hat{M} can be connected to U_{q} by a curve in \hat{M}. Proof: Move U_{p} along a curve from \mathbf{p} to \mathbf{q}. If the result is $-U_{q}$, move it around the reversing loop.
4. (b) $B-\beta$ is diffeomorphic to an ordinary band.
5. (a) Recall that a neighborhood in a surface is the image under a coordinate patch of a neighborhood in \mathbf{R}^{2}. Evidently every neighborhood $\mathbf{x}(\mathscr{U})$ of $\mathbf{0}$ meets every neighborhood $\mathbf{y}(\mathscr{V})$ of $\mathbf{0}^{*}$.
(b) The sequence $\{(1 / n, 0)\}$ converges to $\mathbf{0}$ when expressed in terms of \mathbf{x}, and to $\mathbf{0}^{*}$ in terms of \mathbf{y}.
(c) Relative to \mathbf{x} and \mathbf{y}, the coordinate form of F is the identity map.
6. (a) In terms of the natural coordinates, $\alpha^{\prime}(t)=V(\alpha(t))$ becomes

$$
u^{\prime} U_{1}+v^{\prime} U_{2}=f_{1}(u, v) U_{1}+f_{2}(u, v) U_{2} .
$$

(b) The differential equations are $u^{\prime}=-u^{2}, v^{\prime}=u v$, and the initial conditions are $u(0)=1, v(0)=-1$. The first differential equation integrates to $1 / u=t+A$. But $u(0)=1$, so $u=1 /(t+1)$. Thus we get $v^{\prime}=v /(t+1)$, which integrates to $v=B(t+1)$. Then $v(0)=$ -1 implies $v=-(t+1)$.
15. Smooth overlap follows from the identity

$$
(\mathbf{x} \times \mathbf{y})(\overline{\mathbf{x}} \times \overline{\mathbf{y}})^{-1}=\left(\mathbf{x} \overline{\mathbf{x}}^{-1}\right) \times\left(\mathbf{y} \overline{\mathbf{y}}^{-1}\right)
$$

Chapter 5

Section 5.1

1. Use Method 1 in the text.
2. (a) 2 .
(c) 1 .
3. Meridians go to meridians (great circles through the poles), parallels to parallels-except for the top and bottom circles of the torus.
4. Use Method 1 and the definition of tangent map in Chapter 1.

Section 5.2

1. (b) If $\mathbf{e}_{1}, \mathbf{e}_{2}=\left(\mathbf{u}_{1} \pm \mathbf{u}_{2}\right) / \sqrt{2}$, then $S\left(\mathbf{e}_{1}\right)=\mathbf{e}_{1}$ and $S\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{2}$.

Section 5.3

1. $k_{1} k_{2} \leqq 0$ and $k_{1}=k_{2}$ imply $k_{1}=k_{2}=0$.
2. (b) $K>0$: an ellipse on one side and no points on the other. $K<0$: the two branches of a hyperbola. $K=0$, nonplanar: two parallel lines on one side, no points on the other.
3. (a) If α is a curve with initial velocity \mathbf{v} at \mathbf{p}, then $F_{*}(\mathbf{v})=F(\alpha)^{\prime}(0)=$ $\left(\alpha+\varepsilon U_{\alpha}\right)^{\prime}(0)=\mathbf{v}-\varepsilon S(v)$ at $F(\mathbf{p})$.

Section 5.4

1. $W=r^{2} \cos v>0, U=\mathbf{x} / r, K=1 / r^{2}, H=-1 / r$.
2. Use $\alpha^{\prime}=a_{1}^{\prime} \mathbf{x}_{u}+a_{2}^{\prime} \mathbf{x}_{v}$ to find speed.
3. $K=-36 r^{2} /\left(1+9 r^{4}\right)^{2}$.
4. Expand $S(\mathbf{v}) \times \mathbf{v}$. This vector is zero if and only if its dot product with $\mathbf{x}_{u} \times \mathbf{x}_{v}$ is zero. Use the Lagrange identity (Exercise 6 of Section 3).
5. $k(\mathbf{u})=S(\mathbf{v}) \cdot \mathbf{v} / \mathbf{v} \cdot \mathbf{v}$. Substitute $\mathbf{v}=v_{1} \mathbf{X}_{u}+v_{2} \mathbf{x}_{v}$.
6. (a) K is negative except at the origin, but this is a planar point, hence an umbilic with $k=0$.
(b) The hint leads to $\left(0, \pm(b / 2) \sqrt{a^{2}-b^{2}},\left(a^{2}-b^{2}\right) / 4\right)$. These two umbilics reduce to one for the paraboloid of rotation, $a=b$, where (by symmetry) we expect $\mathbf{0}$ to be umbilic.
7. (b) Since $\kappa<B$, if $\varepsilon<1 / B$, then $\mathbf{x}_{u} \times \mathbf{x}_{v} \neq 0$.
(c) $S\left(\mathbf{x}_{u}\right) \times S\left(\mathbf{x}_{v}\right)=-\kappa \cos v T \times \mathbf{x}_{v} / \varepsilon$.
8. (Mathematica):
(b) hyperboloid[a_,b_,e_] [u_, v_] := $\left\{u, v, u \wedge 2 / a^{\wedge} 2+e^{*} v^{\wedge} 2 / b^{\wedge} 2\right\}$
(c) monkeypolar $\left[r_{-}, q_{-}\right]:=m o n k e y[r * \operatorname{Cos}[q]$, r*Sin[q]]
(Maple):
(b) hyperboloid:=(a,b,e) ->unapply ([u,v,u^2/a^2+ $\left.\left.e^{*} v^{\wedge} 2 / b^{\wedge} 2\right], u, v\right)$
(c) monkeypolar: $=(r, q) \rightarrow$ monkey (r * $\cos (q)$, r*sin(q))
9. Maple has a built-in tube command in the plots package. For (c), with τ defined as in the exercise referred to, the tube is plotted by
tubeplot ($\tau(\mathrm{t}), \mathrm{t}=0 . .2 * \mathrm{Pi}$, radius=0.5)
(Mathematica):
(a) With the commands for unit normal and binormal installed (see Appendix), a tube formula is tube [c_, r_] [t_,phi_] :=c[t]+r* (Cos[phi]* nor [c][t]+Sin[phi]*binor[c][t])
This is plotted-in (b), for example-by
ParametricPlot3D[tube[helix,1/2][t,phi]//
Evaluate, $\{\mathrm{t}, 0,4 \mathrm{Pi}\}$, $\{\mathrm{phi}, 0,2 \mathrm{Pi}\}$, PlotPoints->\{40,20\},Axes->None, Boxed-> False]
(c) If the general approach in (a) is slow in this case, a faster way is to copy the outputs of binor [τ] [t, phi] and nor [τ] [t, phi] into an explicit definition of the tube function of τ.

Section 5.5

3. (a) The critical points of K are those of h. They occur at the intercepts of M with the coordinate axes.
(b) For the ellipsoid, $c^{2} /\left(a^{2} b^{2}\right) \leqq K \leqq a^{2} /\left(b^{2} c^{2}\right)$. (Note again the effect of $a=b=c$.)
4. (c) Use $Z=\operatorname{grad}\left(e^{z} \cos x-\cos y\right)$ and $W=Z \times V$. Then $\nabla_{V} Z \times$ $W+V \times \nabla_{W} Z=0$ and $V \cdot \nabla_{V} Z \times \nabla_{W} Z=-e^{2 z}$.
5. (a) Use $Z=\sum\left(x_{i} / a_{i}\right) U_{i}$.
(b) The tangency condition for a vector \mathbf{v} at \mathbf{p} is $\sum v_{i} p_{i} / a_{i}^{2}=0$.

Section 5.6

3. Use Remark 6.10.
4. Since $U \cdot V$ is constant, $U^{\prime} \cdot V+U \cdot V^{\prime}=0$. If α is principal in M , then using Lemma 6.2, $U^{\prime} \cdot V=0$, hence $V \cdot U^{\prime}=0$. Continue as for Lemma 6.3.
5. $S(T)=-U^{\prime}$; hence by orthonormal expansion, $U^{\prime}=-S(T) \cdot T T-$ $S(T) \cdot V V$. Continue as in the proof of the Frenet formulas.
6. (a) Set $\sigma=\alpha+f \delta$. Then f is determined using the equation $\sigma^{\prime} \cdot \delta^{\prime}=0$.
(b) $\delta^{\prime} \perp \delta, \alpha^{\prime}$ implies that $\alpha^{\prime} \times \delta$ and δ^{\prime} are collinear. Then $\alpha^{\prime} \times \delta=$ $p \delta^{\prime}$. Hence $\mathbf{x}_{u} \times \mathbf{x}_{v}=p \delta^{\prime}+v \delta^{\prime} \times \delta$, so $W^{2}=\left(p^{2}+v^{2}\right) \delta^{\prime} \cdot \delta^{\prime}$. Now use Exercise 12 of Section 4.
(c) On each ruling, K has a unique minimum point; the striction curve meets the ruling at this point.
7. (a) Since $\sigma(u+\varepsilon)-\sigma(u) \approx \varepsilon \sigma^{\prime}(u)$, the Hint gives $d_{\varepsilon}=\varepsilon \sigma^{\prime}(u) \cdot \delta(u) \times$ $\delta^{\prime}(u) /\left\|\delta(u) \times \delta^{\prime}(u)\right\|$. However $\left\|\delta(u) \times \delta^{\prime}(u)\right\| \varepsilon \approx\|\delta(\mathrm{u}) \times \delta(u+\varepsilon)\|$ $=\sin \vartheta_{\varepsilon} \approx \vartheta_{\varepsilon}$. Since $\left\|\delta(u) \times \delta^{\prime}(u)\right\|^{2}=\delta^{\prime} \cdot \delta^{\prime}$, we see that $\left.\lim _{\mathrm{e} \rightarrow 0} d_{\varepsilon}\right) \vartheta_{\varepsilon}$ $=\sigma^{\prime} \cdot \delta \times d^{\prime} / \delta^{\prime} \cdot \delta^{\prime}=p$.
8. Compute E, F, G and $\mathrm{L}, \mathrm{m}, \mathrm{N}$. (Computer formulas for these are given in the Appendix.) Then $E G-F^{2} \neq 0$ proves (a), and $F=\mathrm{m}=0$ proves (b).
9. (a) $K=-h^{\prime 2} \vartheta^{\prime 2} / W^{4}, H=u\left(h^{\prime} \vartheta^{\prime \prime}-\vartheta^{\prime} h^{\prime \prime}\right) /\left(2 W^{3}\right)$, where $W^{2}=h^{\prime 2}+u^{2} \vartheta^{\prime 2}$.
(b) $\delta \times \delta^{\prime}=\vartheta^{\prime} U_{3}$. Since K is a minimum when $u=0$, the z axis is the striction curve, and $p=h^{\prime} / \vartheta^{\prime}$, reciprocal of turn rate (Exercise 13 of Section 6).
10. Use $W=\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|$.

Section 5.7

1. $K=\left(1-x^{2}\right)\left(1+x^{2} \exp \left(-x^{2}\right)\right)^{-2}$. Hence $K>0 \Leftrightarrow-1<x<1$.
2. In a canonical parametrization, if g is constant, the profile curve is orthogonal to the axis, so the surface M is part of a plane. Otherwise, $K=0 \Leftrightarrow h^{\prime \prime}=0 \Leftrightarrow h^{\prime}$ is constant. If $h^{\prime}=0$, the profile curve lies in a line parallel to the axis, so M is part of a cylinder. If $h^{\prime} \neq 0$, the profile curve is a slanting line, so M is part of a cone.
3. M has parametrization $\mathbf{x}(r, v)=(r \cos v, r \sin v, f(r))$. Then $E=1+f^{\prime 2}$, $F=0, G=r^{2}$, and $W_{\mathrm{L}}=r f^{\prime \prime}, W_{\mathrm{M}}=0, W_{\mathrm{N}}=r^{2} f^{\prime}$, with $W^{2}=E G-$ $F^{2}=r^{2}\left(1+f^{\prime 2}\right)$.
4. (a) $h(u)=a \sinh (u / c)$ satisfies the given differential equation with $K=-1 / c^{2}$. Use the integral formula for $g(u)$. Then as $\mathrm{u} \rightarrow 0$, the slope angle $\tan \varphi=h^{\prime} / g^{\prime}$ approaches $(a / c) / \sqrt{1-a^{2} / c^{2}}=a / \sqrt{c^{2}-a^{2}}$. The curve becomes vertical when $g^{\prime}=0$, hence the integrand of g vanishes. There $\cos h^{2}\left(u^{*} / c\right)=c^{2} / a^{2}$, so $h_{\max }=a \sinh \left(u^{*} / c\right)=\sqrt{c^{2}-a^{2}}$.
(b) $h(u)=c \mathrm{e}^{-u / c}$ satisfies the differential equation and initial condition in Example 7.6.

Chapter 6

Section 6.1

1. (a) $\alpha^{\prime \prime}=\omega_{12}(T) E_{2}+\omega_{13}(T) E_{3}$. Hence $\alpha^{\prime \prime}$ is normal to M if and only if $\omega_{12}(T)=0$.
2. Apply the symmetry equation to E_{1}, E_{2}. Then use Corollary 1.5.

Section 6.2

1. (a) $\theta_{1}=d z, \theta_{2}=r d \vartheta$.
(d) $K=0$ and $H=-1 / 2 r$.

Section 6.3

1. If $K=H=0$, then $k_{1} k_{2}=k_{1}+k_{2}=0$. Thus $k_{1}=k_{2}=0$, so $S=0$.
2. In the proof of Liebmann's theorem, replace the constancy of $K=k_{1} k_{2}$ by that of $2 H=k_{1}+k_{2}$.
3. In the case $k_{1} \neq k_{2}$, use Theorem 2.6 to show that, say, $k_{1}=0$. By Exercise 2 the k_{1} principal curves are straight lines. Show that the k_{2} principal curves are circles and that the $\left(k_{1}\right)$ straight lines are parallel in \mathbf{R}^{3}.

Section 6.4

1. $(\mathrm{d}) \Rightarrow(\mathrm{b})$: If \mathbf{z} is an arbitrary tangent vector at \mathbf{p}, write $\mathbf{z}=a \mathbf{v}+b \mathbf{w}$. Then

$$
\begin{aligned}
\|F * \mathbf{z}\|^{2} & =a^{2}\|F * \mathbf{v}\|^{2}+2 a b F * \mathbf{v} \cdot F * \mathbf{w}+b^{2}\|F * \mathbf{w}\|^{2} \\
& =a^{2}\|\mathbf{v}\|^{2}+2 a b \mathbf{v} \cdot \mathbf{w}+b^{2}\|\mathbf{w}\|^{2}=\|\mathbf{z}\|^{2} .
\end{aligned}
$$

3. (b) Monotone reparametrization does not affect length of curves.
(c) By the definition of ρ, given any $\varepsilon>0$ there is a curve segment α from \mathbf{p} to \mathbf{q} of length $<\rho(\mathbf{p}, \mathbf{q})+\varepsilon$, and an analogous β for \mathbf{q} and r. Combining α and β gives a piecewise differentiable curve segment from \mathbf{p} to \mathbf{r}. (If only everywhere-differentiable curves are allowed, there is no change in ρ, but proofs are harder.)
4. (a) Define $F(\alpha(u)+v T(u))=\beta(u)+v T(u)$.
(b) Choose β in \mathbf{R}^{2} with plane curvature equal to κ.
5. By the exercise mentioned, a shortest curve in \mathbf{R}^{2} joining the points parametrizes a straight line segment. Thus any curve in M joining the points has length $L>2$.
6. $F *\left(\left(F^{-1}\right) * \mathbf{v}\right)=\left(F F^{-1}\right) * \mathbf{v}=I * \mathbf{v}=\mathbf{v}$. Since F is an isometry, $\left\|\left(F^{-1}\right) * \mathbf{v}\right\|=\|\mathbf{v}\|$.
7. Write $F(\mathbf{x}(u, v))=\tilde{\mathbf{x}}(f(u), g(v))$ for suitable parametrizations.
8. For \mathbf{y}, show that the conditions $E=G$ and $F=0$ are equivalent to $g^{\prime}=\cos g$, which has solution $g(v)=2 \tan ^{-1}\left(e^{v}\right)-\pi / 2$ such that $g(0)=0$. Use criteria suggested by Exercise 8.
9. $F(\mathbf{x}(u, v))=(f(u) \cos v, f(u) \sin v)$, where \mathbf{x} is a canonical parametrization and $f(u)=\exp \left(\int_{1}^{u} d t / h(t)\right)$.

Section 6.5

1. First show that α is a geodesic if and only if $\omega_{12}\left(\alpha^{\prime}\right)=0$. Let \bar{E}_{1}, \bar{E}_{2} be the transferred frame field, with connection form $\bar{\omega}_{12}$. Since $\bar{E}_{1}=$ $F *\left(\alpha^{\prime}\right)=F(\alpha)^{\prime}$, Lemma 5.3 gives

$$
0=\omega_{12}\left(\alpha^{\prime}\right)=F *\left(\bar{\omega}_{12}\right)\left(\alpha^{\prime}\right)=\bar{\omega}_{12}\left(F *\left(\alpha^{\prime}\right)\right)=\bar{\omega}_{12}\left(F(\alpha)^{\prime}\right) .
$$

3. There is no local isometry of the saddle surface $M(-1 \leqq K<0)$ onto a catenoid with $-1 \leqq \bar{K}<0$-or vice versa-since K has an isolated minimum point, at $\mathbf{0}$, while \bar{K} takes on each of its values on entire circles. Many other examples are possible.
4. (b) Follows from Lemma 4.5, since computation for \mathbf{x}_{t} shows $E_{t}=$ $\cosh ^{2} u=G_{t}$ and $F_{t}=0$.
(d) For $M_{t}, U_{t}=(s,-c, S) / C$, so the Euclidean coordinates of U_{t} are independent of t.
5. A local isometry must carry minimum points of K_{H} to minimum points of K_{C}, and also preserve orthogonality and geodesics.

Section 6.6

1. (b) $\theta_{1}=\sqrt{1+u^{2}} d u, \theta_{2}=u d v, \omega_{12}=d v / \sqrt{1+u^{2}}, K=1 /\left(1+u^{2}\right)^{2}$.
2. (b) Substitution into $d \omega_{13}=\omega_{12} \wedge \omega_{23}$ leads to

$$
\mathrm{L}_{v}=\frac{E_{v}}{2}\left(\frac{\mathrm{~L}}{E}+\frac{\mathrm{N}}{G}\right)=H E_{v} .
$$

Section 6.7

1. $1+f_{u}^{2}+f_{v}^{2} \geqq 1$.
2. (a) $\iint_{T} v=\int_{0}^{2 \pi} d v \int_{0}^{2 \pi}\left(R^{2}+r^{2}+2 R r \cos u\right) d u=4 \pi^{2}\left(R^{2}+r^{2}\right)$.
(b) $\mathbf{x}_{u} \times \mathbf{x}_{v}$ points inward, and thus $U \cdot \mathbf{x}_{u} \times \mathbf{x}_{v}=-\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|$ $=-\sqrt{E G-F^{2}}$. Hence $\int_{T} v=-\operatorname{area}(T)=-4 \pi^{2} R r$.
3. F carries positively oriented pavings of M to positively oriented pavings of N. Apply the suggested exercise to each 2 -segment.

Section 6.8

1. (a) $F^{*}(d u \wedge d v)=\mathbf{F}^{*}(d u) \wedge F^{*}(d v)=d f \wedge d g=\left(f_{u} d u+f_{v} d v\right) \wedge\left(g_{u} d u+\right.$ $\left.g_{v} d v\right)=\left(f_{u} g_{v}-f_{v} g_{u}\right) d u \wedge d v$.
(b) $\mathbf{x}^{*}(d M)=d M\left(\mathbf{x}_{u}, \mathbf{x}_{v}\right) d u \wedge d v= \pm \sqrt{E G-F^{2}} d u \wedge d v$.
2. (a) Recall that $G_{*} \approx-S$. Let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be a principal frame at a point of M. Then $G *\left(\mathbf{e}_{1}\right) \cdot G *\left(\mathbf{e}_{2}\right)=0$. Thus G is conformal if and only if $\left\|G *\left(\mathbf{e}_{1}\right)\right\|^{2}=\left\|G *\left(\mathbf{e}_{2}\right)\right\|^{2}>0$ at every point.
3. Using a canonical parametrization,

$$
\begin{aligned}
\iint K d M & =\int_{0}^{2 \pi} d v \int_{a_{1}}^{b_{1}}\left(-h^{\prime \prime} / h\right) h d s \\
& =-2 \pi\left(h^{\prime}\left(b_{1}\right)-h^{\prime}\left(a_{1}\right)\right) \\
& =2 \pi\left(\sin \varphi_{a}-\sin \varphi_{b}\right) .
\end{aligned}
$$

7. (a) For a small patchlike 2-segment,

$$
A(F(\mathbf{x}))=\iint_{F(\mathbf{x})} d N= \pm \iint_{\mathbf{x}} J_{F} d M
$$

If this always equals $A(\mathbf{x})=\iint_{x} d M$, then taking limits as \mathbf{x} shrinks to a point \mathbf{p} gives $J_{F}(\mathbf{p})= \pm 1 . F$ must be one-to-one, for otherwise two small regions of total area 2ε could map to a single region of area ε.

Conversely, we can suppose F is orientation-preserving; hence $J_{F}=1$. Then use Exercise 5 of Section 7.
(b) An isometry carries frames to frames. We have seen that cylindrical projection of a sphere is area-preserving (Exercise 6 of Section 7).
9. (a) See text.
(b) See Example 4.3(1) of Chapter 5.
(c) First show that on one of the vertical lines, exactly four directions are omitted by U. Total curvatures: $-4 \pi,-\infty,-\infty$.
13. $T C=2 \pi \int_{0}^{\infty} K(r) W(r) d r=-4 \pi$.

Section 6.9

5. (a)

$$
\mathbf{F}=C=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

7. (a) Example 4.3(2) of Chapter 5 shows that K has a unique minimum at $\mathbf{0}$. Hence every Euclidean symmetry \mathbf{F} must carry $\mathbf{0}$ to $\mathbf{0}$, so \mathbf{F} is an orthogonal transformation C.
(b) C must carry asymptotic unit vectors to asymptotic unit vectors, and carry U_{z} to $\pm U_{z}$. One such C is $\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$.

Chapter 7

Section 7.1

1. (a) The speed squared is $\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=\alpha^{\prime} \cdot \alpha^{\prime} / h^{2}(\alpha)$.
(b) $\left\langle h U_{i}, h U_{j}\right\rangle=U_{i} \cdot U_{j}=\delta_{i j}$.
2. (a) The definition $J\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}, J\left(\mathbf{e}_{2}\right)=-\mathbf{e}_{1}$ is independent of the choice of positively oriented frame field $\mathbf{e}_{1}, \mathbf{e}_{2}$, since for another positively oriented frame field,

$$
\hat{\mathbf{e}}_{1}=\cos \vartheta \mathbf{e}_{1}+\sin \vartheta \mathbf{e}_{2}, \quad \hat{\mathbf{e}}_{2}=-\sin \vartheta \mathbf{e}_{1}+\cos \vartheta \mathbf{e}_{2},
$$

and this implies $J\left(\hat{\mathbf{e}}_{1}\right)=\hat{\mathbf{e}}_{2}, J\left(\hat{\mathbf{e}}_{2}\right)=-\hat{\mathbf{e}}_{1}$. Then for $\mathbf{v} \neq 0$, choose \mathbf{e}_{2} so that $\mathbf{e}_{1}=\mathbf{v} /|\mathbf{v}|, \mathbf{e}_{2}$ is positively oriented.
(b) $V=f_{1} E_{1}+f_{2} E_{2}$, with f_{1}, f_{2} differentiable. For the other two relations, first replace arbitrary vectors by $\mathbf{e}_{1}, \mathbf{e}_{2}$.
(c) If E_{1}, E_{2} is positively oriented for $d M$, then $E_{1},-E_{2}$ is positively oriented for $-d M$.
5. (a) Expand $\|\mathbf{v} \pm \mathbf{w}\|^{2}=\langle\mathbf{v} \pm \mathbf{w}, \mathbf{v} \pm \mathbf{w}\rangle$.
(b) Compute $\langle\mathbf{v}, \mathbf{w}\rangle$ with the vectors expressed in terms of \mathbf{x}_{u} and \mathbf{x}_{v}.
(c) Direct computation with $\alpha^{\prime}=a_{1}^{\prime} \mathbf{x}_{u}+a_{2}^{\prime} \mathbf{x}_{v}$, yields the same result as applying $d s^{2}$ to α^{\prime}, since $d u\left(\alpha^{\prime}\right)=a_{1}^{\prime}, d v\left(\alpha^{\prime}\right)=a_{2}^{\prime}$.
7. We have $F *\left(U_{1}\right)=f_{u} U_{1}+g_{u} U_{2}, F_{*}\left(U_{2}\right)=f_{v} U_{1}+g_{v} U_{2}$. If F is conformal and orientation-preserving, then using Exercise 6,

$$
\begin{aligned}
f_{v} U_{1}+g_{v} U_{2} & =F *\left(U_{2}\right) \\
& =F *\left(J U_{1}\right) \\
& =J\left(F * U_{1}\right) \\
& =J\left(f_{u} U_{1}+g_{u} U_{2}\right) \\
& =-g_{u} U_{1}+f_{u} U_{2} .
\end{aligned}
$$

So the Cauchy-Riemann equations hold. Conversely, if the CauchyRiemann equations hold, then
$\left\langle F *\left(U_{1}\right), F *\left(U_{2}\right)\right\rangle=f_{u} f_{v}+g_{u} g_{v}=f_{u} f_{v}-f_{u} f_{v}=0$, and
$\left\langle F *\left(U_{1}\right), F_{*}\left(U_{1}\right)\right\rangle=f_{u}^{2}+g_{u}^{2}=|d F / d z|^{2}=f_{v}^{2}+g_{v}^{2}=\left\langle F *\left(U_{2}\right), F *\left(U_{2}\right)\right\rangle$.
This proves F is conformal (and shows that $|d F / d z|$ is the scale factor). F is orientation preserving since $J_{F}=f_{u} g_{v}-f_{v} g_{u}=f_{u}^{2}+g_{u}^{2}>0$.
9. $(F *(\mathbf{v}) \cdot F *(\mathbf{w})) / h^{2} F(\mathbf{p})=\mathbf{v} \cdot \mathbf{w} / h^{2}(\mathbf{p})$.

Section 7.2

3. $A=\pi a^{2} /\left(1-a^{2} / 4\right)$; hence total area is infinite.
4. Since \mathbf{x} is an isometry, the area of T_{0} is the same as the area of a Euclidean rectangle with sides $2 \pi R$ and $2 \pi r$. Hence $A\left(T_{0}\right)=4 \pi^{2} R r$, the same as $A(T)$.
5. (c) Evidently, $\bar{\theta}_{i}=c \boldsymbol{\theta}_{i}$, and hence $\bar{\omega}_{12}=\omega_{12}$ follows by uniqueness in the first structural equations.
(d) $d \bar{M}=\bar{\theta}_{1} \wedge \bar{\theta}_{2}=c^{2} \theta_{1} \wedge \theta_{2}=c^{2} d M$.
(e) Theorem 2.1 defines K.
6. (b) Since $\theta_{i}=\theta_{\mathrm{i}}\left(\mathbf{x}_{u}\right) d u+\theta_{i}\left(\mathbf{x}_{v}\right) d v=\left\langle E_{i}, \mathbf{x}_{u}\right\rangle d u+\left\langle E_{i}, \mathbf{x}_{v}\right\rangle d v$, we find

$$
\theta_{1}=\sqrt{E} d u+F / \sqrt{E} d v, \quad \theta_{2}=W / \sqrt{E} d v
$$

(c) Substitute $\omega_{12}=P d u+Q d v$ and preceding results into the first structural equations.
(d) Substitute into the second structural equation.
11. (b) $K=-2 / \cosh ^{3}(2 u)$.
13. (a) To define tensork, first simplify the square root of $E(u, v) G(u, v)$ - $F(u, v)^{2}$ to get $W(u, v)$.
(b) The formulas for E, F, G in the Appendix are valid for arbitrary n, so evaluate tensork on the functions $\mathbf{e e}[\mathbf{x}], \mathbf{f f}[\mathbf{x}], \mathbf{g g}[\mathbf{x}]$ for Mathematica; $\mathbf{e e}(\mathbf{x}), \mathbf{f f}(\mathbf{x}), \mathbf{g g}(\mathbf{x})$ for Maple.

Section 7.3

1. (a) First find the dual 1 -forms.
(b) $\alpha^{\prime \prime}=-\cot t \alpha^{\prime}$.
(c) $\beta^{\prime}=c /(s t) E_{1}+1 / t E_{2}$, and $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle^{\prime}=-2 /\left(s^{2} t^{3}\right)$.
2. From the proof of Lemma 3.8, $\omega_{12}(Y) E_{3}=-\nabla_{y} E_{3} \cdot E_{1} E_{3}=S(Y) \cdot E_{1} E_{3}$
3. (a) Let ω_{12} be the connection form of a frame field on \mathscr{D}. Since $d \omega_{12}=-K d M$, Stokes' theorem gives $\int_{\alpha} \omega_{12}=-\iint_{9} K d M$. From the text, $\int_{\alpha} \omega_{12}=-\psi_{\alpha}$.
4. (a) If $W=f E_{1}$, then $\nabla_{V}(W)=V[f] E_{1}+f \omega_{12}(V) E_{2}$, hence

$$
\overline{\nabla_{v} W}=F *\left(\nabla_{V}(W)\right)=V[f] \bar{E}_{1}+f\left(F^{-1}\right) \omega_{12}(V) \bar{E}_{2} .
$$

On the other hand,

$$
\nabla_{\bar{V}}(\bar{W})=\nabla_{\bar{V}}\left(f\left(F^{-1}\right) \bar{E}_{1}\right)=\bar{V}\left[f\left(F^{-1}\right)\right] \bar{E}_{1}+f\left(F^{-1}\right) \bar{\omega}_{12}(\bar{V}) \bar{E}_{2} .
$$

But $\bar{V}\left[f\left(F^{-1}\right)\right]=\left(F_{*} V\right)\left[f\left(F^{-1}\right)\right]=V\left[f\left(F^{-1} F\right)\right]=V[f]$, and

$$
\bar{\omega}_{12}(\bar{V})=\bar{\omega}_{12}\left(F_{*}(V)\right)=F^{*}\left(\bar{\omega}_{12}\right)(V)=\omega_{12}(V)
$$

where the last (crucial) step uses Lemma 5.3 of Chapter 6. This completes the proof.

Section 7.4

1. Since $\alpha^{\prime \prime}=0$, we get $\alpha(h)^{\prime \prime}=\alpha^{\prime}(h) h^{\prime \prime}$, which is 0 if and only if $h^{\prime \prime}=0$.
2. If L is a line in the $x y$ plane, consider the Euclidean plane passing through both L and the north pole \mathbf{n} of Σ_{0}; then use stereographic projection.
3. (a) Use Exercise 5 of Section 3. Since α^{\prime} is parallel on $\alpha, \angle_{\alpha}\left(\alpha^{\prime}(a)\right.$, $\left.\alpha^{\prime}(b)\right)$ is the holonomy angle ψ_{α}.
(b) (ii) The image of the Gauss map of a paraboloid is an open hemisphere of Σ, hence any (finite) simple region in it has total curvature $<2 \pi$.
4. (a) Fix $\mathbf{p}_{0} \in M$, and let \mathscr{U} consist of all points that can be joined to \mathbf{p}_{0} by a broken geodesic-include \mathbf{p}_{0} in \mathscr{U}. If $\mathbf{p} \in \mathscr{U}$, then by the given fact, \mathscr{U} contains an ε-neighborhood of \mathbf{p}. Thus \mathscr{U} is open. In a similar way, $M-\mathscr{U}$ is open. Since \mathscr{U} is not empty, $M=\mathscr{U}$.

Section 7.5

1. The coordinates u, v have $E=G=1 / v^{2}, F=0$, hence are Clairaut. With the suggested reversals, geodesics are given by

$$
\frac{d u}{d v}=\frac{ \pm c \sqrt{G}}{\sqrt{E} \sqrt{E-c^{2}}}=\frac{ \pm c v}{\sqrt{1-c^{2} v^{2}}} .
$$

Set $w=1-c^{2} v^{2}$ and integrate to get $u-u_{0}=\mp \sqrt{w} / c$. Consequently, $\left(u-u_{0}\right)^{2}+v^{2}=1 / c^{2}$.
3. At the meeting point, $u_{1}=\mathrm{a}_{1}\left(t_{1}\right)$. Since $c=\sqrt{G\left(a_{1}\right)} \sin \varphi$, the condition $G(u)=c^{2}$ implies $\sin \varphi= \pm 1$. Thus $a_{1}^{\prime}\left(t_{1}\right)$ is tangent to the barrier curve, so $a_{1}^{\prime}\left(t_{1}\right)=0$.

The geodesic equation $A_{1}=0$ in Theorem 4.2 reduces to $a_{1}^{\prime \prime}=$ $G_{u} a_{2}^{\prime 2} /(2 E)$. At the meeting point, $G_{u} \neq 0$ since barriers are not geodesic, and $a_{2}^{\prime} \neq 0$ since $a_{1}^{\prime}=0$. Thus $a_{2}^{\prime \prime}\left(t_{1}\right) \neq 0$. This means that α leaves the barrier curve instantly, remaining on the same side of it.
5. (a) By Exercise 4, tangency to the top circle implies slant $c=R$ (larger of the radii of T). Except for the inner and outer equators, no parallel is geodesic. Hence α leaves the top circle, necessarily entering the outer half of T. As h increases, $\sin \varphi$ decreases; hence α meets and crosses the outer equator. By symmetry, it returns to tangency with the top circle.
(b) Crossing the inner equator implies slant $c<R-r$.
7. Evidently all meridians approach the rim on a finite parameter interval. In view of the exercises above, so do all other geodesics; even if initially moving away from the rim, they will be turned back by a barrier curve. They cannot asymptotically approach a parallel, since no parallels are geodesic.
9. (a) $E(u)=e e(u), G(u)=g g(u)$ will be given (for abstract surfaces) or computed (for surfaces in \mathbf{R}^{3}).
(Mathematica):
clair[u0_, v0_, c_,tmin_,tmax_]:=
NDSolve[$\left\{u^{\prime}[t]==\right.$ Sqrt [gg [u[t]]-c^2]/Sqrt [ee[u[
$t]] * g g[u[t]]], v^{\prime}[t]==c / g g[u[t]], u[0]==u 0, v[0]$ $==v 0\},\{u, v\},\{t, t m i n, t m a x\}]$
(b) ParametricPlot3D[Evaluate[x[u[t],v[t]]/. nsol], $\{\mathrm{t}, \mathrm{tmin}, \mathrm{tmax}\}]$
where nsol is an explicit return from clair. (Delete "3D" in the abstract case.)
(Maple)
(a) clair: $=(u 0, v 0, c)->d s o l v e(\{d i f f(u(t), t)=$ ($\left.g g(u(t))-c^{\wedge} 2\right) \wedge(1 / 2) /(e e(u(t)) * g g(u(t)) \wedge$ $(1 / 2), \operatorname{diff}(v(t), t)=c / g g(u(t)), u(0)=u 0, v(0)=$ v0\}, \{u(t),v(t)\},type=numeric).
(b) With plots installed, if nsol is an explicit return from clair, odeplot (nsol, $\mathbf{x}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$, tmin..tmax)
11. (b) Since $G(0)=f(0)^{2}=(3 / 4)^{2}$, the slant of this geodesic is $\pm 3 / 4$.
13. Since $\alpha^{\prime}=a_{1}^{\prime} \mathbf{x}_{u}+a_{2}^{\prime} \mathbf{x}_{v}$, we have $\cos \varphi=\left\langle\alpha^{\prime}, \mathbf{x}_{u}\right\rangle / \sqrt{E}=\sqrt{E} a_{1}^{\prime}$. Hence $\cos ^{2} \varphi=\left(U\left(a_{1}\right)+V\left(a_{2}\right)\right) a_{1}^{\prime 2}$, and $\sin ^{2} \varphi$ is similar. Thus we must show that the function $f=\left(U\left(a_{1}\right)+V\left(a_{2}\right)\left(U\left(a_{1}\right) a_{2}^{\prime 2}-V\left(a_{2}\right) a_{1}^{2}\right)\right.$ is constant. Compute f^{\prime}. The geodesic equations from Theorem 4.2 then give $f^{\prime}=0$.

Section 7.6

1. In (a) and (c) the surface is diffeomorphic to a sphere, so $T C=4 \pi$. In (b), there are four handles, so $T C=-12 \pi$.
2. If $h=0$, then M is a sphere, so $T C>0$. If $h=1$, then M is diffeomorphic to a torus; hence $T C=0$. If $h \geqq 2$, then $T C<0$.
3. (c) For each polygon, draw lines from a central point to each vertex. Thus each original n-sided face is replaced by n faces, and there are n new edges and one new vertex. Thus for each polygon, the effect on $\chi(M)$ is $1 \rightarrow 1-n+n$, so there is no change.
4. The area of $\mathbf{x}(R)$ is $\pi r^{2} /(4 \sqrt{2})$. Three of the four edges are geodesics.
5. We count $e=6 f / 2=3 f$ and $v=6 f / 3=2 f$; hence $\chi=0$. So this is impossible on the sphere, but a suitable diagram shows that the torus has such a decomposition.

Section 7.7

1. Follows from Theorem 7.5 since a polygon has Euler characteristic +1 .
2. (a) By the Gauss-Bonnet theorem, M is diffeomorphic to a sphere; hence if two simply closed geodesics do not meet, they bound a region.
3. (a) The angle function from any X to V_{t} depends continuously on t; hence the index depends continuously on t. But a continuous integer-valued function on an interval is constant.
(b) Use (a).
4. (a) Approximate closely by a genuine polygon. In the limit, the interior angles will all be π. Hence by Exercise $1,-A_{n} / r^{2}=(2-n) \pi$, so $A_{n}=(n-2) \pi r^{2}$.
(b) As $n \rightarrow \infty, A_{n} \rightarrow \infty$, so $H(r)$ has infinite area.
5. (a) Let $h=\left\|V_{\alpha}\right\|>0$. Then $f=h \cos \varphi, g=h \sin \varphi$, so the integrand reduces to φ^{\prime}.
6. (a) The equations $u^{\prime}=-u, v^{\prime}=v$ have general solutions $u=A e^{-t}, v=$ $B e^{t}$, so $A=a, B=b$.
(b) Since $u v=a b$, the integral curves parametrize hyperbolas (when $a b \neq 0$); this is a meeting of two streams, with index -1 .
(c) For the circle $\alpha(t)=(\cos t, \sin t)$, the integrand reduces to -1 .
7. (a) (Mathematica): numsol [u0_, v0_,tmin_,tmax_]:=NDSolve $\left[\left\{u^{\prime}[t]==2 u[t] \wedge 2-v[t] \wedge 2, v^{\prime}[t]==-3 u[t] * v[t]\right.\right.$, $\mathrm{u}[0]==\mathrm{u} 0, \mathrm{v}[0]==\mathrm{v} 0\},\{\mathrm{u}, \mathrm{v}\},\{\mathrm{t}, \mathrm{tmin}, \mathrm{tmax}\}]$ draw[u0_, v0_,tmin_,tmax_]: =ParametricPlot [Evaluate[\{u[t],v[t]\}/.numsol[u0,v0,tmin, tmax]],\{t,tmin,tmax\}]
(b) (Maple): Take $X=(1,0)$; hence $J(X)=(0,1)$. Now apply Exercise 9. Evaluation on the circle $\alpha(t)=(\cos t, \sin t)$ gives

$\mathrm{g}:=\mathrm{t}->-3 * \cos (\mathrm{t}) * \sin (\mathrm{t})$
The integrand is
wint: $=t->(\mathrm{f}(\mathrm{t}) * \operatorname{diff}(\mathrm{~g}(\mathrm{t}), \mathrm{t})-$
$g(t) * \operatorname{diff}(f(t), t)) /(f(t) \wedge 2+g(t) \wedge 2)$ and int (wint $(t), t=0 . .2 * \mathrm{Pi}$) is -4π, so the index is -2 .

Chapter 8

Section 8.1

1. (a) If \mathbf{q} is in a normal ε-neighborhood \mathscr{N} of \mathbf{p}, then by Theorem 1.8 , the radial geodesic from \mathbf{p} to \mathbf{q} has length $\rho(\mathbf{p}, \mathbf{q})<\varepsilon$. If \mathbf{q} is not in \mathscr{N}, then any curve from \mathbf{p} to \mathbf{q} meets every polar circle of \mathscr{I}, hence $\rho(\mathbf{p}, \mathbf{q}) \geqq \varepsilon$.
2. $\mathbf{n}(x, y)=(r \cos (x / r), r \sin (x / r), y)$. To get the largest normal ε-neighborhood, fold an open Euclidean disk of radius πr around the cylinder.
3. (a) Any geodesic starting at \mathbf{p} is initially tangent to a meridian; hence (by the uniqueness of geodesics) parametrizes that meridian. It follows that the entire surface is a normal neighborhood of \mathbf{p}.
4. (a) By the triangle inequality, $\rho(\mathbf{p}, \mathbf{q})>\rho\left(\mathbf{p}_{0}, \mathbf{q}\right)-\rho\left(\mathbf{p}_{0}, \mathbf{p}\right)$. Reversing \mathbf{p} and \mathbf{q}, we conclude that $\rho(\mathbf{p}, \mathbf{q})>\left|\rho\left(\mathbf{p}_{0}, \mathbf{q}\right)-\rho\left(\mathbf{p}_{0}, \mathbf{p}\right)\right|$.
(b) Show that if $\rho\left(\mathbf{p}_{0}, \mathbf{p}\right)<\varepsilon$ and $\rho\left(\mathbf{q}_{0}, \mathbf{q}\right)<\varepsilon$, then it follows that $\left|\rho\left(\mathbf{p}_{0}, \mathbf{q}_{0}\right)-\rho(\mathbf{p}, \mathbf{q})\right|<2 \varepsilon$.

Section 8.2

1. Let M be an open disk in \mathbf{R}^{2}.
2. We can assume that C is parametrized by $\alpha(u)+v U_{3}$, with α a unitspeed curve. If α is (smoothly) closed, let σ have the same arc length and parametrize a circle in \mathbf{R}^{2}. Then $\alpha(u)+v U_{3} \rightarrow \sigma(u)+v U_{3}$ is an isometry. Circular cylinders of different radii are not isometric since their closed geodesics have different lengths.

If α is one-to-one, then since it is a geodesic of C it is defined on the entire real line. Then $\alpha(u)+v U_{3} \rightarrow(u, v)$ is an isometry onto \mathbf{R}^{2}.
5. The profile curves all approach either a singularity of the curve or the axis of rotation. Only for the sphere was the axis met orthogonally, thus giving Σ as an augmented surface of revolution.

Section 8.3

1. For $k=-1 / r^{2}$, the general solution of the Jacobi equation $g^{\prime \prime}-g / r^{2}=$ 0 can be written as $g(u)=A \cosh u / r+B \sinh u / r$. The initial conditions then determine A and B.
2. (a) $L(\varepsilon)=2 \pi \sinh \varepsilon$.
3. (a) $\mathbf{x}_{u}(0, v)=X(v)$, and since $\mathbf{x}(0, v)=\gamma_{x(v)}(0)=\beta(v)$, we have $\mathbf{x}_{v}(0, v)=$ $\beta^{\prime}(v)$. Thus $E G-\mathrm{F}^{2}$ is nonzero when $u=0$, hence also for $|u|$ small.
(b) (iii) β as base curve, $X=\delta$.
4. (a) The u-parameter curves of \mathbf{x} are meridians of longitude.
(b) Since $K=0$, the Jacobi equation becomes $(\sqrt{G})_{u u}=0$. Hence \sqrt{G} is linear in u, and it follows that $\sqrt{G}(u, v)=1-\kappa_{g}(v) u$.

Section 8.4

1. Let E be the due-east unit vector field on the sphere Σ (undefined at the poles). If A is the antipodal map, then $A *(E)=E$, so E transfers to P via the projection $\Sigma \rightarrow P$. The unique singularity has index 1 .
2. The condition implies $F(M)=N$. If \mathbf{q} is in N, then each point of $F^{-1}(\mathbf{q})$ has a neighborhood mapped diffeomorphically onto a neighborhood of \mathbf{q}. The intersection \mathscr{V} of all these neighborhoods of \mathbf{q} is evenly covered; the condition prevents its lifts from meeting.
3. (a) Since covering maps are local diffeomorphisms and T is orientable, T cannot be covered by a nonorientable surface (Exercise 3 of Section 4.7). Thus any compact connected covering surface M of T must also have $\chi(M)=0$. Hence by Theorem 6.8 of Chapter $7, M$ is a torus.
(b) For the usual parametrization of T, let $F(\mathbf{x}(u, v))=\mathbf{x}(n u, v)$.

Section 8.5

1. If $F: M \rightarrow N$ is an isometry, define $\phi: I(M) \rightarrow I(N)$ by $\phi(G)=F G F^{-1}$. Show that ϕ is a homomorphism and is one-to-one and onto.
2. Suppose $\mathbf{p} \neq \mathbf{q}$ in M. Then any geodesic segment σ from \mathbf{p} to \mathbf{q} has nonzero speed, so $F(\sigma)$ is a nonconstant geodesic of N. If $F(\mathbf{p})=F(\mathbf{q})$, there are two geodesics from this point to the midpoint of $F(\sigma)$.
3. (a) Given points \mathbf{p} and \mathbf{q} in M, if F and G are isometries such that $F\left(\mathbf{p}_{0}\right)=\mathbf{p}$ and $G\left(\mathbf{p}_{0}\right)=\mathbf{q}$, then the isometry $G F^{-1}$ carries \mathbf{p} to \mathbf{q}.
(c) Given frames $\mathbf{e}_{1}, \mathbf{e}_{2}$ at \mathbf{p} and $\mathbf{f}_{1}, \mathbf{f}_{2}$ at \mathbf{q}, let F and G be isometries such that $F(\mathbf{p})=\mathbf{p}_{0}$ and $G(\mathbf{q})=\mathbf{p}_{0}$. By hypothesis, there is an isometry H that carries the frame $F *\left(\mathbf{e}_{1}\right), F *\left(\mathbf{e}_{2}\right)$ to $G *\left(f_{1}\right), G *\left(f_{2}\right)$. Then the isometry $G^{-1} H F$ carries $\mathbf{e}_{1}, \mathbf{e}_{2}$ to $\mathbf{f}_{1}, \mathbf{f}_{2}$.
4. (a) Since C on \mathbf{R}^{3} is linear, $C(-\mathbf{p})=-C(\mathbf{p})$. Then the mapping $\{\mathbf{p},-\mathbf{p}\}$ $\rightarrow\{C(\mathbf{p}),-C(\mathbf{p})\}$ has the required properties.
(b) Because F is a local isometry, any two frames on P can be written as $F *(\mathbf{e})$ and $F *(\mathbf{f})$, where \mathbf{e} and \mathbf{f} are frames on Σ. By Exercise 6 there is an orthogonal transformation C of \mathbf{R}^{3} such that $C *(\mathbf{e})=\mathbf{f}$. Now use $F C=C_{p} F$.
5. (a) $\mathbf{x}(u, v)=\left(u, \sinh ^{-1} v, \sqrt{1+v^{2}}\right)$ has $E=1, F=0, G=1$.
(b) Use Exercise 1. The only derived isometries are those of the form $\mathrm{F}(\mathbf{x}(u, v))=\mathbf{x}(\pm u+a, \pm v)$.
6. Calculate $\|F(\mathbf{p})\|$.

Section 8.6

1. (a) One handle implies $\chi(M)=0$, but by Gauss-Bonnet, $K<0$ implies $\chi<0$.
(b) By the Gauss-Bonnet formula, the angle sum for a $k=-1$ rectangle can never be 2π.
2. Only the projective plane satisfies all three axioms; the others fail on axiom (ii), and Σ also fails (i).
3. For Δ, let $\mathbf{e}_{1}, \mathbf{e}_{2}$ be the frame at the common vertex of α and β such that \mathbf{e}_{1} is tangent to α, and $\cos \vartheta \mathbf{e}_{1}+\sin \vartheta \mathbf{e}_{2}$ is tangent to β. Let F be the isometry carrying the frame $\mathbf{e}_{1}, \mathbf{e}_{2}$ to the corresponding frame on Δ^{\prime}.

Section 8.7

1. In the proof of assertion (3) in Lemma 7.4, the Jacobi equation now reduces to $g^{\prime \prime}=0$, so the initial conditions then give $g(u)=u$.
2. For a point \mathbf{p}_{0} in M, the functions $\mathbf{p} \rightarrow \rho\left(\mathbf{p}_{0}, \mathbf{p}\right)$ and (when relevant) $\mathbf{p} \rightarrow \mathrm{d}\left(\mathbf{p}_{0}, \mathbf{p}\right)$ are both continuous, hence take on maximum values. Then use the triangle inequality.

Index

A

Acceleration of a curve
in \mathbf{R}^{3}, 54-55, 70
in a surface, 203, 341
Adapted frame field, 264
Algebraic area, 307-308, 376 (Ex. 8)
All-umbilic surface, 275-276
Alternation rule, 28, 48, 159-160
Angle, 45, 322
coordinate, 224
exterior, 366
interior, 366
oriented, 311
turning, 366
Angle function, 52 (Ex. 12)
along a curve, 311-312
on a surface, 324
slope, 68 (Ex. 6), 351
Antipodal mapping, 173 (Ex. 5), 194
Antipodal points, 194
Arc length, 52-53, 231 (Ex. 5)
parametrization, 53
Area, 297-303
Area form, 301, 312
Area-preserving mapping, 304 (Ex. 6), 313 (Ex. 7)
Associated frame field
of a coordinate patch, 294, 336
of a vector field, 312
Asymptotic curve, 243-244
Asymptotic direction, 242-243
Attitude matrix, 47-48, 91-92

B

Barrier curve, 361 (Ex. 2)
Basis formulas, 269
Bending, 283, 286
helicoid to catenoid, 293 (Ex. 5)
Binormal, 59, 69, 72
Bonnet's theorem, 438-439
Boundary
of a 2 -segment, 176
of a polygonal region, 377
Bounded 198 (Ex. 5), 443, 449 (Ex. 3)
Bracket operation, 208 (Ex. 9)
Bugle surface, 259-260, 262 (Ex. 8), 299-313

C

Canonical isomorphism, 45, 62
Canonical parametrization, 256
Cartan, E., 43, 85, 95
Cartesian product, 200 (Ex. 15)
Catenoid, 254
Gauss map, 308
Gaussian curvature, 254, 256
local isometry onto, 283
as minimal surface, 254-255
total Gaussian curvature, 305-306, 309
Center of curvature, 67 (Ex. 6), 79 (Ex. 11)
Circle, 61,65
Clairaut parametrization, 33
Classical geometries, 440

Classification of compact surfaces, 423
nonorientable, 422
orientable, 371
Closed differential form, 164-165
Closed surface in \mathbf{R}^{3}, 198 (Ex. 4), 404
Codazzi equations, 267, 272
Column-vector conventions, 105
Compactness, 184
Compact surface, 184-185, 276-277, 280
Complete surface, 350
geodesics, 400
Composite function, 4
Cone, 146 (Ex. 3), 233 (Ex. 13)
Conformal geometric structure, 323, 331
Conformal mapping, 286, 288 (Ex. 8)
Conformal patch, 288 (Ex. 8)
Congruence of curves, 121, 127 (Ex. 5)
determined by curvature and torsion, 121-123, 126
Congruence of surfaces, 314-315
Conjugate point, 405-410
Connected surface, 184, 192 (Ex. 9)
Connection equations
on Euclidean space, 89, 266
on a surface, 267, 38
Connection forms
on Euclidean space, 89
on a surface, $266,289,295,324$
Conoid, 251 (Exs. 17, 18)
Consistent formula for a mapping, 174 (Ex. 13)
Constant curvature surface
flat, 435-437
negative, 437-438
positive, 435
standard, 433
Continuous function, 369, 384
Coordinate angle, 224
Coordinate expression, 149
Coordinate patch, See Patch
Coordinate system on a surface, 165 (Ex. 7), 295
Covariant derivative
Euclidean, 81-84, 121 (Ex. 5)
intrinsic, 337-340, 341
on a patch, 202-203
relation of Euclidean to intrinsic, 343-344
Covariant derivative formula, 93 (Ex. 5), 338
Covering map, 416-417
dent multiplicity, 419-420
Riemannian, 423-424
Covering manifold (surface), 417
Critical point, 28
Cross product, 48-50, 111, 113
Crosscap, 422
Cross-sectional curve, 78 (Exs. 7, 8)
Curvature, See also Gaussian curvature;
Geodesic curvature; Mean curvature
of a curve in $\mathrm{R}^{2}, 68$ (Ex. 8)
or a curve in $\mathbf{R}^{3}, 58,69,72$
Curve, 16, 150
closed, 188
coordinate functions, 150,
one-to-one, 21
periodic, 21, 156 (Ex. 2)
regular, 21
in a surface, 150
unparametrized, 21-22
Curve segment, 52-53
minimizing, 389
shortest, 389
Cylinder, 146 (Ex. 4)
geodesics, 246
Cylindrical frame field, 85
connection forms, 92-93
dual 1-forms, 97 (Ex. 3)
Cylindrical helix, 75-76, 78

D

Darboux, G., 85-86
Darboux frame field, 248 (Ex. 7)
Degree of a form, 29
Degree of a mapping, 376 (Ex. 8)
Diffeomorphic surfaces, 169, 371
Diffeomorphism
of Euclidean space, 40
of surfaces, 169,
Differentiability, 41034 150-151
Differential form,
closed, 164-165
exact, 164-165
on a surface, 158-163
on $R^{2}, 163$
on \mathbf{R}^{3}, 22-23, 28-29
pullback of, 171-172
Differential of a function, 25
Dini's surface, 262
Direction, 209

Directional derivative, 11-12, 155
computation of, 12, 26
Disk
polar, 414 (Ex. 2)
smooth, 192 (Ex. 6)
Distribution parameter, 249 (Ex. 11)
Domain, 1
Dot product, 43-44, 85, 224
preserved by isometries, 116
Dual 1-forms, 94-95, 266, 289, 297, 324
Dupin curves, 222 (Ex. 5)

E

E, F, G (metric components), 146 (Ex. 2), 224, 234 (Ex. 18), 337 (Ex. 4)
Edge (curve), 177, 369
Efimov's theorem, 439
Ellipsoid, 148 (Ex. 9)
Euclidean symmetries, 319 (Ex. 8), 427
Gaussian curvature, 236-238
isometry group, 427
umbilics on, 240 (Ex. 7)
Elliptic paraboloid, 149 (Ex. 10), 232
(Ex. 6)
geodesics, 356-357
Ennepers surface, 250-251 (Exs. 15, 16), 313-314 (Exs. 10, 11)
ε-neighborhood, 44
Euclid, 360
Euclidean coordinate functions, 9, 16, 24, 33, 55
Euclidean distance, 44, 50 (Ex. 2), 383
(Ex. 1), 399 (Ex. 7)
Euclidean geometry, 116-117
Euclidean plane, 5
Euclidean space, 3-5
natural coordinate functions, 4
natural frame field, 9
Euclidean symmetry group, 319 (Ex. 6)
Euclidean vector field, 153, 158 (Ex. 12)
Euler characteristic, 370-371
Euler's formula, 214
Evolute, 79 (Exs. 17, 18)
Exact differential form, 164-165
Exponential map, 389-390
of the real line, 417
Exterior angle, 366
Exterior derivative, 30, 33 (Ex. 7), 161-163

F

Faces, 369
Fary-Milnor theorem, 81
Fenchel's theorem, 80 (Ex. 18), 309
Flat surface, 220
Flat torus, 330
imbedded in $\mathrm{R}^{4}, 430$
Focal point, 416-417 (Ex. 6)
Form, See Differential form
Frame, 45
Frame field
adapted, 264
on a curve, 126
on $\mathbf{R}^{3}, 85$
natural, 9
principal, 271
on a surface, 264, 389
transferred, 290-291
Frame-homogeneous surface, 428, 440
Frenet, F., 84
Frenet apparatus, 66 (Ex. 1)
preserved by isometries, 118
for a regular curve, 69
for a unit speed curve, 58-59
Frenet approximation, 63, 68 (Ex. 9)
Frenet formulas, 60, 69, 350
Frenet frame field, 59
Function, 1-2
one-to-one, 2
onto, 2
Fundamental form, 222 (Ex. 4), 329 (Ex. 5)

G

Gauss, K. F., 263
Gauss-Bonnet formula, 367-368
Gauss-Bonnet theorem, 372-375, 378
Gauss equation, 267
Gauss map, 207-208 (Exs. 4-8), 308-309
Gaussian curvature, 216-218, 329, See also Specific surfaces
formulas for
direct, 216-217, 219-220, 226, 273-274, 296-297, 336-337 (Ex. 9)
indirect, 219, 269-270, 413, 414 (Ex. 2)
and Gauss map, 308
and holonomy, 345 (Ex. 5)
of an implicitly defined surface, 236-237
isometric invariance, 291-292

Gaussian curvature (continued)
and principal curvatures, 216
sign, 216-218
Geodesic curvature, 248 (Ex. 7), 350
Geodesic lift property, 423
Geodesic polar mapping, 391
Geodesic polar parametrization, 391-393
Geodesics, 245-246, 346, See also Specific surfaces
broken, 353 (Ex. 7)
closed, 246
coordinate formulas for, 351-352
existence and uniqueness, 348-349
locally minimizing, 405
maximal, 349
minimizing, 394, 397-398
periodic, 246
preserved by (local) isometrics, 293
(Ex. 1), 425
Geographical patch, 140
Geometric surface, 322. See also Constant curvature surfaces
inextendible, 403
Gradient, 33 (Ex. 8), 51 (Ex. 11) as normal vector field, 153
Group, 106
Euclidean, 106 (Ex. 7)
Euclidean symmetry, 319-320
isometry, 427
orthogonal, 106 (Ex. 8)

H

Hadamard's theorem, 448
Handle, 371
Hausdorff axiom, 192 (Ex. 10), 193, 193 (Ex. 11)
Helicoid, 146 (Ex. 5)
local isometries, 284-286, 294 (Ex. 7)
patch computations, 227-228
Helix, 16, 60-61, 119-120, 124
Hilbert's lemma, 278
Hilbert's nonimbedding theorem, 439
Holonomy, 343
angle, 343
Homeomorphic surfaces, 369
Homogeneous surface, 428
Homotopy, 188
free, 191
Hopf's degree theorem, 379 (Ex. 8)

Hopf-Rinow theorem, 400
Hyperbolic paraboloid, 149 (Ex. 10), 232
(Ex. 6)
Hyperbolic plane, 332-333, 335 (Ex. 4)
completeness, 397
geodesics, 358-359
frame-homogeneity, 364 (Ex. 14), 440
Hyperboloids, 148-149 (Ex. 9), 232 (Ex. 6), 238 (Ex. 1)

I

Identity map, 102
Image, 1
Image curve, 36
Imbedding, 201 (Ex. 16)
isometric, 429
Immersed surface, 201 (Ex. 17)
Immersion, 201 (Ex. 17)
isometric, 429
Improper integral, 303
Index of a singularity, See Singularity
Initial velocity, 22 (Ex. 6)
Inner product, 43, 321-322
Integral curve, 200 (Exs. 13, 14)
Integral of a function on a surface, 303
Integration of differential forms,
1 -forms over 1 -segments, 174-176, 178-180
of 2 -forms over 2 -segments, 177
of 2-forms over oriented regions, 303, 303 (Ex. 4)
Interior angle, 366
Intrinsic distance, 281, 287 (Ex. 3), 387 (Ex. 7)
Intrinsic geometry, 289
Inverse function, 2
Inverse function theorem, 40, 169
Isometric imbedding, 429
Isometric immersion, 429
Isometric invariant, 289, 321
Isometric surfaces, 283
Isometry of Euclidean space, 100
decomposition theorem, 105
determined by frames, 109-110
tangent map, 107-108
Isometry group, See also Euclidean symmetry group
of Euclidean space, 107 (Ex. 7)
of a geometric surface, 426

Isometry of surfaces, 282
and Euclidean isometries, 314-316
Isothermal coordinates, 297 (Ex. 2)

J

J (rotation operator), 79 (Ex. 12), 311, 327 (Ex. 3)
Jacobi equation, 409-410
Jacobian (determinant), 156 (Ex. 3), 161, 306, 312 (Ex. 1)
Jacobian matrix, 40
Jacobi's theorem, 407
Jordan curve theorem, 352

K

Klein bottle, 436
Kronecker delta, 25

L

L, M, N, 228, 230, 234 (Ex. 18)
Lagrange identity, 222 (Ex. 6)
Law of cosines, 441 (Ex. 4)
Leibnizian property, 14
Length
of a curve segment, See Arc length
of a vector, 322. See also Norm
Liebmann's theorem, 280
Line of curvature, See Principal curve
Line-element, 328 (Ex. 5)
Liouville parametrization, 364 (Ex. 13)
Liouville's formula, 403
Local diffeomorphism, 173 (Ex. 6)
Local isometry, 283-284, 426
criteria for, 284
determined by differential map, 426
Local minimization of arc length, 405-407, 408
Loop, 188-189
Loxodrome, 234 (Ex. 16)

M

Manifold, 196, 201, 326
Mapping of Euclidean spaces, 34-35
of surfaces, 166-167
Massey, W. S., 404

Mean curvature, 216, 217-218, 221 (Ex. 3), 226, 237, 269-270
Mercator projection, 286 (Ex. 13)
Metric tensor, 322
components of, See E, F, G
coordinate description, 324, 328 (Ex. 4)
induced, 323
Milnor, T. K., 439
Minding's theorem, 416 (Ex. 8)
Minimal surface, 221
examples, 255. See also Enneper's surface; Scherk's surface
Gauss map, 313 (Ex. 9)
ruled, 251-252 (Ex. 19)
as surface of revolution, 255
Minimization of arc length, 389 local, 405
Möbius band, 1871, 198-199 (Exs. 8-10)
complete and flat, 436
Monge patch, 133, 229 (Exs. 2, 3)
Monkey saddle, 137, 218, 314 (Ex. 13)
Gaussian curvature, 230 (Ex. 7)

N

Natural coordinate functions, 4
Natural frame field, 9
Neighborhood, 44, 131. See also Open set normal, 390
Norm, 44, 45, 85
Normal coordinates, 398 (Ex. 2)
Normal curvature, 209-212, 232 (Ex. 11)
Normal plane, 69 (Ex. 9)
Normal section, 210-211
Normal vector field, 153-154

O

One-to-one, 2
Onto, 2
Open interval, 16-17
Open set
in Euclidean space, 5, 44
in a surface, 158, 192
Orientable surface, 186-187, 198 (Ex. 7), 301
Orientation
determined by an area form, 301
determined by a unit normal, 186, 203, 208

Orientation (continued)
of frames, 110, 311
of a patch, 301-303
of a paving, 302-303
of a region, 208
Orientation of a tangent frame fields
opposite, 324-3025
same, 324-325
Orientation covering surface, 198 (Exs. 6, 7), 423
Orientation-preserving (-reversing) isometry, 112, 115, 116, (Ex. 6), 306
Orientation-preserving (-reversing) reparametrization of a curve, 54, 180-181
monotone, 57 (Ex. 7)
Oriented angle, 311-312
Oriented boundary, 177-178, 377
Orthogonal coordinates, 295-296
Gaussian curvature formula in, 296
Orthogonal matrix, 48
Orthogonal transformation, 102, 104
Orthogonal vectors, 45, 65-66, 322
Orthonormal expansion, 47
Orthonormal frame, See Frame
Osculating circle, 67 (Ex. 6)
Osculating plane, 63, 68 (Ex. 9)
Osserman, R., 314

P

Paraboloid, See Elliptic paraboloid
Parallel curves, 58 (Ex. 10), 69 (Ex. 11)
Parallel postulate, 360-361
Parallel surfaces, 223 (Ex. 7)
Parallel translation, 342
Parallel vector field, 56, 341-342
Parallel vectors in Euclidean space, 6
Parameter curves, 143
Parametrization
of a curve, 22
of a surface, 142-143
decomposable into patches, 173 (Ex. 7)
Partial velocities, 140, 141, 153, 168-169
Patch, 130
abstract, 193
geometric computations in, 224-226
Monge, 133
orthogonal, 232 (Ex. 8), 294
principal, 233 (Ex. 8), 293 (Ex. 3)
proper, 131, 136, 158 (Ex. 14)
Patchlike 2-segment, 297
Paving, 300, 302-303
Planar point, 218
Plane curvature, 68 (Ex. 8), 79 (Ex. 12)
Plane curve, 63
Frenet apparatus, 68 (Ex. 8)
Plane in \mathbf{R}^{3}, 62, 137 (Ex. 2), 245, 274-275
identified with R2, 132
Poincaré, H., 376
Poincaré half-plane, 327 (Ex. 2), 399 (Ex. 8)
geodesics, 361 (Ex. 1)
isometric to hyperbolic plane, 362-363 (Ex. 8)
Poincaré-Hopf theorem, 381-382, 422
Poincaré's lemma, 189
Point of application, 6
Pointwise principle, 9
Polar circle, 392
Polarization, 103-104, 328 (Ex. 5)
Polygonal decomposition, 370
Polygonal region, 376
boundary segment, 376
Pregeodesic, 352
Principal curvatures, 212
as eigenvalues, 213
formula for, 214, 220
Principal curve, 240-241, 247-249
Principal direction, 212
Principal frame field, 271-272
Principal normal, 59, 69, 72, 350
Principal vectors, 212, 232 (Ex. 9)
as eigenvectors, 213
Projective plane, 194-195, 334
frame-homogeneity, 432 (Ex. 7)
geodesics, 352-353 (Ex. 6)
isometric imbedding of, 432 (Ex. 10)
topological properties, 197 (Ex. 2)
Pseudosphere, See Bugle surface
Pullback
of a form, 170-171
of a metric, 323
Push forward of a metric, 333

Q

Quadratic approximation, 214-215
Quadric surface, 148

R

Rectangular decomposition, 369
Rectifying plane, 68 (Ex. 9)
Reflection, 113
Regular curve, 22
Regular mapping, 39, 169
Reparametrization of a curve, 19-20
monotone, 57 (Ex. 7)
orientation-preserving, 54
orientation-reversing, 54
unit-speed, 53
Riemann, B., 321, 360
Riemannian geometry, 326
Riemannian manifold, 326
Rigid motion, See Isometry of Euclidean space
Rigidity, 318 (Ex. 1)
Rotation, 101, 113, 115 (Ex. 4), 116 (Ex. 6)
Ruled surface, 145, 233 (Ex. 12), 244, 313 (Ex. 8)
flat, 233 (Ex. 13)
noncylindrical, 249-250 (Exs. 11-13)
Ruler function, 323
Ruling, 145

S

Saddle surface, 147 (Ex. 6)
Euclidean symmetries, 319 (Ex. 7)
Gauss map, 314 (Ex. 12)
patch computations, 229-230
Scalar multiplication, 8, 9
Scale change, 336 (Ex. 7)
Scale factor, 286
Scherk's surface, 239 (Ex. 5)
Gauss map, 313 (Ex. 9)
Schwarz inequality, 45, 322
Serret, J. A., 84
Shape operator, 203-204
characteristic polynomial, 221 (Ex. 4)
and covariant derivative, 344
and Gauss map, 308-309
and Gaussian and mean curvature, 216
and normal curvature, 209
preserved by Euclidean isometries, 314-315
and principal curvatures and vectors, 213
proof of symmetry, 226-227, 269 (Ex. 3)
in terms of a frame field, 266
Shortest curve segment, 389

Sign of an isometry, 109
Simply connected surface, 188
Singularity, 380, 385 (Ex. 10)
index, 380, 385 (Ex. 9)
isolated, 380
removable, 384
sources and sinks, 380, 381
Slant of a geodesic, 354
Smooth disk, 192 (Ex. 5)
Smooth function, 4
Smooth overlap, 151-152, 194
Speed of a curve, 52
Sphere, 133
conjugate points, 407, 410
Euclidean symmetries, 319 (Ex. 4), 432 (Ex. 6)
Euler characteristic, 370-371
frame-homogeneity, 432 (Ex. 6), 440
Gaussian curvature, 221, 231 (Ex. 1), 270
geodesics, 245, 396-397
geographical patch, 140
computations, 230 (Ex. 1), 296
geometric characterizations, 275, 276, 280
holonomy, 343
isometries, 319 (Ex. 4)
rigidity, 318 (Ex. 1)
shape operator, 202-203
topological properties, 184, 188, 189
Sphere with handles, 371
Spherical curve, 66, 68 (Ex. 10), 81(Ex. 20)
Spherical frame field, 87,97
adapted to sphere, 267-268
dual and connection forms, 97
Spherical image
of a curve, 74-75
of a surface, See Gauss map
Standard constant curvature surface, 433, 435
Stereographic plane, 331
Stereographic projection, 167, 169-170, 173 (Ex. 12)
as conformal mapping, 288 (Ex. 14)
Stereographic sphere, 331-332
Stokes' theorem, 178-179, 183 (Ex. 13), 377
Straight line, 16, 58 (Ex. 11)
length-minimizing properties, 58 (Ex. 11)
Structural equations on \mathbf{R}^{3}, 95-96
on a surface, $267,270,329,330$
Support function, 238

Surface
abstract, 195-196
geometric, 322
immersed, 201 (Ex. 16)
in $\mathbf{R}^{n}, 335$
in $\mathbf{R}^{3}, 131,429$
implicit definition, 133-134
simple, 133, 172 (Ex. 3)
Surface of revolution, 135, 243-253
area, 303 (Ex. 2)
augmented, 138 (Ex. 12)
of constant curvature, 257-259, 261-262 (Ex. 7)
diffeomorphism types, 191 (Ex. 5)
Gaussian curvature, 253, 256
geodesics, 3622 (Ex. 4)
local characterization, 288 (Ex. 12)
meridians and parallels, 135-136
parametrization canonical, 256
special, 148 (Ex. 8)
usual, 143-144
patch computations, 239-240
principal curvatures, 253
principal curves, 242, 239-240
profile curve, 135
total Gaussian curvature, 312-313 (Exs. 5, 6)
twisted, 262
Symmetry equation, 267

T

Tangent bundle, 196-197
Tangent direction, 209-210
Tangent line, 23 (Ex. 9), 63
Tangent map, 37, 40 (Ex. 9)
of a Euclidean isometry, 107-109
of a mapping of surfaces 168-169, 173
(Exs. 9, 10), 426
of a patch, 156 (Ex. 4)
Tangent plane, 152-153
Euclidean, 157 (Ex. 9)
Tangent space, 7
Tangent surface, 233 (Ex. 13), 335
local isometries, 287 (Ex. 5)
Tangent vector,
to $\mathbf{R}^{3}, 6,15$,
to a surface, 152
Theorema egregium, 291-293, 329
3-curve, 17, 73-74

Topological invariants (properties), 184-191, 370
Torsion of a curve, 60, 69, 72
formula for,72
sign, 119
Torus of revolution, 144. See also Flat torus Euler characteristic, 370
Gauss map, 308
Gaussian curvature, 217-218, 254
patch computations, 254-255
total Gaussian curvature, 305, 309-310
usual parametrization, 144-145
Total curvature of a curve in $\mathbf{R}^{3}, 80$ (Ex. 17)
Total Gaussian curvature, 304, 309-310
and Euler characteristic, 372
and Gauss map, 309-310
Total geodesic curvature, 364-366
Total rotation, 380
Transferred frame field, 290-291
Translation of Euclidean space, 100-101, 113
Trefoil knot, 80-81 (Ex. 19), 235 (Ex. 21)
Triangle, 378-379, 441 (Ex. 4)
Triangle inequality, 286 (Ex. 3)
Triangulation, 370
Triple scalar product, 4850
Tube, 234 (Ex. 17), 235 (Ex. 21)
2-segment, 176-177

U
Umbilic point, 212-213, 233 (Exs. 14, 15). See also All-umbilic surface
Unit normal function, 225-226
Unit normal vector field, 186, 203
Unit points, 36
Unit-speed curve, 53
Unit sphere, 131-132
Unit tangent, 58, 69, 72-73
Unit vector, 45

> V

Vector, See Tangent vector
Vector analysis, 33 (Ex. 8)
Vector field
on an abstract surface, 195
on a curve, 54, 332-333
on Euclidean space, 8
on a surface in \mathbf{R}^{3}, 153,
in terms of a patch, 158 (Ex. 12)
normal, 153-154
tangent, 153
Vector part, 6
Velocity (vector), 18, 195
Vertices, 366
Volume element, 33 (Ex. 6)

W

Wedge product, 29-30, 160
Winding line on torus, 158 (Ex. 11)
Winding number, 181 (Exs. 5, 6), 191-192, 385-386

