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Calculus on a Surface

130

This chapter begins with the definition of a surface in R3 and with some stan-
dard ways to construct surfaces. Although this concept is a more-or-less
familiar one, it is not as widely known as it should be that each surface has
a differential and integral calculus strictly comparable with the usual calcu-
lus on the Euclidean plane R2. The elements of this calculus—functions,
vector fields, differential forms, mappings—belong strictly to the surface and
not to the Euclidean space R3 in which the surface is located. Indeed, we shall
see in the final section that this calculus survives undamaged when R3 is
removed, leaving just the surface and nothing more.

4.1 Surfaces in R3

A surface in R3 is, to begin with, a subset of R3, that is, a certain collection
of points of R3. Of course, not all subsets are surfaces: We must certainly
require that a surface be smooth and two-dimensional. These requirements
will be expressed in mathematical terms by the next two definitions.

1.1 Definition A coordinate patch x: D Æ R3 is a one-to-one regular
mapping of an open set D of R2 into R3.

The image x(D) of a coordinate patch x—that is, the set of all values of
x—is a smooth two-dimensional subset of R3 (Fig. 4.1). Regularity (Defini-
tion 7.9 of Chapter 1), for a patch as for a curve, is a basic smoothness con-
dition; the one-to-one requirement is included to prevent x(D) from cutting
across itself. Initially, in order to avoid certain technical difficulties (Example
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1.6), we must use proper patches, those for which the inverse function x-1:
x(D) Æ D is continuous (that is, has continuous coordinate functions). If we
think of D as a thin sheet of rubber, then x(D) is gotten by bending and
stretching D in a not too violent fashion.

To construct a suitable definition of surface we start from the rough idea
that any small enough region in a surface M resembles a region in the plane R2.
The discussion above shows that this can be stated somewhat more precisely
as, near each of its points, M can be expressed as the image of a proper patch.
(When the image of a patch x is contained in M, we say that x is a patch in
M.) To get the final form of the definition, it remains only to define a neigh-
borhood N of p in M to consist of all points of M whose Euclidean distance
from p is less than some number e > 0.

1.2 Definition A surface in R3 is a subset M of R3 such that for each point
p of M there exists a proper patch in M whose image contains a neighbor-
hood of p in M (Fig. 4.2).

The familiar surfaces used in elementary calculus satisfy this definition; for
example, let us verify that the unit sphere S in R3 is a surface. By definition,

FIG. 4.1

FIG. 4.2
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S consists of all points at unit distance from the origin—that is, all points p
such that

To check the definition above, we start by finding a proper patch in S cover-
ing a neighborhood of the north pole (0, 0, 1). Note that by dropping each
point (q1, q2, q3) of the northern hemisphere of S onto the xy plane at (q1, q2,
0) we get a one-to-one correspondence of this hemisphere with a disk D of
radius 1 in the xy plane (see Fig. 4.3). If this plane is identified with R2 by
means of the natural association (q1, q2, 0) ´ (q1, q2), then D becomes the
disk in R2 consisting of all points (u, v) such that u2 + v2 < 1. Expressing this
correspondence as a function on D yields the formula

Thus x is a one-to-one function from D onto the northern hemisphere of
S. We claim that x is a proper patch. The coordinate functions of x are dif-
ferentiable on D, so x is a mapping. To show that x is regular, we compute
its Jacobian matrix (or transpose)

where Evidently the rows of this matrix are always linearly
independent, so its rank at each point is 2. Thus, by the criterion following
Definition 7.9 of Chapter 1, x is regular and hence is a patch. Furthermore,
x is proper, since its inverse function x-1: x(D) Æ D is given by the formula
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and hence is certainly continuous. Finally, we observe that the patch x covers
a neighborhood of (0, 0, 1) in S. Indeed, it covers a neighborhood of every
point q in the northern hemisphere of S.

In a strictly analogous way, we can find a proper patch covering each of
the other five coordinate hemispheres of S, and thus verify, by Definition 1.2,
that S is a surface. Our real purpose here has been to illustrate Definition
1.2—we soon find a much quicker way to prove (in particular) that spheres
are surfaces.

The argument above shows that if f is any differentiable real-valued func-
tion on an open set D in R2, then the function x: D Æ R3 such that

is a proper patch. We shall call patches of this type Monge patches.
We turn now to some standard methods of constructing surfaces. Note that

the image M = x(D) of just one proper patch automatically satisfies 1.2; M
is then called a simple surface. (Thus Definition 1.2 says that any surface in
R3 can be constructed by gluing together simple surfaces.)

1.3 Example The surface M: z = f(x, y). Every differentiable real-valued
function f on R2 determines a surface M in R3: the graph of f, that is, the set
of all points of R3 whose coordinates satisfy the equation z = f(x, y). Evi-
dently M is the image of the Monge patch

hence by the remarks above, M is a simple surface.

If g is a real-valued function on R3 and c is a number, denote by 
M: g = c the set of all points p such that g(p) = c. For example, if g is a 
temperature distribution in space, then M: g = c consists of all points of
temperature c. There is a simple condition that tells when such a subset of
R3 is a surface.

1.4 Theorem Let g be a differentiable real-valued function on R3, and c
a number. The subset M: g(x, y, z) = c of R3 is a surface if the differential
dg is not zero at any point of M.

(In Definition 1.2 and in this theorem we are tacitly assuming that M has
some points in it; thus the equation x2 + y2 + z2 = -1, for example, does not
define a surface.)

x u v u v f u v, , , ,( ) = ( )( );

x u v u v f u v, , , ,( ) = ( )( )

x- ( ) = ( )1
1 2 3 1 2p p p p p, , ,
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Proof. All we do is give geometric content to a famous result of
advanced calculus—the implicit function theorem. If p is a point of M, we
must find a proper patch covering a neighborhood of p in M (Fig. 4.4).
Since

the hypothesis on dg is equivalent to assuming that at least one of these
partial derivatives is not zero at p, say (∂g/∂z)(p) π 0. In this case, the
implicit function theorem says that near p the equation g(x, y, z) = c can
be solved for z. More precisely, it asserts that there is a differentiable real-
valued function h defined on a neighborhood D of (p1, p2) such that

(1) For each point (u, v) in D, the point (u, v, h(u, v)) lies in M; that is,
g(u, v, h(u, v)) = c.

(2) Points of the form (u, v, h(u, v)), with (u, v) in D, fill a neighbor-
hood of p in M.

It follows immediately that the Monge patch x: D Æ R3 such that

satisfies the requirements in Definition 1.2. Since p was an arbitrary point
of M, we conclude that M is a surface. ◆

From now on we use the notation M: g = c only when dg π 0 on M. Then
M is a surface said to be defined implicitly by the equation g = c. It is now
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easy to prove that spheres are surfaces. The sphere S in R3 of radius r > 0 
and center c = (c1, c2, c3) is the set of all points at distance r from c. If

then S is defined implicitly by the equation g = r2. Now,

Hence dg is zero only at the point c, which is not in S. Thus S is a surface.
An important class of surfaces is gotten by rotating curves.

1.5 Example Surfaces of revolution. Let C be a curve in a plane P Ã R3,
and let A be a line in P that does not meet C. When this profile curve C is
revolved around the axis A, it sweeps out a surface of revolution M in R3.

Let us check that M really is a surface. For simplicity, suppose that P is a
coordinate plane and A is a coordinate axis—say, the xy plane and x axis,
respectively. Since C must not meet A, we put it in the upper half, y > 0, of
the xy plane. As C is revolved, each of its points (q1, q2, 0) gives rise to a
whole circle of points

Thus a point p = (p1, p2, p3) is in M if and only if the point

is in C (Fig. 4.5).
If the profile curve is C: f(x, y) = c, we define a function g on R3 by
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Then the argument above shows that the resulting surface of revolution is
exactly M: g(x, y, z) = c. Using the chain rule, it is not hard to show that dg
is never zero on M, so M is a surface.

The circles in M generated under revolution by each point of C are called
the parallels of M; the different positions of C as it is rotated are called the
meridians of M. This terminology derives from the geography of the sphere;
however, a sphere is not a surface of revolution as defined above. Its profile
curve must twice meet the axis of revolution, so two “parallels” reduce to
single points. To simplify the statements of later theorems, we use a slightly
different terminology in this case; see Exercise 12.

The necessity of the properness condition on the patches in Definition 1.2
is shown by the following example.

1.6 Example Suppose that a rectangular strip of tin is bent into a figure
8, as in Fig. 4.6. The configuration M that results does not satisfy our intu-
itive picture of what a surface should be, for along the axis A, M is not like
the plane R2 but is instead like two intersecting planes. To express this con-
struction in mathematical terms, let D be the rectangle -p < u < p, 0 < v < 1
in R2 and define x: D Æ R3 by x(u, v) = (sinu, sin2u, v). It is easy to check
that x is a patch, but its image M = x(D) is not a surface: x is not a proper
patch. Continuity fails for x-1: M Æ D since, roughly speaking, to restore M
to D, x-1 must tear M along the axis A (the z axis of R3).

By Example 1.5, the familiar torus of revolution T is a surface (Fig. 4.16).
With somewhat more work, one could construct double toruses of various
shapes, as in Fig. 4.7. By adding “handles” and “tubes” to existing surfaces
one can—in principle, at least—construct surfaces of any desired degree of
complexity (Fig. 4.8).

FIG. 4.6

FIG. 4.7
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Exercises

1. None of the following subsets M of R3 are surfaces. At which points p
is it impossible to find a proper patch in M that will cover a neighborhood
of p in M ? (Sketch M—formal proofs not required.)

(a) Cone M: z2 = x2 + y2

(b) Closed disk M: x2 + y2 � 1, z = 0.
(c) Folded plane M: xy = 0, x � 0, y � 0.

2. A plane in R3 is a surface M: ax + by + cz = d, where the numbers a, b,
c are necessarily not all zero. Prove that every plane in R3 may be described
by a vector equation as on page 62.

3. Sketch the general shape of the surface M: z = ax2 + by2 in each of the
following cases:

(a) a > b > 0. (b) a > 0 > b.
(c) a > b = 0. (d) a = b = 0.

4. In which of the following cases is the mapping x: R2 Æ R3 a patch?
(a) x(u, v) = (u, uv, v). (b) x(u, v) = (u2, u3, v).
(c) x(u, v) = (u, u2, v + v3). (d) x(u, v) = (cos2pu, sin2pu, v).

(Recall that x is one-to-one if and only if x(u, v) = x(u1, v1) implies (u, v) =
(u1, v1).)

5. (a) Prove that M: (x2 + y2)2 + 3z2 = 1 is a surface.
(b) For which values of c is M: z(z - 2) + xy = c a surface?

6. Determine the intersection z = 0 of the monkey saddle

with the xy plane. On which regions of the plane is f > 0? f < 0? How does
this surface get its name? (Hint: see Fig. 5.19.)

M z f x y f x y y yx: ,= ( ) ( ) = -, , ,3 23

FIG. 4.8



7. Let x: D Æ R3 be a mapping, with

(a) Prove that a point p = (p1, p2, p3) of R3 is in the image x(D) if and only
if the equations

can be solved for u and v, with (u, v) in D.
(b) If for every point p in x(D) these equations have the unique solution 

u = f1(p1, p2, p3), v = f2(p1, p2, p3), with (u, v) in D, prove that x is one-to-one
and that x-1: x(D) Æ D is given by the formula

8. Let x: D Æ R3 be the function given by

on the first quadrant D: u > 0, v > 0. Show that x is one-to-one and find a
formula for its inverse function x-1: x(D) Æ D. Then prove that x is a proper
patch.

9. Let x: R2 Æ R3 be the mapping

Show that x is a proper patch and that the image of x is the entire surface
M: z = (x2 - y2)/4.

10. If F: R3 Æ R3 is a diffeomorphism and M is a surface in R3, prove 
that the image F(M) is also a surface in R3. (Hint: If x is a patch in M, then
the composite function F(x) is regular, since F(x)* = F*x* by Ex. 9 of
Sec. 1.7.)

11. Prove this special case of Exercise 10: If F is a diffeomorphism of R3,
then the image of the surface M: g = c is : = c, where = g(F -1) and

is a surface. (Hint: If dg(v) π 0 at p in M, show by using Ex. 7 of Sec. 1.7
that d (F*v) π 0 at F(p).)

12. Let C be a Curve in the xy plane that is symmetric about the x axis.
Assume C crosses the x axis and always does so orthogonally. Explain why
there can be only one or two crossings. Thus C is either an arc or is closed
(Fig. 4.9). Revolving C about the x axis gives a surface M, called an aug-
mented surface of revolution. Explain how to define patches in M at the 
crossing points.

g
M

ggM
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4.2 Patch Computations

In Section 1, coordinate patches were used to define a surface; now we con-
sider some properties of patches that will be useful in studying surfaces.

Let x: D Æ R3 be a coordinate patch. Holding u or v constant in the func-
tion (u, v) Æ x(u, v) produces curves. Explicitly, for each point (u0, v0) in D
the curve

is called the u-parameter curve, v = v0, of x; and the curve

is the v-parameter curve, u = u0 (Fig. 4.10).
Thus, the image x(D) is covered by these two families of curves, which are

the images under x of the horizontal and vertical lines in D, and one curve
from each family goes through each point of x(D).

2.1 Definition If x: D Æ R3 is a patch, for each point (u0, v0) in D:
(1) The velocity vector at u0 of the u-parameter curve, v = v0, is denoted

by xu(u0, v0).

v u vÆ ( )x 0 ,

u u vÆ ( )x , 0

FIG. 4.9

FIG. 4.10
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(2) The velocity vector at v0 of the v-parameter curve, u = u0, is denoted
by xv(u0, v0).

The vectors xu(u0, v0) and xv(u0, v0) are called the partial velocities of x at
(u0, v0) (Fig. 4.11).

Thus xu and xv are functions on D whose values at each point (u0, v0) are
tangent vectors to R3 at x(u0, v0). The subscripts u and v are intended to
suggest partial differentiation. Indeed if the patch is given in terms of its
Euclidean coordinate functions by a formula

then it follows from the definition above that the partial velocity functions
are given by

The subscript x (frequently omitted) is a reminder that xu(u, v) and xv(u, v)
have point of application x(u, v).

2.2 Example The geographical patch in the sphere. Let S be the sphere
of radius r > 0 centered at the origin of R3. Longitude and latitude on the
earth suggest a patch in S quite different from the Monge patch used on S
in Section 1. The point x(u, v) of S with longitude u (-p < u < p) and lati-
tude v (-p/2 < v < p/2) has Euclidean coordinates (Fig. 4.12).

With the domain D of x defined by these inequalities, the image x(D) of x
is all of S except one semicircle from north pole to south pole. The u-
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parameter curve, v = v0, is a circle—the parallel of latitude v0. The v-
parameter curve, u = u0, is a semicircle—the meridian of longitude u0.

We compute the partial velocities of x to be

where r denotes a scalar multiplication. Evidently xu always points due east,
and xv due north (Fig. 4.13). In a moment we shall give a formal proof that
x is a patch in S.

To test whether a given subset M of R3 is a surface, Definition 1.2 demands
proper patches (and Example 1.6 shows why). But once we know that M is
a surface, the properness condition need no longer concern us (Exercise 14

x

x

u

v

u v r v u v u

u v r v u v u v

, , , ,

, , ,

( ) = -( )
( ) = - -( )

cos sin cos cos

sin cos sin sin cos .

0

FIG. 4.12

FIG. 4.13



of Section 3). Furthermore, in many situations the one-to-one restriction on
patches can also be dropped.

2.3 Definition A regular mapping x: D Æ R3 whose image lies in a
surface M is called a parametrization of the region x(D) in M.

(Thus a patch is merely a one-to-one parametrization.) In favorable cases
this image x(D) may be the whole surface M, and we then have the analogue
of the more familiar notion of parametrization of a Curve (see end of Section
1.4). Parametrizations will be of first importance in practical computations
with surfaces, so we consider some ways of determining whether a mapping
x: D Æ R3 is a parametrization of (part of) a given surface M.

The image of x must, of course, lie in M. Note that if the surface is given
in the implicit form M: g = c, this means that the composite function g(x)
must have constant value c.

To test whether x is regular, note first that parameter curves and partial
velocities xu and xv are well-defined for an arbitrary differentiable mapping
x: D Æ R3. Also, the last two rows of the cross product

give the (transposed) Jacobian matrix of x at each point. Thus the regular-
ity of x is equivalent to the condition that xu ¥ xv is never zero, or, by prop-
erties of the cross product, that at each point (u,v) of D the partial velocity
vectors of x are linearly independent.

Let us try out these methods on the mapping x given in Example 2.2. Since
the sphere is defined implicitly by g = x2 + y2 + z2 = r2, we must show that
g(x) = r2. Substituting the coordinate functions of x for x, y, and z gives

A short computation using the formulas for xu and xv, given in Example
2.2, yields
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Since -p/2 < v < p/2 in the domain D of x, cosv is never zero there; but sinu
and cosu are never zero simultaneously, so xu ¥ xv, is never zero on D. Thus
x is regular—and hence is a parametrization. In fact, it remains a parame-
trization if the condition -p < u < p is dropped, thus replacing D by the infi-
nite strip -p/2 < v < p/2. In this case the u-parameter curves are periodic
parametrizations of the meridians, and x covers the entire sphere except for
the poles (0, 0, ±1).

To show that x on the original domain D is a patch, it remains only to
show that it is one-to-one on D, that is,

In view of the definition of x, the vector equation here gives the three scalar
equations

Since -p/2 < v < p/2 in D, the last equation implies v = v1. Thus r cosv =
rcosv1 > 0 can be canceled from the first two equations, and we conclude that
u = u1 as well.

The geographical definition of x in Example 2.2 makes the preceding
results seem almost obvious, but the methods used will serve in more diffi-
cult cases.

2.4 Example Parametrization of a surface of revolution. Suppose that
M is obtained, as in Example 1.5, by revolving a curve C in the upper half
of the xy plane about the x axis. Now let

be a parametrization of C (note that h > 0). As we observed in Example 1.5,
when the point (g(u), h(u), 0) on the profile curve C has been rotated through
an angle v, it reaches a point x(u, v) with the same x coordinate g(u), but new
y and z coordinates h(u) cosv and h(u) sinv, respectively (Fig. 4.14). Thus

Evidently this formula defines a mapping into M whose image is all of M. A
short computation shows that xu and xv are always linearly independent, so
x is a parametrization of M. The domain D of x consists of all points (u, v)
for which u is in the domain of a. The u-parameter curves of x parametrize
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the meridians of M, the v-parameter curves the parallels. (Thus the parame-
trization x: D Æ M is never one-to-one.)

Obviously we are not limited to rotating curves in the xy plane about the
x axis. But with other choices of coordinates, we maintain the same geomet-
ric meaning for the functions g and h: g measures distance along the axis of
revolution, while h measures distance from the axis of revolution.

Actually, the geographical patch in the sphere is one instance of Example
2.4 (with u and v reversed); here is another.

2.5 Example Torus of revolution T. This is the surface of revolution
obtained when the profile curve C is a circle. Suppose that C is the circle 
in the xz plane with radius r > 0 and center (R, 0, 0). We shall rotate about
the z axis; hence we must require R > r to keep C from meeting the axis of
revolution. A natural parametrization (Fig. 4.15) for C is

Thus by the remarks above we must have g(u) = r sin u (distance along the
z axis) and h(u) = R + rcosu (distance from the z axis). The general 
argument in Example 2.4—with coordinate axes permuted—then yields the 
parametrization

We call x the usual parametrization of the torus (Fig. 4.16). Its domain is the
whole plane R2, and it is periodic in both u and v:
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2.6 Definition A ruled surface is a surface swept out by a straight line L
moving along a curve b. The various positions of the generating line L
are called the rulings of the surface. Such a surface always has a ruled 
parametrization,

We call b the base curve and d the director curve, although d is usually pic-
tured as a vector field on b pointing along the line L.

Several examples of ruled surfaces are given in the following exercises. It
is usually necessary to put restrictions on b and d to ensure that x is a 
parametrization.

There are infinitely many different parametrizations and patches in any
surface. Those we have discussed occur frequently and are fitted in a natural
way to their surfaces.

Exercises

1. Find a parametrization of the entire surface obtained by revolving:
(a) C: y = cosh x around the x axis (catenoid).
(b) C: (x - 2)2 + y2 = 1 around the y axis (torus).
(c) C: z = x2 around the z axis (paraboloid).

2. Partial velocities xu and xv are defined for an arbitrary mapping x: D Æ
R3, so we can consider the real-valued functions

on D. Prove

x xu v EG F¥ = -2 2.

E F Gu u u v v v= = =x x x x x x• • •, ,

x u v u v u,( ) = ( ) + ( )b d .

FIG. 4.16
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Deduce that x is a regular mapping if and only if EG - F 2 is never zero. (This
is often the easiest way to check regularity. We will see, beginning in the next
chapter, that the functions E, F, G are fundamental to the geometry of
surfaces.)

3. A generalized cone is a ruled surface with a parametrization of the form

Thus all rulings pass through the vertex p (Fig. 4.17). Show that x is regular
if and only if v and d ¥ d ¢ are never zero. (Thus the vertex is never part of
the cone. Unless the term generalized is used, we assume that d is a closed
curve and require either v > 0 or v < 0.)

4. A generalized cylinder is a ruled surface for which the rulings are all
Euclidean parallel (Fig. 4.18). Thus there is always a parametrization of the
form

Prove: (a) Regularity of x is equivalent to b¢ ¥ q never zero.
(b) If C: f(x, y) = a is a Curve in the plane, show that in R3 the same equa-
tion defines a surface . If t Æ (x(t), y(t)) is a parametrization of C, find
a parametrization of that shows it is a generalized cylinder.

Generalized cylinders are a rather broad category—including Euclidean
planes when b is a straight line—so unless the term generalized is used, we
assume that cylinders are over closed curves b.

5. A line L is attached orthogonally to an axis A (Fig. 4.19). If L moves
steadily along A, rotating at constant speed, then L sweeps out a helicoid H.

When A is the z axis, H is the image of the mapping x: R2 Æ R3 such that

x u v u v u v bv b, , ,( ) = ( ) π( )cos sin .0

C̃
C̃

x q q Ru v u v,( ) = ( ) + Œ( )b 3 .

x pu v v u,( ) = + ( )d .

FIG. 4.17 FIG. 4.18
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(a) Prove that x is a patch.
(b) Describe its parameter curves.
(c) Express the helicoid in the implicit form g = c.
(d) (Computer graphics.) Plot one full turn (0 � v � 2p) of a helicoid with
b = 1/2. Restrict the rulings to -1 � u � 1.

6. (a) Show that the saddle surface M: z = xy is doubly ruled: Find two
ruled parametrizations with different rulings.

(b) (Computer graphics.) Plot a representative portion of M, using a patch
for which the parameter curves are rulings.

7. Let b be a unit-speed parametrization of the unit circle in the xy plane.
Construct a ruled surface as follows: Move a line L along b in such a way
that L is always orthogonal to the radius of the circle and makes constant
angle p /4 with b¢ (Fig. 4.20).

(a) Derive this parametrization of the resulting ruled surface M:

(b) Express x explicitly in terms of v and coordinate functions for b.
(c) Deduce that M is given implicitly by the equation

(d) Show that if the angle p /4 above is changed to -p /4, the same surface
M results. Thus M is doubly ruled.
(e) Sketch this surface M showing the two rulings through each of the
points (1, 0, 0) and (2, 1, 2).

x y z2 2 2 1+ - = .

x u v u v u U,( ) = ( ) + ¢( ) +( )b b 3 .

FIG. 4.19 FIG. 4.20
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8. Let M be the surface of revolution gotten by revolving the curve 
t Æ (g(t), h(t), 0) about the x axis (h > 0). Show that:

(a) If g¢ is never zero, then M has a parametrization of the form

(b) If h¢ is never zero, then M has a parametrization of the form

A quadric surface is a surface M: g = 0 in R3 such that g contains at most
quadratic terms in x1, x2, x3, that is,

Trivial cases excepted, every quadric surface is congruent to one of the five
types described in the next two exercises. (Use of computers is optional in
these exercises.)

9. In each case, (i) show that M is a surface, and sketch its general shape
when a = 3, b = 2, c = 1; (ii) show that x is a parametrization in M and
describe what part of M it covers.

(a) Ellipsoid.

x(u, v) = (a cos u cosv, bcos u sinv, c sinu) on D: -p/2 < u < p/2.

(b) Hyperboloid of one sheet (Fig. 4.21).

x(u, v) = (a cosh ucosv, b cosh u sin v, c sinh u) 

on R2.

M
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x u v u f u v f u v, , ,( ) = ( ) ( )( )cos sin .

FIG. 4.21
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(c) Hyperboloid of two sheets (Fig. 4.21).

x(u, v) = (a sinh u cos v, b sinh u sin v, c cosh u) 

on D: u π 0.

10. Sketch the following surfaces (graphs of functions) for a = 2, b = 1:

(a) Elliptic paraboloid. Show that

is a parametrization that omits only one point of M.

(b) Hyperbolic paraboloid.

Show that M is covered by the single patch

11. Doubly ruled quadrics.
(a) Show that the hyperbolic paraboloid M in the preceding exercise is
doubly ruled.
(b) (Computer graphics.) For a = 2, b = 1 use the patch in (b) of Exercise
10 to plot a portion of M. (Keep the same scale on all axes; the parame-
ter curves will be the rulings.)
(c) Find two different ruled parametrizations of the hyperboloid of one
sheet by using the scheme in the special case, Exercise 7.
(d) (Computer graphics.) Plot a portion of each of these parametrizations,
taking a = 1.5, b = 1, c = 2.

4.3 Differentiable Functions and Tangent Vectors

We now begin an exposition of the calculus on a surface M in R3. The space
R3 will gradually fade out of the picture, since our ultimate goal is a calcu-
lus for M alone. Generally speaking, we shall follow the order of topics in
Chapter 1, making such changes as are necessary to adapt the calculus of the
plane R2 to a surface M.

Suppose that f a is real-valued function defined on a surface M. If x: D Æ
M is a coordinate patch in M, then the composite function f(x) is called a
coordinate expression for f; it is just an ordinary real-valued function (u, v) Æ
f(x(u, v)). We define f to be differentiable provided all its coordinate expres-
sions are differentiable in the usual Euclidean sense (Definition 1.3 of
Chapter 1).

x Ru v a u v b u v uv, , , on( ) = +( ) -( )( )4 2.
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For a function F: Rn Æ M, each patch x in M gives a coordinate expres-
sion x-1(F ) for F. Evidently this composite function is defined only on the set
O of all points p of Rn such that F(p) is in x(D). Again we define F to be dif-
ferentiable provided all its coordinate expressions are differentiable in the
usual Euclidean sense. We must understand that this includes the requirement
that O be an open set of Rn, so that the differentiability of x-1(F ):O Æ R2 is
well-defined, as in Section 7 of Chapter 1

In particular, a curve a: I Æ M in a surface M is, as before, a differentiable
function from an open interval I into M.

To see how this definition works out in practice, we examine an important
special case.

3.1 Lemma If a is a curve a : I Æ M whose route lies in the image x(D)
of a single patch x, then there exist unique differentiable functions a1, a2 on
I such that

or in functional notation, a = x(a1, a2). (See Fig. 4.22.)

Proof. By definition, the coordinate expression x-1 a: I Æ D is differen-
tiable—it is just a curve in R2 whose route lies in the domain D of x. If a1,
a2 are the Euclidean coordinate functions of x-1 a, then

These are the only such functions, for if a = x(b1, b2), then

◆

These functions a1, a2 are called the coordinate functions of the curve a with
respect to the patch x.

a a b b b b1 2
1 1

1 2 1 2, , ,( ) = = ( ) = ( )- -x x xa .

a a= = ( )-xx x1
1 2a a, .

a t a t a t t( ) = ( ) ( )( )x 1 2, for all ,

FIG. 4.22
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For an arbitrary patch x: D Æ M, it is natural to think of the domain D
as a map of the region x(D) in M. The functions x and x-1 establish a one-
to-one correspondence between objects in x(D) and objects in D. If a curve
a in x(D) represents the voyage of a ship, the coordinate curve (a1, a2) plots
its position on the map D.

A rigorous proof of the following technical fact requires the methods of
advanced calculus, and we shall not attempt to give a proof here.

3.2 Theorem Let M be a surface in R3. If F: Rn Æ R3 is a (differentiable)
mapping whose image lies in M, then considered as a function F. Rn Æ M
into M, F is differentiable (as defined above).

This theorem links the calculus of M tightly to the calculus of R3. For
example, it implies the “obvious” result that a curve in R3 that lies in M is a
curve of M.

Since a patch is a differentiable function from an open set of R2 into R3, it
follows that a patch is a differentiable function into M. Hence its coordinate
expressions are all differentiable, so patches overlap smoothly.

3.3 Corollary If x and y are patches in a surface M in R3 whose images
overlap, then the composite functions x-1y and y-1x are (differentiable) map-
pings defined on open sets of R2.

FIG. 4.23

The function y-1x, for example, is defined only for those points (u, v) in D
such that x(u, v) lies in the image y(E) of y (Fig. 4.23).

By an argument like that for Lemma 3.1, Corollary 3.3 can be rewritten:

3.4 Corollary If x and y are overlapping patches in M, then there exist
unique differentiable functions and such thatvu
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for all (u, v) in the domain of x-1y. In functional notation: y = x( , ).
There are, of course, symmetrical equations expressing x in terms of y.
Corollary 3.3 makes it much easier to prove differentiability. For example,

if f is a real-valued function on M, instead of verifying that all coordinate
expressions f(x) are Euclidean differentiable, we need only do so for enough
patches x to cover all of M (so a single patch will often be enough). The proof
is an exercise in checking domains of composite functions: For an arbitrary
patch y, fx and x-1y differentiable imply fxx-1y differentiable. This function
is in general not fy, because its domain is too small. But since there are
enough x’s to cover M, such functions constitute all of f y, and thus prove
that it is differentiable.

It is intuitively clear what it means for a vector to be tangent to a surface
M in R3. A formal definition can be based on the idea that a curve in M must
have all its velocity vectors tangent to M.

3.5 Definition Let p be a point of a surface M in R3. A tangent vector v
to R3 at p is tangent to M at p provided v is a velocity of some curve in M
(Fig. 4.24).

The set of all tangent vectors to M at p is called the tangent plane of M at
p and is denoted by Tp(M). The following result shows, in particular, that at
each point p of M the tangent plane Tp(M) is actually a 2-dimensional vector
subspace of the tangent space Tp(R3).

3.6 Lemma Let p be a point of a surface M in R3, and let x be a patch
in M such that x(u0, v0) = p. A tangent vector v to R3 at p is tangent to M
if and only if v can be written as a linear combination of xu(u0, v0) and 
xv(u0, v0).

vu

y xu v u u v v u v, , , ,( ) = ( ) ( )( )

FIG. 4.24



Since partial velocities are always linearly independent, we deduce that they
provided a basis for the tangent plane of M at each point of x(D).

Proof. Note that the parameter curves of x are curves in M, so xu and
xv are always tangent to M at p.

First suppose that v is tangent to M at p; thus there is a curve a in M
such that a(0) = p and a ¢(0) = v. Now by Lemma 3.1, a may be written

a = x(a1, a2);

hence by the chain rule,

But since a(0) = p = x(u0, v0), we have a1(0) = u0, a2(0) = v0. Hence eval-
uation at t = 0 yields

Conversely, suppose that a tangent vector v to R3 can be written

By computations as above, v is the velocity vector at t = 0 of the curve

Thus v is tangent to M at p. ◆

A reasonable deduction, based on the general properties of derivatives, is
that the tangent plane Tp(M) is the linear approximation of the surface M
near p.

3.7 Definition A Euclidean vector field Z on a surface M in R3 is a func-
tion that assigns to each point p of M a tangent vector Z(p) to R3 at p.

A Euclidean vector field V for which each vector V(p) is tangent to M at
p is called a tangent vector field on M (Fig. 4.25). Frequently these vector
fields are defined, not on all of M, but only on some region in M. As usual,
we always assume differentiability.

A Euclidean vector z at a point p of M is normal to M if it is orthogonal
to the tangent plane Tp(M)—that is, to every tangent vector to M at p. And
a Euclidean vector field Z on M is a normal vector field on M provided each
vector Z(p) is normal to M.

t u tc v tcÆ +( )x 0 0 2+ ,1 .

v x x= ( ) + ( )c u v c u vu v1 0 0 2 0 0, , .

v x x= ¢( ) = ( ) ( ) + ( ) ( )a 0 0 01
0 0

2
0 0

da
dt

u v
da
dt

u vu v, , .

¢ = ( ) + ( )a x xu va a
da
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a a
da
dt1 2

1
1 2

2, , .
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Because Tp(M) is a two-dimensional subspace of Tp(R3), there is only one
direction normal to M at p: All normal vectors z at p are collinear.

Thus if z is not zero, it follows that Tp(M) consists of precisely those vectors
in Tp(R3) that are orthogonal to z.

It is particularly easy to deal with tangent and normal vector fields on a
surface given in implicit form.

3.8 Lemma If M: g = c is a surface in R3, then the gradient vector field
(considered only at points of M) is a nonvanishing normal

vector field on the entire surface M.

Proof. The gradient is nonvanishing (that is, never zero) on M since in
the implicit case we require that the partial derivatives cannot
simultaneously be zero at any point of M.

We must show that (—g)(p) • v = 0 for every tangent vector v to M at p.
First note that if a is a curve in M, then g(a) = g(a1, a2, a3) has constant
value c. Thus by the chain rule,

Now choose a to have initial velocity

at a(0) = p. Then

◆
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3.9 Example Vector fields on the sphere S: The lemma 
shows that

is a normal vector field on S (Fig. 4.26). This is geometrically evident,
since is the vector p with point of application p! It follows
by a remark above that vp is tangent to S if and only if the dot product 
vp • pp = v • p is zero. Similarly, a vector field V on S is a tangent vector field
if and only if V • X = 0. For example, V(p) = (-p2, p1, 0) defines a tangent
vector field on S that points “due east” and vanishes at the north and south
poles (0, 0, ±r).

We must emphsasize that only the tangent vector fields on M belong to the
calculus of M itself, since they derive ultimately from curves in M (Defini-
tion 3.5). This is certainly not the case with normal vector fields. However, as
we shall see in the next chapter, normal vector fields are quite useful in study-
ing M from the viewpoint of an observer in R3.

Finally, we shall adapt the notion of directional derivatives to a surface.
Definition 3.1 of Chapter 1 uses straight lines in R3; thus we must use the less
restrictive formulation based on Lemma 4.6 of Chapter 1.

3.10 Definition Let v be a tangent vector to M at p, and let f be a dif-
ferentiable real-valued function on M. The derivative v[f] of f with respect 
to v is the common value of ( fa)(0) for all curves a in M with initial
velocity v.

Directional derivatives on a surface have exactly the same linear and Leib-
nizian properties as in the Euclidean case (Theorem 3.3 of Chapter 1).

d dt/( )

X pUi ip p( ) = ( )Â

X g xUi i= — = Â1
2

g x ri= =Â 2 2.

FIG. 4.26



Exercises

1. Let x be the geographical patch in the sphere S (Ex. 2.2). Find the 
coordinate expression f(x) for the following functions on S:

(a) f(p) = p1
2 + p2

2. (b) f(p) = (p1 - p2)2 + p3
2.

2. Let x be the usual parametrization of the torus (Ex. 2.5).
(a) Find the Euclidean coordinates a1, a2, a3 of the curve a(t) = x(t, t).
(b) Show that a is periodic, and find its period p > 0, the smallest number
such that a(t + p) = a(t) for all t.

3. (a) Prove Corollary 3.4.
(b) Derive the chain rule

where xu and xv are evaluated on ( , ).
(c) Deduce that yu ¥ yv = Jxu ¥ xv, where J is the Jacobian of the mapping
x-1y = ( , ): D Æ R2.

4. Let x be a patch in M.
(a) If x* is the tangent map of x (Sec. 7 of Ch. 1), show that

where U1, U2 is the natural frame field on R2.
(b) If f is a differentiable function on M, prove

5. Prove that:
(a) v = (v1, v2, v3) is tangent to M: z = f(x, y) at a point p of M if and only 
if

(b) if x is a patch in an arbitrary surface M, then v is tangent to M at 
x(u, v) if and only if

6. Let x and y be the patches in the unit sphere S that are defined on the
unit disk D: u2 + v2 < 1 by

x yu v u v f u v u v v f u v u, , , , , , , , , ,( ) = ( )( ) ( ) = ( )( )
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where 
(a) On a sketch of S indicate the images x(D) and y(D), and the region on
which they overlap.
(b) At which points of D is y-1x defined? Find a formula for this function.
(c) At which points of D is x-1y defined? Find a formula for this function.

7. Find a nonvanishing normal vector field on M: z = xy and two tangent
vector fields that are linearly independent at each point.

8. Let C be the circular cone parametrized by

If a is the curve 

(a) Express a ¢ in terms of xu and xv.
(b) Show that at each point of a, the velocity a ¢ bisects the angle between 
xu and xv. (Hint: Verify that

,

where xu and xv are evaluated on )
(c) Make a sketch of the cone C showing the curve a.

9. If z is a nonzero vector normal to M at p, let be the Euclidean
plane through p orthogonal to z. Prove:

(a) If each tangent vector vp to M at p is replaced by its tip p + v, then
Tp(M) becomes . Thus gives a concrete representation of
Tp(M) in R3. It is called the Euclidean tangent plane to M at p.
(b) If x is a patch in M, then consists of all points r in R3 such
that (r - x(u, v)) • xu(u, v) ¥ xv(u, v) = 0.
(c) If M is given implicitly by g = c, then consists of all points r
in R3 such that (r - p) • (—g)(p) = 0.

10. In each case below find an equation of the form ax + by + cz = d for
the plane .

(a) p = (0, 0, 0) and M is the sphere

(b) p = (1, -2, 3) and M is the ellipsoid

(c) p = x(2, p /4), where M is the helicoid parametrized by

x u v u v u v v, , ,( ) = ( )cos sin .2
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11. (Continuation of Ex. 2.) With x the usual parametrization of the torus
of revolution T, consider the curve a: R Æ T such that a(t) = x(at, bt).

(a) If a/b is a rational number, show that a is a simple closed curve in T,
that is, periodic with no self-crossings.
(b) If a/b is irrational, show a is one-to-one. Such a curve is called a
winding line on the torus. It is dense in T in the sense that given any e > 0,
a comes within distance e of every point of T.
(c) (Computer graphics.) For reference, plot the torus T with R = 3, r = 1
(see Ex. 2.5). Then plot the following curves in T:
(i) a(t) = x(3t, 5t) on intervals 0 � t � b, for b = p, 2p, and larger values.
Estimate the period of a, in this case the smallest number T > 0 such that
a(T) = a(0).
(ii) a(t) = x(pt, 5t) on intervals 0 � t � b, for increasing values of b. (Keep
the curve reasonably smooth.)

12. A Euclidean vector field on M is differentiable provided its
coordinate functions z1, z2, z3 (on M) are differentiable. If V is a tangent vector
field on M, show that

(a) For every patch x: D Æ M, V can be written as

(b) V is differentiable if and only if the functions f and g (on D) are 
differentiable.

The following exercises deal with open sets in a surface M in R3, that is, sets
U in M that contain a neighborhood in M of each of their points.

13. Prove that if y: E Æ M is a proper patch, then y carries open sets in E
to open sets in M. Deduce that if x: D Æ M is an arbitrary patch, then 
the image x(D) is an open set in M. (Hint: To prove the latter assertion, use
Cor. 3.3.)

14. Prove that every patch x: D Æ M in a surface M in R3 is proper. (Hint:
Use Ex. 13. Note that (x-1y)y-1 is continuous and agrees with x-1 on an open
set in x(D).)

15. If U is a subset of a surface M in R3, prove that U is itself a surface in
R3 if and only if U is an open set of M.

4.4 Differential Forms on a Surface

In Chapter 1 we discussed differential forms on R3 only in sufficient detail to
take care of the Cartan structural equations (Theorem 8.3 of Chapter 2). In
the next three sections we shall give a rather complete treatment of forms on
a surface.

V u v f u v u v g u v u vu vx x x, , , , ,( )( ) = ( ) ( ) + ( ) ( ).

Z zUi i= Â
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Forms are just what we will need to describe the geometry of a surface,
but this is only one example of their usefulness. Surfaces and Euclidean
spaces are merely special cases of the general notion of manifold (Section 8).
Every manifold has a differential and integral calculus—expressed in terms
of functions, vector fields, and forms—that generalizes the usual elementary
calculus on the real line. Thus forms are fundamental to all the many
branches of mathematics and its applications that are based on calculus. In
the special case of a surface, the calculus of forms is rather easy, but it still
gives a remarkably accurate picture of the most general case.

Just as for R3, a 0-form f on a surface M is simply a (differentiable) real-
valued function on M, and a 1-form f on M is a real-valued function on
tangent vectors to M that is linear at each point (Definition 5.1 of Chapter
1). We did not give a precise definition of 2-forms in Chapter 1, but we shall
do so now. A 2-form will be a two-dimensional analogue of a 1-form: a real-
valued function, not on single tangent vectors, but on pairs of tangent vectors.
(In this context the term “pair” will always imply that the tangent vectors
have the same point of application.)

4.1 Definition A 2-form h on a surface M is a real-valued function on
all ordered pairs of tangent vectors v, w to M such that

(1) h (v, w) is linear in v and in w;
(2) h (v, w) = -h (w, v).

Since a surface is two-dimensional, all p-forms with p > 2 are zero, by def-
inition. This fact considerably simplifies the theory of differential forms on
a surface.

At the end of this section we will show that our new definitions are con-
sistent with the informal exposition given in Chapter 1, Section 6.

Forms are added in the usual pointwise fashion; we add only forms of the
same degree p = 0, 1, 2. Just as a 1-form f is evaluated on a vector field V,
now a 2-form h is evaluated on a pair of vector fields V, W to give a real-
valued function h(V, W) on the surface M. Of course, we shall always assume
that the forms we deal with are differentiable—that is, convert differentiable
vector fields into differentiable functions.

Note that the alternation rule (2) in Definition 4.1 implies that

for any tangent vector v. This rule also shows that 2-forms are related to
determinants.

h v v,( ) = 0
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4.2 Lemma Let h be a 2-form on a surface M, and let v and w be (lin-
early independent) tangent vectors at some point of M. Then

Proof. Since h is linear in its first variable, its value on the pair of tangent
vectors av + bw, cv + dw is ah(v, cv + dw) + bh(w, cv + dw). Using the
linearity of h in its second variable, we get

Then the alternation rule (2) gives

◆

Thus the values of a 2-form on all pairs of tangent vectors at a point are
completely determined by its value on any one linearly independent pair. This
remark is used frequently in later work.

Wherever they appear, differential forms satisfy certain general properties,
established (at least partially) in Chapter 1 for forms on R3. To begin with,
the wedge product of a p-form and a q-form is always a ( p + q)-form. If p or
q is zero, the wedge product is just the usual multiplication by a function. On
a surface, the wedge product is always zero if p + q > 2. So we need a defin-
ition only for the case p = q = 1.

4.3 Definition If f and y are 1-forms on a surface M, the wedge product
f Ÿ y is the 2-form on M such that

for all pairs v, w of tangent vectors to M.

Note that f Ÿ y really is a 2-form on M, since it is a real-valued function
on all pairs of tangent vectors and satisfies the conditions in Definition 4.1.
The wedge product has all the usual algebraic properties except commuta-
tivity; in general, if x is a p-form and h is a q-form, then

On a surface the only minus sign occurs in the multiplication of 1-forms,
where just as in Chapter 1, we have f Ÿ y = -y Ÿ f, and hence f Ÿ f = 0.

The differential calculus of forms is based on the exterior derivative d. For
a 0-form (function) f on a surface, the exterior derivative is, as before, the 

x h h xŸ = -( ) Ÿ1 pq .

f y f y f yŸ( )( ) = ( ) ( ) - ( ) ( )v w v w w v,

h ha b c d ad bcv w v w v w+ +( ) = -( ) ( ), , .

ac ad bc bdh h h hv v v w w v w w, , , ,( ) + ( ) + ( ) + ( ).

h ha b c d
a b

c d
v w v w v w+ , ,+( ) = ( ).
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1-form df such that df(v) = v[ f ]. Wherever forms appear, the exterior deriv-
ative of a p-form is a (p + 1)-form. Thus, for surfaces the only new defini-
tion we need is that of the exterior derivative df of a 1-form f.

4.4 Definition Let f be a 1-form on a surface M. Then the exterior deriv-
ative df of f is the 2-form such that for any patch x in M,

As it stands, this is not yet a valid definition; there is a problem of consis-
tency. What we have actually defined is a form dxf on the image of each patch
x in M. So what we must prove is that on the region where two patches
overlap, the forms dxf and dyf are equal. Only then will we have obtained
from f a single form df on M.

4.5 Lemma Let f be a 1-form on M. If x and y are patches in M, then
dxf = dyf on the overlap of x(D) and y(E).

Proof. Because yu and yv are linearly independent at each point, it suf-
fices by Lemma 4.2 to show that

Now, as in Corollary 3.4, we write y = x( , ) and deduce by the chain
rule that

(1)

where xu and xv are henceforth evaluated on ( , ). Then by Lemma 4.2,

(2)

where J is the Jacobian (∂ /∂u) (∂ /∂v) - (∂ /∂v) (∂ /∂u). Thus it is clear
from Definition 4.4 that to prove (dyf) (yu, yv) = (dxf) (yu, yv), all we need
is the equation.

(3)
∂
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( )( ) -
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∂

( )( ) =
∂

∂
( )( ) -

∂
∂

( )( )Ï
Ì
Ó

¸
˝
˛u v

J
u vv v v vf f f fy y x x .

vuvu

d J du v u vx xy y x xf f( )( ) = ( )( ), , ,

vu

y x x

y x x

u u v

v u v

u
u

v
u

u
v

v
v

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

,

,

vu

d du v u vy xy y y yf f( )( ) = ( )( ), , .

d
u vu v v uf f fx x x x,( ) =
∂
∂

( )( ) -
∂
∂

( )( ).

4.4 Differential Forms on a Surface 161



It suffices to operate on (f(yv)), for merely reversing u and v will
then yield (f(yu)). Since (3) requires us to subtract these two deriva-
tives, we can discard any terms that will cancel when u and v are everywhere
reversed.

Applying f to the second equation in (1) yields

Hence by the chain rule,

(4)

where in accordance with the remark above we have discarded two sym-
metric terms. Next we use the chain rule—and the same remark—to get

(5)

Now reverse u and v in (5) (and also and ) and subtract from (5)
itself. The result is precisely equation (3). ◆

It is difficult to exaggerate the importance of the exterior derivative. We
have already seen in Chapter 1 that it generalizes the familiar notion of dif-
ferential of a function, and that it contains the three fundamental derivative
operations of classical vector analysis (Exercise 8 in Section 1.6). In Chapter
2 it is essential to the Cartan structural equations (Theorem 8.3). Perhaps the
clearest statement of its meaning will come in Stokes’s theorem (6.5), which
could actually be used to define the exterior derivative of a 1-form.

On a surface, the exterior derivative of a wedge product displays the same
linear and Leibnizian properties (Theorem 6.4 of Chapter 2) as in R3; see
Exercise 3. For practical computations these properties are apt to be more
efficient than a direct appeal to the definition. Examples of this technique
appear in subsequent exercises.

The most striking property of this notion of derivative is that there are no
second exterior derivatives: Wherever forms appear, the exterior derivative
applied twice always gives zero. For a surface, we need only prove this for 0-
forms, since even for a 1-form f, the second derivative d(df) is a 3-form, and
hence is automatically zero.

4.6 Theorem If f is a real-valued function on M, then d(df) = 0.

Proof. Let y = df, so we must show dy = 0. It suffices by Lemma 4.2
to prove that for any patch x in M we have (dy)(xu, xv) = 0. Now using
Exercise 4 of Section 3, we get

vu
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and similarly

Hence

◆

Many computations and proofs reduce to the problem of showing that two
forms are equal. As we have seen, to do so it is not necessary to check that
the forms have the same value on all tangent vectors. In particular, if x is a
coordinate patch, then

(1) for 1-forms on x(D): f = y if and only if f(xu) = y(xu) and f(xv) =
y(xv);

(2) for 2-forms on x(D): m = v if and only if m(xu, xv) = v(xu, xv).

(To prove these criteria, we express arbitrary tangent vectors as linear com-
binations of xu and xv.) More generally, xu and xv may be replaced by any
two vector fields that are linearly independent at each point.

Let us now check that the rigorous results proved in this section are con-
sistent with the rules of operation stated in Chapter 1, Section 6.

4.7 Example Differential forms on the plane R2. Let u1 = u and u2 = v
be the natural coordinate functions, and U1, U2 the natural frame field on R2.
The differential calculus of forms on R2 is expressed in terms of u1 and u2 as
follows:

If f is a function, f a 1-form, and h a 2-form, then

(1) f = f1du1 + f2du2, where fi = f(Ui).
(2) h = gdu1du2, where g = h(U1,U2).
(3) for y = g1du1 + g2du2 and f as above,

(4)

(5)

For the proof of these formulas, see Exercise 4.
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Similar definitions and coordinate expressions may be established on 
any Euclidean space. In the case of the real line R1, the natural frame field
reduces to the single vector field U1 for which . All p-forms
with p > 0 are zero, and for a 1-form, f = f(U1) dt.

Wherever differential forms are used, the following conditions are funda-
mental.

4.8 Definition A differential form f is closed if its exterior derivative is
zero, df = 0; and f is exact if it is the exterior derivative of some form,
f = dx.

Since d applied twice is always 0, every exact form is closed. In the case of
a surface, since d increases degrees by 1, every 2-form is closed and no 0-form
(i.e., function) is exact. Thus 1-forms are the important case, and for a 1-form
f exactness always means that there is a function f such that df = f. The ana-
lytical and topological consequences of these definitions run deep.

Exercises

1. Prove the Leibnizian formulas

where f and g are functions on M and f is a 1-form.
(Hint: By definition, ( ff)(vp) = f(p)f(vp); hence ff evaluated on xu is f(x)f(xu).)

2. (a) Prove formulas (1) and (2) in Example 4.7 using the remark preced-
ing Example 4.7. (Hint: Show (du1du2) (U1, U2) = 1.)

(b) Derive the remaining formulas using the properties of d and the wedge
product.

3. If f is a real-valued function on a surface, and g is a function on the real
line, show that

Deduce that

4. If f, g, and h are functions on a surface M, and f is a 1-form, prove:
(a) d( fgh) = ghdf + fhdg + fgdh,
(b) d(ff ) = fdf - f Ÿ df, (ff = ff),
(c) (df Ÿ dg) (v, w) = v[ f ]w[g] - v[g]w[ f ].

d g f g f df( )( ) = ¢( ) .

v vp pg f g f f( )[ ] = ¢( ) [ ].

d fg g df f dg d f df f d( ) = + ( ) = Ÿ +, ,f f f

U f df dt1 = [ ] =
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5. Suppose that M is covered by open sets U1, . . . , Uk, and on each Ui there
is defined a function fi such that fi - fj is constant on the overlap of Ui and
Uj. Show that there is a 1-form f on M such that f = dfi on each Ui. Gener-
alize to the case of 1-forms fi such that fi - fj is closed.

6. Let y: E Æ M be an arbitrary mapping of an open set of R2 into a surface
M. If f is a 1-form on M, show that the formula

is still valid even when y is not regular or one-to-one.
(Hint: In the proof of Lem. 4.5, check that equation (3) is still valid in 

this case.)

A patch x in M establishes a one-to-one correspondence between an open
set D of R2 and an open set x(D) of M. Although we have emphasized the
function x: D Æ x(D), there are some advantages to emphasizing instead the
inverse function x-1: x(D) Æ D.

7. If x: D Æ M is a patch in M, let and be the coordinate functions of
x-1, so x-1(p) = ( (p), (p)) for all p in x(D). Show that

(a) and are differentiable functions on x(D) such that:

These functions constitute the coordinate system associated with x.

(b) d (xu) = 1, d (xv) = 0,

d (xu) = 0, d (xv) = 1.

(c) If f is a 1-form and h is a 2-form, then

(Hint: for (b) use Ex. 4(b) of Sec. 3.)

8. Identify (or describe) the associated coordinate system , of
(a) The polar coordinate patch x(u, v) = (ucosv, usinv) defined on the
domain D: u > 0, 0 < v < 2p.
(b) The identity patch x(u, v) = (u, v) in R2.
(c) The geographical patch x in the sphere.

ṽũ

f f f
h h

= + ( ) = ( ) ( ) = ( )
= ( ) = ( )

f du g dv f g

h du dv h
u v

u v

˜ ˜ ;

˜ ˜ .

, where ,

, where ,

x x x x

x x x

ṽṽ
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4.5 Mappings of Surfaces

To define differentiability of a function from a surface to a surface, we follow
the same general scheme used in Section 3 and require that all its coordinate
expressions be differentiable.

5.1 Definition A function F: M Æ N from one surface to another is 
differentiable provided that for each patch x in M and y in N the composite
function y-1Fx is Euclidean differentiable (and defined on an open set of R2).
F is then called a mapping of surfaces.

Evidently the function y-1Fx is defined at all points (u, v) of D such that
F(x(u, v)) lies in the image of y (Fig. 4.27). As in Section 3 we deduce from
Corollary 3.3 that in applying this definition, it suffices to check enough
patches to cover both M and N.

5.2 Example (1) Let S be the unit sphere in R3 (center at 0) but with
north and south poles removed, and let C be the cylinder based on the unit
circle in the xy plane. So C is in contact with the sphere along the equator.
We define a mapping F: S Æ C as follows: If p is a point of S, draw the line
orthogonally out from the z azis through p, and let F(p) be the point at which
this line first meets C, as in Fig. 4.28. To prove that F is a mapping, we use 
the geographical patch x in S (Example 2.2), and for C the patch y(u, v) =
(cosu, sinu, v). Now x(u, v) = (cosvcosu, cosvsinu, sinv), so from the defi-
nition of F we get

But this point of C is y(u, sinv); hence

F u v u u vx , , ,( )( ) = ( )cos sin sin .

FIG. 4.27
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Applying y-1 to both sides of this equation gives

so y-1Fx is certainly differentiable. (Actually, x does not entirely cover S, but
the missing semicircle can be covered by a patch like x.) We conclude that F
is a mapping.

(2) Stereographic projection of the punctured sphere S onto the plane. Let
S be a unit sphere resting on the xy plane at the origin, so the center of S is
at (0, 0, 1). Delete the north pole n = (0, 0, 2) from S. Now imagine that there
is a light source at the north pole, and for each point p of S, let P(p) be the
shadow of p in the xy plane (Fig. 4.29). As usual, we identify the xy plane
with R2 by (p1, p2, 0) ´ (p1, p2). Thus we have defined a function P from S
onto R2. Evidently P has the form

where r and R are the distances from p and P(p), respectively, to the z axis.
But from the similar triangles in Fig. 4.30, we see that R/2 = r/(2 - p3); hence

Now if x is any patch in S, the composite function Px is Euclidean differ-
entiable, so P: S Æ R2 is a mapping.

P p p p
p
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2
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Just as for mappings of Euclidean space, each mapping of surfaces has a
tangent map.

5.3 Definition Let F: M Æ N be a mapping of surfaces. The tangent map
F* of F assigns to each tangent vector v to M the tangent vector F*(v) to N
such that if v is the initial velocity of a curve a in M, then F*(v) is the initial
velocity of the image curve F(a) in N (Fig. 4.31).

Furthermore, at each point p, the tangent map F* is a linear transforma-
tion from the tangent plane Tp(M) to the tangent plane TF(p)(N) (see Exercise
9). It follows immediately from the definition that F* preserves velocities of
curves: If = F(a) is the image in N of a curve a in M, then F*(a ¢) = ¢.
As in the Euclidean case, we deduce the convenient property that the tangent
map of a composition is the composition of the tangent maps (Exercise 10).

The tangent map of a mapping F: M Æ N may be computed in terms of
partial velocities as follows. If x: D Æ M is a parametrization in M, let y be
the composite mapping F(x): D Æ N (which need not be a parametrization).
Obviously, F carries the parameter curves of x to the corresponding para-
meter curves of y. Since F* preserves velocities of curves, it follows at once
that

Since xu and xv give a basis for the tangent space of M at each point of x(D),
these readily computable formulas completely determine F*.

F Fu u v v* , *x y x y( ) = ( ) = .

aa

FIG. 4.30

FIG. 4.31



The discussion of regular mappings in Section 7 of Chapter 1 translates
easily to the case of a mapping of surfaces F: M Æ N. F is regular provided
all of its derivative maps F*p: Tp(M) Æ TF(p)(N) are one-to-one. Since these
tangent planes have the same dimension, we know from linear algebra that
the one-to-one requirement is equivalent to F* being a linear isomorphism.
A mapping F: M Æ N that has an inverse mapping F-1: N Æ M is called a
diffeomorphism. We may think of a diffeomorphism F as smoothly distort-
ing M to produce N. By applying the Euclidean formulation of the inverse
function theorem to a coordinate expression y-1Fx for F, we can deduce this
extension of the inverse function theorem (7.10 of Chapter 1).

5.4 Theorem Let F: M Æ N be a mapping of surfaces, and suppose that
F*p: Tp(M) Æ TF(p)(N) is a linear isomorphism at some one point p of M.
Then there exists a neighborhood U of p in M such that the restriction of F
to U is a diffeomorphism onto a neighborhood V of F(p) in N.

An immediate consequence is this useful result: A one-to-one regular
mapping F of M onto N is a diffeomorphism. For since F is one-to-one and
onto, it has a unique inverse function F -1, and F -1 is a differentiable mapping
since on each neighborhood V as above, it coincides with the inverse of the
diffeomorphism U Æ V. Surfaces M and N are said to be diffeomorphic if
there exists a diffeomorphism from M to N.

Diffeomorphisms have little respect for size or shape; here are some 
examples.

5.5 Example (1) Any open rectangle in the plane R2 is diffeomorphic 
to the entire plane. Take R: -p/2 < u, v < p/2 for simplicity. Then F(u,v) =
(tanu, tanv) is a mapping of R onto R2. Using a branch of the inverse 
tangent function, the mapping F -1(u1, v1) = (tan-1 (u1), tan-1 (v1)) is a dif-
ferentiable inverse of F, so F is a diffeomorphism.

(2) The sphere S minus one point is also diffeomorphic to the entire plane.
Stereographic projection P, as in Example 5.2(2), is a one-to-one mapping of
the punctured sphere S0 onto R2. A variant

of the usual geographical parametrization is a parametrization of S0 - 0. The
formula for P in Example 5.2 gives

y xu v P u v
v
v

u u, , ,( ) = ( )( ) =
-

( )2
1

cos
sin

cos sin .

x u v v u v u v, , ,( ) = +( )cos cos cos sin sin1
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Since P*(xu) = yu and P*(xv) = yv, the regularity of F can be checked by
computing yu and yv. These turn out to be orthogonal and nonzero, hence
linearly independent, as suggested by Fig. 4.32.

(3) A cylinder C over a closed curve is diffeomorphic to the plane 
minus one point. For simplicity, take C: x2 + y2 = 1, and define a mapping 
F: C Æ R2 by F(x, y, z) = ez(x, y). Since ez takes on all values r > 0, F maps 
C onto R2 - 0.

For the inverse of F, experimentation suggests

To prove G = F -1, compute G(F(x, y, z)) = (x, y, z) and F(G(u, v)) = (u, v).

Differential forms have the remarkable property that they can be moved
from one surface to another by means of an arbitrary mapping.† Let us
experiment with a 0-form, that is, a real-valued function. If F: M Æ N is a
mapping of surfaces and f is a function on M, there is simply no reasonable
general way to move f over to a function on N. But if instead, f is a function
on N, the problem is easy; we pull f back to the composite function f(F) on
M. The corresponding pull-back for 1-forms and 2-forms is accomplished as
follows.

5.6 Definition Let F: M Æ N be a mapping of surfaces.
(1) If f is a 1-form on N, let F*f be the 1-form on M such that

for all tangent vectors v to M.
(2) If h is a 2-form on N, let F*h be the 2-form on M such that

F F* *f f( )( ) = ( )v v

G u v
u

u v

v

u v
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¯2 2 2 2

2 2log .

FIG. 4.32

† This is not true for vector fields.
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for all pairs of tangent vectors v, w on M (Fig. 4.33).

When we are dealing with a function f in its role as a 0-form, we shall some-
times write F*f instead of f(F), in accordance with the notation for the pull-
back of 1-forms and 2-forms.

The essential operations on forms are sum, wedge product, and exterior
derivative; all are preserved by mappings.

5.7 Theorem Let F: M Æ N be a mapping of surfaces, and let x and h
be forms on N. Then

(1) F*(x + h) = F*x + F*h,
(2) F*(x Ÿ h) = F*x Ÿ F*h,
(3) F*(dx) = d(F*x).

Proof. In (1), x and h are both assumed to be p-forms (degree p = 0, 1,
2) and the proof is a routine computation. In (2), we must allow x and h
to have different degrees. When, say, x is a function f, the given formula
means simply F *( fh) = f(F )F *(h). In any case, the proof of (2) is also a
straightforward computation. But (3) is more interesting. The easier case
when x is a function is left as an exercise, and we address ourselves to the
case where x is a 1-form.

It suffices to show that for every patch x: D Æ M,

Let y = F(x), and recall that F*(xu) = yu and F*(xv) = yv. Thus, using the
definitions of d and F*, we get

d F F du v u v* , * ,x x( )( )( ) = ( )( )( )x x x x .

F F F* , * , *h h( )( ) = ( )v w v w

FIG. 4.33
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Even if y is not a patch, Exercise 6 of Section 4 shows that this last expres-
sion is still equal to dx(yu, yv). But

Thus we conclude that d(F*x) and F*(dx) have the same value on 
(xu, xv). ◆

The elegant formulas in Theorem 5.7 are the key to the deeper study of
mappings. In Chapter 6 we shall apply them to the connection forms of frame
fields to get fundamental information about the geometry of mappings of
surfaces.

Exercises

1. Let M and N be surfaces in R3. If F: R3 Æ R3 is a mapping such that the
image F(M) of M is contained in N, then the restriction of F to M is a 
function F |M: M Æ N. Prove that F |M is a mapping of surfaces. (Hint: Use
Thm. 3.2.)

2. Let S be the sphere of radius r with center at the origin of R3. Describe
the effect of the following mappings F: S Æ S on the meridians and paral-
lels of S.

(a) F(p) = -p.
(b) F(p1, p2, p3) = (p3, p1, p2).

(c)

3. Let M be a simple surface, that is, one that is the image of a single proper
patch x: D Æ R3. If y: D Æ N is any mapping into a surface N, show that
the function F: M Æ N such that

is a mapping of surfaces. (Hint: Write F = yx-1, and use Cor. 3.3.)
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4. Use the preceding exercise to construct a mapping of the helicoid H (Ex.
2.5) onto the torus T (Ex. 2.5) such that the rulings of H are carried to the
meridians of T.

5. If S is the sphere || p || = r, the mapping A: S Æ S such that A(p) = -p
is called the antipodal map of S. Prove that A is a diffeomorphism and that
A*(vp) = (-v)-p.

6. A regular mapping F: M Æ N of surfaces is often called a local diffeo-
morphism. For such a mapping F, prove that, in fact, every point p of M has
a neighborhood U such that F |U is a diffeomorphism of U onto a neighbor-
hood of F(p) in N.

7. If x: D Æ M is a parametrization, prove that the restriction of x to a
sufficiently small neighborhood of a point (u0, v0) in D is a patch in M. (Thus
any parametrization can be cut into patches.)

8. Let F: M Æ N be a mapping. If x is a patch in M, then as in the text,
let y = F(x). (Although y maps into N, it is not necessarily a patch.) For a
curve

in M, show that the image curve = F(a) in N, has velocity

9. Prove: (a) The invariance property needed to justify the definition (5.3)
of the tangent map.

(b) Tangent maps F*: Tp(M) Æ TF(p)(N) are linear transformations.

10. Given mappings be the composite
mapping. Show that

(a) GF is differentiable, (b) (GF)* = G*F*,
(c) (GF)* = F*G*,
that is, for any form x on P, (GF )* (x) = F* (G*(x)). (Note the reversal of
factors, caused by the fact that forms travel in the opposite direction from
points and tangent vectors.)

11. Prove that every surface of revolution is diffeomorphic to either a torus
or a cylinder. (Hint: Parametrize profile curves on the same interval.) (As 
Fig. 4.9 suggests, every augmented surface of revolution is diffeomorphic to
either a plane or a sphere.)

12. (a) Show that the inverse mapping P-1 of the stereographic projection
P: S0 Æ R2 is given by

F GM N P GF M PÆ Æ Æ, :let

¢ = ( ) + ( )a
da
dt

a a
da
dt

a au v
1

1 2
2

1 2y y, , .

a

a t a t a t( ) = ( ) ( )( )x 1 2,
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(Check that both PP -1 and P -1P are identity maps.)
(b) Deduce that the entire sphere S can be covered by only two patches.
(The scheme in Section 1 requires six.)

13. (Consistent formulas.) If G: Æ M is a regular mapping onto M, and
: Æ N is an arbitrary mapping, we say that the formula F(G(q)) = (q)

is consistent provided

for q1, q2 in . Prove:
(a) In this case, F is a well-defined differentiable mapping from M to N.
(b) Furthermore, if the reverse implication

also holds, then F is one-to-one.
This result is helpful in constructing maps F: M Æ N with specified prop-

erties. Often G will be a parametrization of M.

˜ ˜F F G Gq q q q1 2 1 2( ) = ( ) fi ( ) = ( )

M̃

G G F Fq q q q1 2 1 2( ) = ( ) fi ( ) = ( )˜ ˜

F̃M̃F̃
M̃

P u v
u v f

f
f u v- ( ) =

( )
+

= +1 2 24 4 2
4

,
, ,

, where .

M

M

F

F
N

G
˜

˜

4.6 Integration of Forms

Differential forms are no less important in integral calculus than in differen-
tial calculus. Indeed, they are just what is needed to establish integration
theory on an arbitrary surface. In a sense, integration takes place only on
Euclidean space, so a form on a surface is integrated by first pulling it back
to Euclidean space.

Consider the one-dimensional case. Let a: [a, b] Æ M be a curve segment
on a surface M. The pullback a*f of a 1-form f on M to the interval [a, b]
has the expression f(t)dt, where by the remarks following Example 4.7,

Thus the scheme mentioned above yields the following result:

f t U t U t t( ) = ( ) ( )( ) = ( )( )( ) = ¢( )( )a f f a f a* 1 1* .
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6.1 Definition Let f be a 1-form on M, and let a: [a, b] Æ M be a curve
segment in M (Fig. 4.34). Then the integral of f over a is

The integral often called a line integral, has a wide variety of uses in 
science and engineering. For example, let us consider a vector field V on a
surface M as a force field, and a curve a: [a, b] Æ M as a description of a
moving particle, with a(t) its position at time t. What is the total amount 
of work W done by the force on the particle as it moves from p = a(a) to 
q = a(b)? The discussion of velocity in Chapter 1, Section 4, shows that for
Dt small, the subsegment of a from a(t) to a(t + Dt) is approximated by the
straight line segment Dt a(t). Work is done on the particle only by the com-
ponent of force tangent to a, that is,

where J is the angle between V(a(t)) and a ¢(t) (Fig. 4.35). Thus the work
done by the force during time Dt is approximately the force (as above) times
the distance ||a ¢(t)|| Dt. Adding these contributions over the whole time inter-
val [a, b] and taking the usual limit, we get

W V t t dt
a

b

= ( )( ) ¢( )Ú a a• .

V Va
a
a

a J( ) ¢
¢

= ( )• cos ,

f
aÚ ,

f a f f a
a a b a

b

t dtÚ Ú= = ¢( )( )
[ ]Ú *

,
.

FIG. 4.34

FIG. 4.35
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To express this more simply, we introduce the 1-form f dual to the vector field
V; its value on a tangent vector w at p is w • V(p). Then by Definition 6.1,
the total work is just

We emphasize that this notion of line integral—like everything we do with
forms—applies without essential change if the surface M is replaced by a
Euclidean space or, indeed, by any manifold (Section 8).

When the 1-form being integrated is the differential of a function, we get
the following generalization of the fundamental theorem of calculus.

6.2 Theorem Let f be a function on M, and let a: [a, b] Æ M be a curve
segment in M from p = a(a) to q = a(b). Then

Proof. By definition,

But

Hence, by the fundamental theorem of calculus,

◆

Thus the integral is path independent: its value is the same for all curves

from p to q. Hence it is zero for all closed curves, a(a) = a(b).
The preceding theorem can be interpreted roughly as follows: The “bound-

ary” of the curve segment a from p to q is q - p, where the purely formal minus
sign indicates that p is the starting point of a. Then the integral of df over a
equals the “integral” of f over the boundary of a, namely, f(q) - f(p). This
interpretation will be justified by the analogous theorem (6.5) in dimension 2.

If we consider a closed rectangle R: a � u � b, c � v � d in R2 as a 2-
dimensional interval, then a 2-segment is a differentiable map x: R Æ M of
R into M (Fig. 4.36). As for a 1-segment, differentiability means that x can
be extended over a larger open set containing R. Although we use the patch
notation x, we do not assume that x is either regular or one-to-one—but the
partial velocities xu and xv are still well defined.

df
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df
d
dt

f dt f b f a f f
a a

b
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If h is a 2-form on M, then the pullback x*h of h has, using Example 4.7,
the expression h du dv, where

Then strict analogy with Definition 6.1 yields:

6.3 Definition Let h be a 2-form on M, and let x: R Æ M be a 2-segment
in M. The integral of h over x is

The physical applications of this integral are no less rich than those of Def-
inition 6.1; however, we proceed directly toward the analogue of Theorem
6.2.

6.4 Definition Let x: R Æ M be a 2-segment in M, with R the closed rec-
tangle a � u � b, c � v � d (Fig. 4.37). The edge curves of x are the curve
segments a, b, g, d such that

Then the boundary ∂x of the 2-segment x is the formal expression

∂ = + - -x a b g d .

a

b

g

d

u u c

v b v

u u d
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These four curve segments are gotten by restricting the function x: R Æ M
to the four line segments that make up the boundary of the rectangle R (Fig.
4.37). The formal minus signs before g and d signal that the parametrizations
of g and d would have to be reversed to give a consistent trip around the rim
of x(R) (Fig. 4.38).

Then if f is a 1-form on M, the integral of f over the boundary ∂x of x is
defined to be

The 2-dimensional analogue of Theorem 6.2 is

6.5 Theorem (Stokes’ theorem) If f is a 1-form on M, and x: R Æ M is
a 2-segment, then

Proof. We work on the double integral and show that it turns into the
integral of f over the boundary of x. Combining Definitions 6.3 and 4.4
gives

Let f = f(xu) and g = f(xv). Then the equation above becomes

(1)

Now we treat these double integrals as iterated integrals. Suppose the
rectangle R is given, as usual, by the inequalities a � u � b, c � v � d.
Then integrating first with respect to u, we find
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In the partial integral defining I(v), v is constant, so the integrand is just
the ordinary derivative with respect to u. Thus, the fundamental theorem
of calculus applies to give I(v) = g(b, v) - g(a, v) (Fig. 4.39). Hence

(2)

Consider the first integral on the right. By definition, g(b, v) = f(xv(b,
v)). But xv(b, v) is exactly the velocity b¢(v) of the “right side” curve b in
∂x. Hence by Definition 6.1,

A similar argument shows that the other integral in (2) is . Thus

(3)

In the same way—but integrating first with respect to v—we find

(4)

Assembling the information in (1), (3), and (4) gives the required result,

◆

Stokes’ theorem ranks as one of the most useful results in all mathe-
matics. Alternative formulations and extensive applications can be found in
texts on advanced calculus and applied mathematics. We will use it to study
the geometry and topology of surfaces.

The line integral is not particularly sensitive to reparametrization of

the curve segment a. All that matters is the overall direction in which the
route of a is traversed, as indicated by what the reparametrization does to
end points.

f
aÚ

df f f f f f
b d g ax xÚÚ Ú Ú Ú Ú Ú= -Ê

Ë
ˆ
¯ - -Ê

Ë
ˆ
¯ =

∂
.

∂
∂

f f
g a

f
v

du dv
RÚÚ Ú Ú= - .

∂
∂

f f
b d

g
u

du dv
RÚÚ Ú Ú= - .

f
dÚ

g b v dv v dv
c

d

c

d

, .( ) = ¢( )( ) =Ú Ú Úf b f
b

∂
∂

g
u
du dv g b v dv g a v dv

R c

d

c

d

ÚÚ Ú Ú= ( ) - ( ), , .

FIG. 4.39



6.6 Lemma Let a(h): [a, b] Æ M be a reparametrization of a curve
segment a: [c, d] Æ M by h: [a, b] Æ [c, d]. For any 1-form f on M,

(1) If h is orientation-preserving, that is, if h(a) = c and h(b) = d, then

(2) If h is orientation-reversing, that is, if h(a) = d and h(b) = c, then

Proof. The velocity of a(h) is a(h)¢ = dh/dt a ¢(h), so

Now we apply the theorem on change of variables in an integral to the last
integral above. If h is orientation-preserving, then

while in the orientation-reversing case,

◆

This lemma provides a concrete interpretation to the formal minus signs
in the boundary ∂x = a + b - g - d of a 2-segment. For any curve

x: [t0, t1] Æ M,

let -x be any orientation-reversing reparametrization of x, for instance,
(-x)(t) = x(t0 + t1 - t). Then by the lemma,

Thus the formula for just before Theorem 6.5 can be rewritten as

Exercises

1. If a is a curve in R2 and f is a 1-form, prove this computational rule for
finding f(a ¢)dt: Substitute u = a1 and v = a2 into the coordinate expression 
f = f(u, v) du + g(u, v) dv.

2. Let a: [-1, 1] Æ R2 be the curve segment given by a(t) = (t, t2).

(a) If f = v2 du + 2uv dv, compute 

(b) Find a function f such that df = f and check Theorem 6.2 in this case.

f
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3. Let f be a 1-form on a surface M. Show:
(a) If f is closed, then for every 2-segment x in M.
(b) If f is exact, then more generally,

for any closed, piecewise smooth curve whose smooth segments are a1, . . . ,
ak (hence ak ends at the start of a1).

4. The 1-form

is well-defined on the plane R2 with the origin 0 removed. Show:
(a) y is closed but not exact on R2 - 0. (Hint: Integrate around the unit
circle and use Ex. 3.)
(b) The restriction of y to, say, the right half-plane u > 0 is exact.

5. (a) Show that every curve a in R2 that does not pass through the origin
has an (orientation-preserving) reparametrization in the polar form

(Hint: Use Ex. 12 of Sec. 2.1.)
If the curve a: [a, b] Æ R2 - 0 is closed, prove:

(b) wind is an integer.

This integer, called the winding number of a about 0, represents the total
algebraic number of times a has gone around the origin in the counter-
clockwise direction. (Note that wind(a) = wind(a/||a||).)

(c) If y is the 1-form in Exercise 4, then wind

(d) If a = ( f, g), then

(The determinant is of the 2¥2 matrix whose rows are a(t) and a ¢(t).)

6. (Continuation, by computer.) For a point p Œ R2 not on a closed curve a,
the winding number of a about p is defined to be wind(a - p).

(a) Write commands that given a closed curve a in R2 and a point p not
on a, return the winding number of a about p. (Hint: Use either integral
in (d) of the preceding exercise.)
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(b) In each case, plot the curve a (observing its orientation) and estimate
the winding numbers about the indicated points p. Then calculate these
numbers, using the integral in (d) above. (Numerical integration is efficient
here, since the result is known to be an integer.)

(i) lemniscate, a(t) = (2sin t, sin2t); p = (1, 0), (0, 1), (-1, 0).
(ii) limaçon, b(t) = (3sin t + 1) (cos t, sin t); p = (0, 1), (0, 3), (0, 5).

7. Let F: M Æ N be a mapping. Prove:
(a) If a is a curve segment in M, and f is a 1-form on N, then

(b) If x is 2-segment in M, and h is a 2-form on N, then 

8. Let x be a patch in a surface M. For a curve segment

in x(R), show that

where xu and xv are evaluated on (a1, a2). (This generalizes Ex. 1, which is
recovered by using the identity patch x(u, v) = (u, v) in R2.)

9. Let x be the usual parametrization of the torus T (Ex. 2.5). For integers
m and n, let a be the closed curve

Find:

(a) where x is the 1-form such that x(xu) = 1 and x(xv) = 0.

(b) where h is the 1-form such that h(xu) = 0 and h(xv) = 1.

For an arbitrary closed curve g in T, is an integer that counts the 

total (algebraic) number of times g goes around the torus in the general 

direction of the parallels, and gives a similar count for the meridi- 

ans. (This suggests the informal notation x = dJ, h = dj, but see Ex. 7 of
Sec. 7.)

10. Let x: R Æ M be a 2-segment defined on the unit square R: 0 � u,
v � 1. If f is the 1-form on M such that

f fx xu vu v uv( ) = + ( ) =and ,
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compute and separately, and check the results by Stokes’ theorem.

(Hint: x*df = d(x*f).)

11. Same as Exercise 10, except that R: 0 � u � p/2, 0 � v � p, and 
f(xu) = ucosv, f(xv) = vsinu.
The following exercise is a 2-dimensional analogue of Lemma 6.6. However,
with future applications in mind, we generalize 2-segments x: R Æ M by
replacing the rectangle R by any compact region R in R2 whose boundary
consists of smooth curve segments. (Compactness ensures that integrals over
R will be finite.)

12. (Effect of change of variables.) Let x: S Æ M be a differentiable mapping
and let (U, V): R Æ S be a one-to-one regular map whose Jacobian 
determinant

is always positive (orientation-preserving case) or always negative (orientation-
reversing case). Then let y: R Æ M be given by y(u, v) = x(U(u, v), V(u, v)).

(a) For a 2-form h on M, use

to prove

(b) Deduce that in the orientation-preserving case, and 

minus this in the orientation-reversing case.
(Hint: The formula for change of variables in a double integral involves
the absolute value of a Jacobian determinant.)

13. The classical Stokes’ theorem asserts, typically, that if x: D Æ R3 is a 
2-segment and V is a vector field on R3, then

where — ¥ V = curl V. Interpret this as a special case of Theorem 6.5. (Hint:
Assume and use Ex. 8 of Sec. 1.6.)dA EG F du dvª - 2 † ,
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† This geometric result will be clarified later on. Note that Theorem 6.5 does not involve geometry.



4.7 Topological Properties of Surfaces

Topological properties are the most basic a surface can have. In this section
we discuss four such properties, phrasing the definitions in terms most effi-
cient for geometry.

7.1 Definition A surface is connected provided that for any two points p
and q of M there is a curve segment in M from p to q. (See also Exercise 9.)

Thus a connected surface M is all in one piece, since one can travel from
any point in M to any other without leaving M. Most of the surfaces we have
met so far have been connected; the surface M: z2 - x2 - y2 = 1 (a hyper-
boloid of two sheets) is not. Connectedness is a mild and natural condition
that is sometimes included in the definition of surface.

The general definition of compactness is expressed in terms of open cov-
erings. An open covering of a set A is a collection of open sets that covers A
in the sense that each point of A is in at least one of the sets.

A subset A in a space S (for us, either a Euclidean space or a surface) is
compact provided that given any open covering of A some finite number of
the sets already covers A. In elementary calculus it is usually proved that a
closed interval I: a � t � b in R is compact, and this result extends to higher
dimensions. In particular, any closed rectangle R: a � u � b, c � v � d in R2

is compact.
We will need this abstract definition at a few crucial points, but in surface

theory the following concrete criterion is more useful.

7.2 Lemma A surface M is compact if and only if it can be covered by
the images of a finite number of 2-segments in M.

Proof. Suppose M is compact. For each point p in M, by using a coor-
dinate patch containing p, we can construct a 2-segment whose image con-
tains a neighborhood of p. The definition of compactness shows that a
finite number of these neighborhoods already covers M; hence the corre-
sponding 2-segments cover M.

The converse is an exercise in finiteness. First we show that the image
x(R) of a single 2-segment is compact. Recall that the definition of differ-
entiability for 2-segments allows us to assume that x has been smoothly
extended over an open set containing the (closed) rectangle R.

Let {Ua} be an open covering of M. For each point r in R, one of these
sets, say Ur, contains x(r). Being differentiable, x is also continuous, so r
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has a neighborhood Nr that is carried into Ur by x. For all r, these neigh-
borhoods Nr form an open covering of R. As mentioned above, the rec-
tangle R is compact, so some finite number of these neighborhoods cover
R. But this means that the corresponding original sets Ur (finite in number!)
cover x(R); hence it is compact.

Now suppose that M is covered by the images of a finite number of 2-
segments x1, . . . , xk. If {Ua} is an open covering of M, then we have just
shown that a finite number of these sets suffice to cover the image of each
xi. Collecting these sets for i = 1, 2, . . . , k produces a finite number of sets
Ua that cover M. Thus M is compact. ◆

It follows at once from this proof that a region R in M is compact if it is
composed of the images of finitely many 2-segments in M. For example,
spheres are compact, since if the formula for the geographical patch
(Example 2.2) is applied on the closed rectangle.

then this single 2-segment covers the entire sphere†. Similarly, the torus
(Example 2.5) is compact, as is every surface of revolution whose profile
curve is closed.

The following lemma generalizes this fundamental fact: A continuous real-
valued function on a closed rectangle R in the plane takes on a maximum at
some point of R.

7.3 Lemma A continuous function f on a compact region R in a surface
M takes on a maximum at some point of M.

Proof. We show this in the only case we need: where R consists of the
images x1(R1), . . . , xk(Rk) of a finite number of 2-segments (for example,
where R is an entire surface).

Since each xi is continuous, the composite functions f(xi): Ri Æ R
are all continuous. By the remark above, for each index i, there is a point
(ui, vi) in Ri where f(xi) is a maximum. Let f(xj(uj, vj)) be the largest of these
finite number k of maximum values; then evidently f(p) � f(xj(uj, vj)) for
all p in M. ◆

R u v: - -p p p p� � � �, ,2 2

† Amazingly, every compact surface can be expressed as the image of a single 2-segment. See Ch. 1
of [Ma].



This lemma is useful in proving noncompactness. For example, a cylinder
C such as x2 + y2 = r2 is not compact since the coordinate function z is
unbounded on C.

Finite size alone does not produce compactness. For example, the open disk
D: x2 + y2 < 1 in the xy plane is itself a surface. Although D is bounded and
has finite area p, it is not compact since the function f = (1 - x2 - y2)-1 is 
continuous on D and does not have a maximum.

In general, a compact surface cannot have open edges, as D does, but must
be smoothly closed up everywhere and finite in size—like a sphere or torus.

Roughly speaking, an orientable surface is one that is not twisted. Of the
many equivalent definitions of orientability for surfaces, the following is
perhaps the simplest.

7.4 Definition A surface M is orientable if there exists a differentiable (or
merely continuous) 2-form m on M that is nonzero at every point of M.

Recall that a 2-form is zero at a point p if it is zero on every pair of tangent
vectors at p—or equivalently, on one linearly independent pair. Thus the
plane R2 is orientable since du dv is a nonvanishing 2-form. This definition of
orientability is somewhat mysterious, so for a surface M in R3 we give a more
intuitive description in terms of Euclidean geometry. A unit normal U on M
is a differentiable Euclidean vector field on M that has unit length and is
everywhere normal to M.

7.5 Proposition A surface M Ã R3 is orientable if and only if there exists
a unit normal vector field on M. If M is connected as well as orientable, there
are exactly two unit normals, ±U.

Proof. We use the cross product of R3 to convert normal vector fields
into 2-forms, and vice versa.

Let U be a unit normal on M. If v and w are tangent vectors to M at
p, define

Standard properties of the cross product show that m is a 2-form on M.
When v and w are linearly independent, so are all three vectors, so 
m(v, w) π 0. Thus m is nonvanishing, which proves that M is orientable.

Conversely, suppose M is orientable, with m a nonvanishing 2-form.
Again, nonvanishing implies that if v, w are linearly independent vectors
at a point p of M, then m(v, w) π 0. Now define

m v w p v w,( ) = ( ) ¥U • .
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This formula is independent of the choice of v, w. Explicitly, for any other
such pair v¢, w¢, it follows from Lemma 4.2 and the analogous formula for
cross products that

Properties of the cross product show that Z(p) is nonzero and normal 
to M. The formula for cross product shows that Z is differentiable. Thus
U = Z/||Z|| is the required unit normal.

If U is a unit normal on M, then so is -U. To show that there are no
others, let V also be a unit normal. At each point these (differentiable) unit
vector fields are collinear, so the only values for the dot product V • U are
+1 and -1. On a connected surface, a nonvanishing differentiable function
cannot change sign (Exercise 4), hence either V • U = +1 everywhere, so 
V = U, or V • U = -1 everywhere, so V = -U. ◆

For example, all spheres, cylinders, surfaces of revolution, and quadric sur-
faces are orientable. It follows from Lemma 3.8 that every surface in R3 that
can be defined implicitly is orientable.

However, nonorientable surfaces do exist in R3. The simplest example is
the famous Möbius band B, made from a strip of paper by giving it a half
twist, then gluing its ends together (Fig. 4.40). B is nonorientable since it
cannot have a (differentiable) unit normal. To see this let g be a closed curve,
as in Fig. 4.40, that runs once around the band with g (0) = g (1) = p. Now
suppose a unit normal vector U at g (0) moves continuously around g. As the
figure shows, the twist in B forces the contradiction

U(p) = U(g (1)) = -U(g (0)) = -U(p).

¢ ¥ ¢
¢ ¢( ) =

¥
( )

v w
v w

v w
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The last of the topological properties we consider will let us express for-
mally the intuitive idea that a plane is simpler than a cylinder, and a sphere
is simpler than a torus. The key is that in the cylinder or a torus there are
closed curves that cannot be continuously shrunk down to a point.

7.6 Definition A closed curve a in M is homotopic to a constant provided
there is a 2-segment x: R Æ M (called a homotopy) defined on

such that a is the base curve of x and the other three edge curves are con-
stant at p = a(a) = a(b).

A curve such as a for which a(a) = a(b) holds but not necessarily a¢(a) =
a¢(b) is often called a loop at p. Since the sides b and d of x are constant at
p, for every 0 � v � 1 the u-parameter curve av(u) = x(u, v) is also a loop at
p. As v varies from 0 to 1, the loop av varies continuously from a0 = a to the
curve a1 = g, which is constant at p.

It is easy to show that in the plane every loop is homotopic to a constant.
Given a loop a: [a, b] Æ R2 at p in R2, use scalar multiplication in R2 to define
x(u, v) = va(a) + (1 - v)a(u). Then

Hence x is a homotopy from a to a constant.

7.7 Definition A surface M is simply connected provided it is connected
and every loop in M is homotopic to a constant.

(This definition is valid for any manifold—and more generally.) The pre-
ceding homotopy shows that the plane R2 is simply connected, and the same
formula works for any Euclidean space.

The 2-sphere S is also simply connected. Consider the following scheme of
proof. Let a be a loop in S at, say, the north pole of S. Pick a point q not on
a. For simplicity, suppose q is the south pole. Now let x be the homotopy
under which each point of a moves due north along a great circle, reaching
p in unit time. This x is a homotopy of a to a constant, as required.

But there is a difficulty here: finding the point q. In our usual case, where
a is differentiable, techniques from advanced calculus will show that there is
always a point q not on a. However, if a is merely continuous, it may actu-

x x p

x x p
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ally fill the entire sphere. In this case, topological methods can be used to
deform a slightly, making it no longer space-filling; then the scheme above is
valid.

To show that a given surface is simply connected, we can always try to con-
struct the necessary homotopies; however, to show that a surface is not simply
connected, indirect means are usually required. One of the most effective
derives from integration. Recall that a differential form f is closed if df = 0.

7.8 Lemma Let f be a closed 1-form on a surface M. If a loop a in M
is homotopic to a constant, then 

Proof. Suppose x is a homotopy showing that a loop a is homotopic to
a constant, say p. Now we apply Stokes’ theorem (Theorem 6.5). The inte-
gral over a constant curve is zero, and df = 0, hence

◆

Now suppose we remove a single point, say the origin 0, from the (simply
connected) plane R2. The loop a: [0, 2p] Æ C given by a(t) = (cos t, sin t)
circles once around the missing point. It seems obvious that a cannot be
shrunk down to a point in the punctured plane P = R2 - 0. The preceding
lemma provides an easy way to prove it.

Exercise 4 of the preceding section shows that the 1-form

on P is closed and that its integral around a is 2p (these are easy computa-
tions). By the lemma, a is not homotopic to a constant; hence P is not simply
connected.

As noted earlier, since d 2 = 0, exact forms are always closed. However,
closed forms need not be exact. For example, if the closed 1-form y were
exact, it would follow from Stokes’ theorem (6.5) that However, in
an important special case, closed 1-forms are exact.

7.9 Lemma (Poincaré) On a simply connected surface, every closed 1-
form is exact.

Proof. First we show that the integral of a closed 1-form is path indepen-

dent, that is, if a and b are curve segments from p to q, then 

In fact, if -b is an orientation-reversing reparametrization of b, then 
a + (-b) = a - b is a loop. By simple connectedness, it is homotopic to a
constant. Thus, using Lemma 6.6,

f f
a bÚ Ú= .

y
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-
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Now suppose f is a closed 1-form on a simply connected surface
M. Pick a point p0 and define for any curve segment d from 

p0 to p. Path independence makes f a well-defined function on M.
To show that df = f, we must show that df(v) = f(v) for every tangent

vector v at a point p. This is equivalent to v[ f ] = f(v).
Let a: [a, b] Æ M be a curve with initial velocity a ¢(a) = v. Then 

d + a |[a, t] is a curve from p0 to a(t) (Fig. 4.41), so by the definition of f,

Taking the derivative with respect to t gives

When t = 0 this becomes v[ f ] = f(v), as required. ◆

Among the four properties we have discussed there are two direct impli-
cations—both yielding orientability.

7.10 Theorem A compact surface in R3 is orientable.

This is an easy consequence of the following nontrivial topological
theorem, a 2-dimensional version of the Jordan Curve Theorem. If M is a
compact surface in R3, then M separates R3 into two nonempty open sets: an
exterior (the points that can escape to infinity) and an interior (the points
trapped inside M). So we need only pick the unit normal vector at each p in
M that points into, say, the exterior and apply Proposition 7.5. Thus orien-
tation is at stake when in elementary calculus the “outward unit normal” is
assigned to a surface in R3.
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7.11 Theorem A simply connected surface is orientable.

We defer the proof until Section 4 of Chapter 8. (Notice, for future refer-
ence, that this theorem does not mention R3.)

A final note: Because the properties discussed in this section are topolog-
ical, they can be defined solely in terms of open sets and continuous func-
tions. However, differentiable versions are usually more practical for use in
geometry.

Exercises

1. Which of the following surfaces are compact and which are connected?
(a) A sphere with one point removed.
(b) The region z > 0 in M: z = xy.
(c) A torus with the curve a(t) = x(t, t) removed. (See Ex. 2 of Sec. 4.3.)
(d) The surface in Fig. 4.8.
(e) M: x2 + y4 + z6 = 1.

2. Let F be a mapping of a surface M onto a surface N. Prove:
(a) If M is connected, then N is connected.
(b) If M is compact, then N is compact. (Try both the covering definition
and the criterion in Lem. 7.2.)

3. Let F: M Æ N be a regular mapping. Prove that if N is orientable, then
M is orientable.

4. Let f be a differentiable real-valued function on a connected surface.
Prove:

(a) If df = 0, then f is constant.
(b) If f is never zero then either f > 0 or f < 0.

5. Of the four basic types of surfaces of revolution (see Ex. 11 of Sec.
5)—plane, sphere, cylinder, torus—which are,

(a) connected? (b) compact?
(c) orientable? (d) simply connected?

A closed curve a in M is freely homotopic to a constant if the conditions on
x in Definition 7.6 are weakened to b = d with only g required to be constant
(Fig. 4.42). Then the v constant curves av are loops that move along the curve
b = d as they shrink to p.

6. (a) If a loop a is freely homotopic to a constant via x, show that for any
1-form f,
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(b) If closed curves a and b in R2 - p are freely homotopic in R2 - p, show
that they have the same winding number about p.
(c) A smooth disk D in a surface is the image of the unit disk x2 + y2 £ 1
in R2 under a one-to-one regular map F. Show that the 2-segment

fills D and is a free homotopy of the (closed) boundary curve v Æ x(1, v) to
a constant.

7. Let f be a closed 1-form and a a closed curve.

(a) Show that if either f is exact or a is freely homotopic to a 
constant.
(b) Deduce that on a torus T the meridians and parallels are not freely
homotopic to constants, and the closed 1-forms x and h of Exercise 9 of
Section 6 are not exact.

8. (Counterexamples.) Give examples to show that the following are false:
(a) Converses of (a) and (b) of Exercise 2.
(b) Exercise 3 with F not regular.
(c) Converse of Exercise 3.

9. (a) If p is a point of a surface S, show that the set of all points of S that
can be connected to p by a (piecewise smooth) curve in S is an open set of
S. (Hint: Each point of a surface has a neighborhood that is connected in
the sense of Def. 7.1.)

(b) Same as (a) but with can replaced by cannot.
(c) For a surface M, show that Definition 7.1 (“path-connectedness”) is
equivalent to the general topological definition of connectedness, namely:
If U and M - U are open sets of M, and U contains at least one point,
then M = U. (Use the corresponding property for a closed interval in R,
a standard result of analysis.)

10. The Hausdorff axiom asserts that distinct points p π q have disjoint
neighborhoods. Prove:

f
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(a) R3 obeys the Hausdorff axiom. (The same proof works for all Rn.)
(b) A surface M in R3 obeys the Hausdorff axiom.

11. If R is a compact region in a surface M, prove that R is a closed set of
M, that is, M - R is an open set. (Hint: To show that M - R is open, use
the preceding exercise and the fact that a finite intersection of neighborhoods
of p is again a neighborhood of p.)

12. Let M and N be surfaces in R3 such that M is contained in N.
(a) If M is compact and N is connected, prove that M = N. (Hint: Show
that M is both closed and open in N.)
(b) Give examples to show that (a) fails if either M is not compact or N is
not connected.
(c) Deduce from (a) that if F: M Æ N is a local diffeomorphism with M
compact and N connected, then F(M) = N.

4.8 Manifolds

Surfaces in R3 are a matter of everyday experience, so it is reasonable to inves-
tigate them mathematically. But examining this concept with a critical eye,
we may well ask whether there could not be surfaces in R4, or in Rn—or even
surfaces that are not contained in any Euclidean space. To devise a definition
for such a surface, we must rely not on our direct experience of the real world,
but on our mathematical experience of surfaces in R3. Thus we shall strip
away from Definition 1.2 every feature that involves R3. What is left will be
just a surface.

To begin with, a surface will be a set M: a collection of any objects what-
soever. We call these objects the points of M, but as examples below will show,
they definitely need not be the usual points of some Euclidean space. An
abstract patch in M will now be just a one-to-one function x: D Æ M from
an open set D of R2 into the set M.

To get a workable definition of surface we must find a way to define what
it means for functions involving M to be differentiable. The key to this
problem turns out to be the smooth overlap condition in Corollary 3.3. To
prove this condition is now a logical impossibility since R3 is gone, so in the
usual fashion of mathematics, we make it an axiom.

8.1 Definition A surface is a set M furnished with a collection P of
abstract patches in M satisfying

(1) The covering axiom: The images of the patches in the collection P

cover M.
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(2) The smooth overlap axiom: For any patches x, y in P, the composite
functions y-1x and x-1y are Euclidean differentiable—and defined on open
sets of R2.

This definition generalizes Definition 1.2: A surface in R3 is a surface in
this sense. However, there is a technical gap in this definition that requires
attention. First, for any patch x: D Æ M in a surface, define a set x(U ) to be
open provided U is open in D Ã R2. Then the open sets of M are all unions
of such sets. (This is consistent with the case M Ã R3, since there x and x-1

are continuous.)
Examples like that in Exercise 11 show that for the open sets to behave

properly we must add another axiom to the definition of surface.

(3) The Hausdorff axiom: For any points p π q in M there exist disjoint
(that is, nonoverlapping) patches x and y with p in x(D) and q in y(E).

Here is an example of an important surface that, as we will soon see,
cannot be found in R3.

8.2 Example The projective plane P. Starting from the unit sphere S in
R3 we construct P by identifying antipodal points in S, that is, by considering
p and -p to be the same point of P (Fig. 4.43). Formally, this means that the
set P consists of all antipodal pairs {p, -p} of points in S. Order is not 
relevant here; that is, {p, -p} = {-p, p}. (Working with the projective plane
often involves looking back and forth between antipodal points.)

There are two important mappings associated with P: the antipodal 
map A(p) = -p on S and the projection F(p) = {p, -p} of S onto P. Note that
FA = F.

Call a patch x in S “small” if it is contained in a single open hemisphere.
Then the composite function Fx is one-to-one, and is thus an abstract patch.
The collection of all such abstract patches makes P a surface. In fact, the cov-
ering condition (1) is clear, and the Hausdorff axiom derives from the cor-
responding property for Euclidean spaces. The smooth overlap axiom (2) can
be checked as follows.

FIG. 4.43



Suppose Fx and Fy overlap in S; that is, their images have points in
common. If x and y overlap in S, then (Fy)-1Fx = y-1x, which by Corollary
3.3 is differentiable and defined on an open set. On the other hand, if x and
y do not overlap, replace y by Ay. Then x and Ay do overlap, so the previ-
ous argument applies.

To emphasize the distinction between a surface in R3 and the general
notion of surface defined above, we sometimes call the latter an abstract
surface.

To get as many patches as possible in an abstract surface M we always
understand that its patch collection P has been enlarged to include all the
abstract patches in M that overlap smoothly with those originally in P. We
emphasize that abstract surfaces M1 and M2 with the same set of points are
nevertheless different surfaces if their (enlarged) patch collections P1 and P2

are different.
There is essentially only one problem to solve in establishing calculus on

an abstract surface M, and that is to define the velocity of a curve in M. In
the old definition a velocity vector was a tangent vector to R3, so something
new is needed. For everything else—differentiable functions, curves them-
selves, tangent vectors, vector fields, differentiable forms, and so on—the def-
initions and theorems given for surfaces in R3 apply without change. It is
necessary to tinker with a few proofs, but no serious problems arise.

It makes little difference what we define velocity to be—provided the 
new definition produces the same essential behavior as before. The most 
efficient choice is based on the directional derivative property in Lemma 4.6,
Chapter 1.

8.3 Definition Let a: I Æ M be a curve in an abstract surface M. For
each t in I the velocity vector a ¢(t) is the function such that

for every differentiable real-valued function f on M.

Thus a ¢(t) is a real-valued function whose domain is the set F of all real-
valued functions on M. This is all we need to generalize the calculus on sur-
faces in R3 to the case of an abstract surface.

We now have a calculus for Rn (Chapter 1) and another one for surfaces.
These are strictly analogous, but analogies in mathematics, though useful 
initially, can be annoying in the long run. What we need is a single calculus
of which these two will be special cases. The most general object on which
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calculus can be conducted is called a manifold. It is simply an abstract surface
of arbitrary dimension n.

8.4 Definition An n-dimensional manifold M is a set furnished with a col-
lection P of abstract patches (one-to-one functions x: D Æ M, D an open set
in Rn) satisfying

(1) The covering property: The images of the patches in the collection P

cover M.
(2) The smooth overlap property: For any patches x, y in P, the compos-

ite functions y-1x and x-1y are Euclidean differentiable—and defined on open
sets of Rn.

(3) The Hausdorff property: For any points p π q in M there are disjoint
patches x and y with p in x(D) and q in y(E).

Thus a surface (Definition 8.1) is just a 2-dimensional manifold. As before,
Euclidean n-space Rn is an n-dimensional manifold whose (initial) patch col-
lection consists only of the identity map.

To keep this definition as close as possible to that of a surface in R3, we
have deviated somewhat from the standard definition of manifold in which
it is the inverse functions x-1: x(D) Æ D that are axiomatized.

The calculus of an arbitrary n-dimensional manifold is defined in the same
way as for n = 2. Usually we need only replace i = 1, 2 by i = 1, 2, . . . , n.
Differential forms on an n-dimensional manifold have the same general prop-
erties as in the case n = 2, which we have explored in Sections 4, 5, and 6.
But there are p-forms for 0 � p � n, so when n is large, the algebra becomes
more complicated.

Wherever calculus appears in mathematics and its applications, manifolds
will be found, and higher dimensional manifolds turn out to be important in
problems—both pure and applied—that initially seem to involve only dimen-
sions 2 or 3. For example, here is a 4-dimensional manifold that has already
appeared, implicitly at least, in this chapter.

8.5 Example The tangent bundle of a surface. For a surface M, let T(M)
be the set of all tangent vectors to M at all points of M. (For simplicity we
assume M is a surface in R3, but it could just as well be an abstract surface
or, indeed, a manifold of any dimension.) Since M has dimension 2 and each
tangent space Tp(M) has dimension 2, we anticipate that T(M) will have
dimension 4.

To get a natural patch collection for T(M) we derive from each patch x in
M an abstract patch in T(M). Given x: D Æ M, let be the open set in R4D̃x̃
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consisting of all points (p1, p2, p3, p4) for which (p1, p2) is in D. Then let be
the function Æ T(M) given by

(In Fig. 4.44 we identify R2 with the x1x2 plane of R4 and deal as best we can
with dimension 4.)

Using Exercise 3 of Section 3 and the proof of Lemma 3.6, it is not diffi-
cult to check that each such function is one-to-one and that the collection
of all such patches satisfies the conditions in Definition 8.4. Thus T(M) is a
4-dimensional manifold, called the tangent bundle of M.

Exercises

1. Prove that a surface M is nonorientable if there is a smoothly closed
curve a: [a, b] Æ M and a tangent vector field Y on a such that

(i) Y and a ¢ are linearly independent at every point, and
(ii) Y(b) = -Y(a).

(Hint: Assume M is orientable and deduce a contradiction.)

2. Establish the following properties of the projective plane P.
(a) If F: S Æ P is the projection, then each tangent vector to P is the image
under F* of exactly two tangent vectors to S, these of the form vp and -v-p.
(b) P is compact, connected, and nonorientable—hence P is not diffeo-
morphic to any surface in R3.

3. (a) Prove that the tangent bundle T(M) of a surface is a manifold. (If x
and y are overlapping patches in M, find an explicit formula for -1 .)

(b) If M is the image of a single patch x: R2 Æ M, show that the tangent
bundle of M is diffeomorphic to R4.

x̃ỹ
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4. A surface M in R3 is closed if it is a closed set of R3, that is, R3 - M is
an open set. (Confusingly, closed surface has sometimes been defined by
analogy with closed curve to mean compact surface.)

(a) Prove that every surface given in the implicit form M: g = c is closed.
(b) Prove that a compact surface in R3 is closed. (Hint: Use the scheme of
Ex. 11 of Sec. 7.)
(c) Give an example of a closed surface in R3 that is not compact.

5. A surface M in R3 is bounded provided there is a number R > 0 such that
||p|| � R for all p Œ M.

(a) Prove that a compact surface M Ã R3 is bounded.
(b) Give an example of a surface in R3 that is bounded but not compact.
It follows from this exercise and Exercise 4 that if M Ã R3 is compact, it
is closed and bounded. The converse is true but is more difficult to prove
(see [Mu]).

6. Let M̂ be the set of all the unit normal vectors on a surface M in R3. (So
there are two points of M̂ for each point of M.) For each patch x in M we
define two patches in M̂, namely,

(a) Show that the set of all such patches makes M̂ a surface, called the ori-
entation covering surface of M.
(b) Describe the orientation covering surface of the unit sphere S Ã R3 and
of the torus T Ã R3.
(c) If a connected surface M in R3 is orientable, show that M̂ consists of
two diffeomorphic copies of M. (Hint: M has smooth unit normals ±U.)
(d) The natural map ±U Æ p of M̂ onto M is regular.

7. (Continuation.) If a connected surface M in R3 is nonorientable, show
that M̂ is (i) connected and (ii) orientable. (Thus nonorientability can be
cured by doubling. For an example, see Ex. 10.)
(Hints: (i) If a: [a, b] Æ M is a curve, then any unit normal vector at a(a)
can be moved differentiably along a as a unit normal Ua(t)—thus giving a
curve in M̂. Assume this fact: if M is nonorientable, there exists a loop a in
M with Ua(b) = -Ua(a).

(ii) Any patch z determines a unit vector field Uz = zu ¥ zv/||zu ¥ zv||. If
patches x and y in M meet, but Uy = -Ux on the overlap, then x̂ and ŷ do
not meet.)

8. A Möbius band B can be constructed as a ruled surface by

x u v u v u v, , with, say, ,( ) = ( ) + ( ) - < <b d 1 3 1 3
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x x
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where b(u) = (cosu, sinu, 0) and

(The ruling makes only a half turn as it traverses the circle b.)
Show that x is one-to-one and regular, with unit normal

9. (Continuation, computer graphics.)
(a) Plot the Möbius band B.
(b) Plot a surface that represents B with its central circle b removed 
(for clarity, remove a small band around b). Is this surface connected? 
orientable?

Although a point of M̂ is a vector in R3, not a point of R3, in favorable
cases M̂ can be turned into a surface in R3 by mapping each Up in M̂ to
the point p + eUp (Euclidean coordinates) in R3 for some small e > 0. (For
e = 1, the point would be the tip of the “arrow” Up.)

10. (Continuation.)
(a) Using the scheme above, plot the orientation covering surface B̂ of the
Möbius band B. (Take e = 1/4.)
(b) By inspection, is B̂ connected? orientable? How is B̂ related to the
surface in (b) of the preceding exercise?

11. (Plane with two origins.) Let Z consist of all ordered pairs of real
numbers and one additional point 0*. Let x and y be the functions from R2

to Z such that

but

(a) Show that the abstract patches x and y constitute a patch collection
that satisfies the first two conditions in Definition 8.1, but not the Haus-
dorff axiom. Without the Hausdorff axiom, strange things can happen.
For example, prove:
(b) A convergent sequence in Z can have two limits.
(c) The function F: Z Æ Z that reverses 0 and 0*, leaving all other points
fixed, is a differentiable mapping.

x 0 y 00 0 0 0 0 0, , and , *( ) = = ( ) ( ) = .

x yu v u v u v u v, , , if , , ,( ) = ( ) = ( ) ( ) π ( )0 0

U u v
u v u

u v
u

u

,
,

,
( ) =

( ) ¥ ( )
( )

x
x

d
.

d u
u

u
u

u
u( ) = Ê

Ë
ˆ
¯cos cos cos sin sin .

2 2 2
, ,

4.8 Manifolds 199



12. (a) Given a one-to-one function H from a manifold M onto an arbi-
trary set A, prove there is a unique way to make A a manifold so that H
becomes a diffeomorphism. (Hint: Diffeomorphisms move patches to
patches.)

(b) In each of the following cases, find natural choices of H and M that
make the set a manifold.
(i) The set of all 2 ¥ 2 real symmetric matrices.
(ii) The set of all circles in R2.
(iii) The set of all great circles on a sphere S.
(iv) The set of all (finite) closed intervals in R.

13. (Integral curves.) A curve a in M is an integral curve of a vector field V
on M provided a ¢(t) = V(a(t)) for all t. Thus an integral curve has at each
point the velocity prescribed by V. If a(0) = p, we say that a starts at p.

(a) In R2, show that the curve a(t) = (u(t), v(t)) is an integral curve of
V = f1U1 + f2U2 starting at (a, b) Œ R2 if and only if

The theory of differential equations guarantees that there is a unique solu-
tion for a.

(b) Find an explicit formula for the integral curve of V = -u2U1 + uvU2

on R2 that starts at the point (1, -1). (The differential equations involved
can be solved by elementary methods since one of them is particularly
simple.)
(c) Sketch (by hand or by computer) the integral curve a on suitable inter-
vals A < t < -1 and -1 < t < B.

14. (Continuation.) Show that every vector field V on a surface M has an
integral curve b starting at any given point p. Specifically, if x: D Æ M is a
patch with x(a, b) = p, and is the vector field on D such that x*( ) = V,
show that b(t) = x(u(t), v(t)), where (u(t), v(t)) is the integral curve of start-
ing at (a, b).

15. (Cartesian products.) For any sets A and B the Cartesian product A¥B
consists of all ordered pairs (a, b), with a in A and b in B. If x: D Æ M and 
y: E Æ N are patches in surfaces M and N, define x¥y: D¥E Æ M¥N by

Show that x¥y is an abstract patch and that the collection P of all such
patches makes M¥N a 4-dimensional manifold. M¥N is called the Cartesian
product of M and N.

x y x y¥( ) ¢ ¢( ) = ( ) ¢ ¢( )( )u v u v u v u v, , , , , , .

V
VV

¢ = ( ) ( ) =
¢ = ( ) ( ) =

u f u v u a

v f u v v b
1

2

0

0

, , ,

, , .
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The same scheme works for any two manifolds. It derives from the way the
x axis and y axis produce the xy plane; indeed, R¥R is precisely R2.

16. If M is an abstract surface, a proper imbedding of M into R3 is a 
one-to-one regular mapping F: M Æ R3 such that the inverse function F-1:
F(M) Æ M is continuous. Prove that the image F(M) of a proper imbedding
is a surface in R3 (Def. 1.2) and that it is diffeomorphic to M.

If F: M Æ R3 is merely regular, then F is an immersion of M into R3, and
the image F(M) is often called an “immersed surface,” even though it can cut
across itself and hence not satisfy Definition 1.2.

4.9 Summary

The discovery of calculus made it possible to study arbitrary curved surfaces
M in R3. Initially this was done mostly in terms of the natural Euclidean
coordinates {x, y, z} of R3. However, it gradually became clear that in many
contexts, coordinates {u, v} in the surface itself were more efficient. Thus a
two-dimensional calculus was developed for surfaces, one that remains valid
even if the surface is not contained in R3.

Along with the Euclidean spaces, such surfaces are prime examples of the
general notion of manifold. The calculus of any manifold involves differen-
tiable functions, vector fields, differential forms, mappings—and various
operations of differentiation and integration. These features are all preserved
in a suitable sense by diffeomorphisms—indeed, this criterion gives a formal
definition of manifold theory.
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