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Euclidean Geometry
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We recall some familiar features of plane geometry. First of all, two trian-
gles are congruent if there is a rigid motion of the plane that carries one tri-
angle exactly onto the other. Corresponding angles of congruent triangles are
equal, corresponding sides have the same length, the areas enclosed are equal,
and so on. Indeed, any geometric property of a given triangle is automati-
cally shared by every congruent triangle. Conversely, there are a number of
simple ways in which one can decide whether two given triangles are con-
gruent—for example, if for each the same three numbers occur as lengths of
sides.

In this chapter we shall investigate the rigid motions (isometries) of Euclid-
ean space, and see how these remarks about triangles can be extended to other
geometric objects.

3.1 Isometries of R3

An isometry, or rigid motion, of Euclidean space is a mapping that preserves
the Euclidean distance d between points (Definition 1.2, Chapter 2).

1.1 Definition An isometry of R3 is a mapping F: R3 Æ R3 such that

for all points p, q in R3.

1.2 Example (1) Translations. Fix a point a in R3 and let T be the 
mapping that adds a to every point of R3. Thus T(p) = p + a for all 

d F F dp q p q( ) ( )( ) = ( ), ,
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points p. T is called translation by a. It is easy to see that T is an isometry,
since

(2) Rotation around a coordinate axis. A rotation of the xy plane through
an angle J carries the point (p1, p2) to the point (q1, q2) with coordinates 
(Fig. 3.1)

Thus a rotation C of three-dimensional Euclidean space R3 around the z axis,
through an angle J, has the formula

Evidently, the mapping C is a linear transformation. A straightforward com-
putation shows that C preserves Euclidean distance, so it is an isometry.

Recall that if F and G are mappings of R3, the composite function GF is
a mapping of R3 obtained by applying first F, then G.

1.3 Lemma If F and G are isometries of R3, then the composite mapping
GF is also an isometry of R3.

Proof. Since G is an isometry, the distance from G(F(p)) to G(F(q)) is
d(F(p), F(q)). But since F is an isometry, this distance equals d(p, q). Thus
GF preserves distance; hence it is an isometry. ◆

C C p p p p p p p pp( ) = ( ) = - +( )1 2 3 1 2 1 2 3, , , ,cos sin sin cos .J J J J

q p p2 1 2= +sin cos .J J

q p p1 1 2= -cos sinJ J,

= - = ( )p q p qd , .

= +( ) - +( )p a q a

d T T dp q p a q a( ) ( )( ) = + +( ),  ,

FIG. 3.1
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In short, a composition of isometries is again an isometry.
We also recall that if F: R3 Æ R3 is both one-to-one and onto, then F has

a unique inverse function F -1: R3 Æ R3, which sends each point F(p) back to
p. The relationship between F and F -1 is best described by the formulas

where I is the identity mapping of R3, that is, the mapping such that I(p) = p
for all p.

Translations of R3 (as defined in Example 1.2) are the simplest type of
isometry.

1.4 Lemma (1) If S and T are translations, then ST = TS is also a 
translation.

(2) If T is translation by a, then T has an inverse T -1, which is translation
by -a.

(3) Given any two points p and q of R3, there exists a unique translation
T such that T(p) = q.

Proof. To prove (3), for example, note that translation by q - p certainly
carries p to q. This is the only possibility, since if T is translation by a and
T(p) = q, then p + a = q; hence a = q - p. ◆

A useful special case of (3) is that if T is a translation such that for some
one point T(p) = p, then T = I.

The rotation in Example 1.2 is an example of an orthogonal transformation
of R3, that is, a linear transformation C: R3 Æ R3 that preserves dot products
in the sense that

1.5 Lemma If C: R3 Æ R3 is an orthogonal transformation, then C is an
isometry of R3.

Proof. First we show that C preserves norms. By definition, ||p||2 = p • p;
hence

Thus || C(p) || = || p || for all points p. Since C is linear, it follows easily that
C is an isometry:

C C Cp p p p p p( ) = ( ) ( ) = =2 2• • .

C Cp q p q p q( ) ( ) =• • .for all ,

FF I F F I- -= =1 1, ,
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◆

Our goal now is Theorem 1.7, which asserts that every isometry can be
expressed as an orthogonal transformation followed by a translation. The
main part of the proof is the following converse of Lemma 1.5.

1.6 Lemma If F is an isometry of R3 such that F(0) = 0, then F is an
orthogonal transformation.

Proof. First we show that F preserves dot products; then we show that
F is a linear transformation. Note that by definition of Euclidean distance,
the norm || p || of a point p is just the Euclidean distance d(0, p) from the
origin to p. By hypothesis, F preserves Euclidean distance, and F(0) = 0;
hence

Thus F preserves norms. Now by a standard trick (“polarization”), we shall
deduce that it also preserves dot products. Since F is an isometry,

for any pair of points. Hence

By the definition of norm, this implies

Hence

The norm terms here cancel, since F preserves norms, and we find

as required.
It remains to prove that F is linear. Let u1, u2, u3 be the unit points 

(1, 0, 0), (0, 1, 0), (0, 0, 1), respectively. Then we have the identity

p u= ( ) = Âp p p pi i1 2 3, , .

F Fp q p q( ) ( ) =• • ,

F F F Fp p q q p p q q( ) - ( ) ( ) + ( ) = - +2 2 2 22 2• • .

F F F Fp q p q p q p q( ) - ( )( ) ( ) - ( )( ) = -( ) -( )• • .

F Fp q p q( ) - ( ) = - .

d F F dp q p q( ) ( )( ) = ( ),  ,

F d F d F F dp 0 p 0 p 0 p p( ) = ( )( ) = ( ) ( )( ) = ( ) =, ,  , .

= ( )d p q p q, for all , .

d C C C C Cp q p q p q p q( ) ( )( ) = ( ) - ( ) = -( ) = -,
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Also, the points u1, u2, u3 are orthonormal; that is, ui • uj = dij.
We know that F preserves dot products, so F(u1), F(u2), F(u3) must also

be orthonormal. Thus orthonormal expansion gives

But

so

Using this identity, it is a simple matter to check the linearity condition

◆

We now give a concrete description of an arbitrary isometry.

1.7 Theorem If F is an isometry of R3, then there exist a unique trans-
lation T and a unique orthogonal transformation C such that

Proof. Let T be translation by F(0). Then Lemma 1.4 shows that T -1 is
translation by -F(0). But T -1 F is an isometry, by Lemma 1.3, and 
furthermore,

Thus by Lemma 1.6, T -1 F is an orthogonal transformation, say T -1F = C.
Applying T on the left, we get F = TC.

To prove the required uniqueness, we suppose that F can also be expressed
as , where is a translation and an orthogonal transformation. We
must prove = T and = C. Now TC = ; hence C = T -1 . Since C
and are linear transformations, they of course send the origin to itself. It
follows that (T -1 )(0) = 0. But since T -1 is a translation, we conclude that
T -1 = I; hence = T. Then the equation TC = becomes TC = T .
Applying T -1 gives C = .. ◆

Thus every isometry of R3 can be uniquely described as an orthogonal trans-
formation followed by a translation. When F = TC as in Theorem 1.7, we call

C
CCTTT

TT
C

CTCTCT
CTCT

T F T F F F- -( )( ) = ( )( ) = ( ) - ( ) =1 10 0 0 0 0.

F TC= .

F a b aF bFp q p q+( ) = ( ) + ( ).

F p Fi ip u( ) = ( )Â .

F F pi i ip u p u( ) ( ) = =• • ,

F F F Fi ip p u u( ) = ( ) ( ) ( )Â • .
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C the orthogonal part of F, and T the translation part of F. Note that CT is
generally not the same as TC (Exercise 1).

This decomposition theorem is the decisive fact about isometries of R3 (and
its proof holds for Rn as well). We will use it to find an explicit formula for
an arbitrary isometry.

First, recall from linear algebra that if C: R3 Æ R3 is any linear transfor-
mation, its matrix (relative to the natural basis of R3) is the 3¥3 matrix {cij}
such that

Thus, using the column-vector conventions, q = C(p) can be written as

By a standard result of linear algebra, a linear transformation of R3 is
orthogonal (preserves dot products) if and only if its matrix is orthogonal
(transpose equals inverse).

Returning to the decomposition F = TC in Theorem 1.7, if T is transla-
tion by a = (a1, a2, a3), then

Using the above formula for C(p), we get

Alternatively, using the column-vector conventions, q = F(p) means

Exercises

Throughout these exercises, A, B, and C denote orthogonal transformations
(or their matrices), and Ta is translation by a.

1. Prove that CTa = TC(a)C.

2. Given isometries F = TaA and G = TbB, find the translation and orthog-
onal part of FG and GF.
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3. Show that an isometry F = TaC has an inverse mapping F -1, which is
also an isometry. Find the translation and orthogonal parts of F -1.

4. If

show that C is orthogonal; then compute C(p) and C(q), and check that 
C(p) • C(q) = p • q.

5. Let F = TaC, where a = (1, 3, -1) and

If p = (2, -2, 8), find the coordinates of the point q for which
(a) q = F(p). (b) q = F -1(p).
(c) q = (CTa) (p).

6. In each case decide whether F is an isometry of R3. If so, find its trans-
lation and orthogonal parts.

(a) F(p) = -p. (b) F(p) = (p • a) a, where || a || = 1.
(c) F(p) = (p3 - 1, p2 - 2, p1 - 3). (d) F(p) = (p1, p2, 1).

A group G is a set furnished with an operation that assigns to each pair g1, g2

of elements of G an element g1g2, subject to these rules: (1) associative law:
(g1g2)g3 = g1(g2g3), (2) there is a unique identity element e such that eg =
ge = g for all g in G, and (3) inverses: For each g in G there is an element 
g-1 in G such that gg-1 = g-1 g = e.

Groups occur naturally in many parts of geometry, and we shall mention
a few in subsequent exercises. Basic properties of groups may be found in a
variety of elementary textbooks.

7. Prove that the set E(3) of all isometries of R3 forms a group—with com-
position of functions as the operation. E(3) is called the Euclidean group of
order 3.

A subset H of a group G is a subgroup of G provided (1) if g1 and g2 are in
H, then so is g1g2, (2) is g is in H, so is g-1, and hence (3) the identity element
e of G is in H. A subgroup H of G is automatically a group.
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8. Prove that the set T (3) of all translations of R3 and the set O(3) of all
orthogonal transformations of R3 are each subgroups of the Euclidean group
E(3). O(3) is called the orthogonal group of order 3. Which isometries of R3

are in both these subgroups?

It is easy to check that the results of this section, though stated for R3, remain
valid for Euclidean spaces Rn of any dimension.

9. (a) Give an explicit description of an arbitrary 2 ¥ 2 orthogonal matrix
C. (Hint: Use an angle and a sign.)

(b) Give a formula for an arbitrary isometry F of R = R1.

3.2 The Tangent Map of an Isometry

In Chapter 1 we showed that an arbitrary mapping F: R3 Æ R3 has a tangent
map F* that carries each tangent vector v at p to a tangent vector F*(v) at
F(p). If F is an isometry, its tangent map is remarkably simple. (Since the dis-
tinction between tangent vector and point is crucial here, we temporarily
restore the point of application to the notation.)

2.1 Theorem Let F be an isometry of R3 with orthogonal part C.
Then

for all tangent vectors vp to R3.
Verbally: To get F*(vp), first shift the tangent vector vp to the canonically

corresponding point v of R3, then apply the orthogonal part C of F, and
finally shift this point C(v) to the canonically corresponding tangent vector
at F(p) (Fig. 3.2). Thus all tangent vectors at all points p of R3 are “rotated”
in exactly the same way by F*—only the new point of application F(p) depends
on p.

Proof. Write F = TC as in Theorem 1.7. Let T be translation by a, so
F(p) = a + C(p). If vp is a tangent vector to R3, then by Definition 7.4 of
Chapter 1, F*(vp) is the initial velocity of the curve t Æ F(p + tv). But using
the linearity of C, we obtain

= ( ) + ( )F tCp v .

F t TC t T C tC C tCp v p v p v a p v+( ) = +( ) = ( ) + ( )( ) = + ( ) + ( )

F Cp F p* v v( ) = ( ) ( )
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Thus F*(vp) is the initial velocity of the curve t Æ F(p) + tC(v), which is
precisely the tangent vector C(v)F(p). ◆

Expressed in terms of Euclidean coordinates, this result becomes

where C = (cij) is the orthogonal part of the isometry F, and if Ui is evalu-
ated at p, then is evaluated at F(p).

2.2 Corollary Isometries preserve dot products of tangent vectors. That
is, if vp and wp are tangent vectors to R3 at the same point, and F is an isom-
etry, then

Proof. Let C be the orthogonal part of F, and recall that C, being an
orthogonal transformation, preserves dot products in R3. By Theorem 2.1,

where we have twice used Definition 1.3 of Chapter 2 (dot products of
tangent vectors). ◆

Since dot products are preserved, it follows automatically that derived con-
cepts such as norm and orthogonality are preserved. Explicitly, if F is an isom-
etry, then || F*(v) || = || v ||, and if v and w are orthogonal, so are F*(v) and F*(w).
Thus frames are also preserved: if e1, e2, e3 is a frame at some point p of R3 and
F is an isometry, then F*(e1), F*(e2), F*(e3) is a frame at F(p). (A direct proof is
easy: ei • ej = dij, so by Corollary 2.2, F*(ei) • F*(ej) = ei • ej = dij.)

= =v w v w• •p p

F F C C C Cp p F p F p* • * • •v w v w v w( ) ( ) = ( ) ( ) = ( ) ( )( ) ( )

F Fp p p p* • * • .v w v w( ) ( ) =

Ui

F v U c v Uj j
j

ij j i
i j

* Â ÂÊ
ËÁ

ˆ
¯̃ = ,

,

FIG. 3.2
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Assertion (3) of Lemma 1.4 shows how two points uniquely determine a
translation. We now show that two frames uniquely determine an isometry.

2.3 Theorem Given any two frames on R3, say e1, e2, e3 at the point p
and f1, f2, f3 at the point q, there exists a unique isometry F of R3 such that
F*(ei) = fi for 1 � i � 3.

Proof. First we show that there is such an isometry. Let ê1, ê2, ê3, and f̂1,
f̂2, f̂3 be the points of R3 canonically corresponding to the vectors in 
the two frames. Let C be the unique linear transformation of R3 such that
C(êi) = f̂ i for 1 � i � 3. It is easy to check that C is orthogonal. Then let
T be a translation by the point q - C(p). Now we assert that the isometry
F = TC carries the e frame to the f frame. First note that

Then using Theorem 2.1 we get

for 1 � i � 3.
To prove uniqueness, we observe that by Theorem 2.1 this choice of C

is the only possibility for the orthogonal part of the required isometry. The
translation part is then completely determined also, since it must carry C(p)
to q. Thus the isometry F = TC is uniquely determined. ◆

To compute the isometry in the theorem, recall that the attitude matrix A
of the e frame has the Euclidean coordinates of ei as its ith row: ai1, ai2, ai3.
The attitude matrix B of the f frame is similar. We claim that C in the theorem
(or strictly speaking, its matrix) is tBA. To verify this it suffices to check that
tBA(ei) = fi, since this uniquely characterizes C. For i = 1 we find, using the
column-vector conventions,

that is, tBA(e1) = f1. The cases i = 2, 3 are similar; hence C = tBA. As noted
above, T is then necessarily translated by q - C(p).
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Exercises

1. If T is a translation, show that for every tangent vector v the vector T(v)
is parallel to v (same Euclidean coordinates).

2. Prove the general formulas (GF )* = G*F* and (F -1)* = (F*)-1 in the
special case where F and G are isometries of R3.

3. Given the frame

at p = (0, 1, 0) and the frame

at q = (3, -1, 1), find a and C such that the isometry F = TaC carries the e
frame to the f frame.

4. (a) Prove that an isometry F = TC carries the plane through p orthog-
onal to q π 0 to the plane through F(p) orthogonal to C(q).

(b) If P is the plane through (1/2, -1, 0) orthogonal to (0, 1, 0) find an
isometry F = TC such that F(P) is the plane through (1, -2, 1) orthogonal
to (1, 0, -1).

5. (Computer.)
(a) Verify that both sets of vectors in Exercise 3 form frames by showing
that A tA = I for their attitude matrices.
(b) Find the matrix C that carries each ei to fi, and check this for i = 1, 2,
3.

3.3 Orientation

We now come to one of the most interesting and elusive ideas in geometry.
Intuitively, it is orientation that distinguishes between a right-handed glove
and a left-handed glove in ordinary space. To handle this concept mathe-
matically, we replace gloves by frames and separate all the frames on R3 into
two classes as follows. Recall that associated with each frame e1, e2, e3 at a
point of R3 is its attitude matrix A. According to the exercises for Section 1
of Chapter 2,

e e e1 2 3 1• det .¥ = = ±A

f f f1 2 31 0 1 0 1 0 1 0 1 2= ( ) = ( ) = -( ), , 2 , , , , , ,

e e e1 2 32 2 1 3 2 1 2 3 1 2 2 3= ( ) = -( ) = -( ), , , , , , , ,
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When this number is +1, we shall say that the frame e1, e2, e3 is positively ori-
ented (or right-handed); when it is -1, the frame is negatively oriented (or left-
handed).

We omit the easy proof of the following facts.

3.1 Remark (1) At each point of R3 the frame assigned by the natural
frame field U1, U2, U3 is positively oriented.

(2) A frame e1, e2, e3 is positively oriented if and only if e1 ¥ e2 = e3. Thus
the orientation of a frame can be determined, for practical purposes, by the
“right-hand rule” given at the end of Section 1 of Chapter 2. Pictorially, the
frame (P) in Fig. 3.3 is positively oriented, whereas the frame (N ) is nega-
tively oriented. In particular, Frenet frames are always positively oriented,
since by definition, B = T ¥ N.

(3) For a positively oriented frame e1, e2, e3, the cross products are

For a negatively oriented frame, reverse the vectors in each cross product.
(One need not memorize these formulas—the right-hand rule will give them
all correctly.)

Having attached a sign to each frame on R3, we next attach a sign to each
isometry F of R3. In Chapter 2 we proved the well-known fact that the deter-
minant of an orthogonal matrix is either +1 or -1. Thus if C is the orthog-
onal part of the isometry F, we define the sign of F to be the determinant of
C, with notation

sgn det .F C=

e e e e e3 1 2 2 1= ¥ = - ¥ .

e e e e e2 3 1 1 3= ¥ = - ¥ ,

e e e e e1 2 3 3 2= ¥ = - ¥ ,

FIG. 3.3
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We know that the tangent map of an isometry carries frames to frames.
The following result tells what happens to their orientations.

3.2 Lemma If e1, e2, e3 is a frame at some point of R3 and F is an 
isometry, then

Proof. If , then by the coordinate form of Theorem 2.1 we
have

where C = (cij) is the orthogonal part of F. Thus the attitude matrix of the
frame F*(e1), F*(e2), F*(e3) is the matrix

But the triple scalar product of a frame is the determinant of its attitude
matrix, and by definition, sgnF = detC. Consequently,

◆

This lemma shows that if sgnF = +1, then F* carries positively oriented
frames to positively oriented frames and carries negatively oriented frames
to negatively oriented frames. On the other hand, if sgnF = -1, positive goes
to negative and negative to positive.

3.3 Definition An isometry F of R3 is said to be

where C is the orthogonal part of F.

orientation F C- ifreversing sgn det ,= = -1

orientation preserving F C- if sgn det ,= = +1

= ( ) ◊ ¥sgn .F e e e1 2 3

= ◊ = ◊det det det detC A C At

F F F C At* • * * dete e e1 2 3( ) ( ) ¥ ( ) = ( )
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3.4 Example (1) Translations. All translations are orientation-preserv-
ing. Geometrically this is clear, and in fact the orthogonal part of a transla-
tion T is just the identity mapping I, so sgnT = detI = +1.

(2) Rotations. Consider the orthogonal transformation C given in Example
1.2, which rotates R3 through angle q around the z axis. Its matrix is

Hence sgnC = detC = +1, so C is orientation-preserving (see Exercise 4).

(3) Reflections. One can (literally) see reversal of orientation by using a
mirror. Suppose the yz plane of R3 is the mirror. If one looks toward that
plane, the point p = (p1, p2, p3) appears to be located at the point

(Fig. 3.4). The mapping R so defined is called reflection in the yz plane.
Evidently it is an orthogonal transformation, with matrix

Thus R is an orientation-reversing isometry, as confirmed by the experimen-
tal fact that the mirror image of a right hand is a left hand.

Both dot and cross product were originally defined in terms of Euclidean
coordinates. We have seen that the dot product is given by the same formula,

v w e e• •= ( ) ( ) =Â Â Âv w v wi i i i i i ,
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no matter what frame e1, e2, e3 is used to get coordinates for v and w. Almost
the same result holds for cross products, but orientation is now involved.

3.5 Lemma Let e1, e2, e3 be a frame at a point of R3. If and 
, then

where e = e1 • e2 ¥ e3 = ±1.

Proof. It suffices merely to expand the cross product

using the formulas (3) of Remark 3.1. For example, if the frame is posi-
tively oriented, for the e1 component of v ¥ w we get

Since e = 1 in this case, we get the same result by expanding the determi-
nant in the statement of this lemma. ◆

It follows immediately that the effect of an isometry on cross products also
involves orientation.

3.6 Theorem Let v and w be tangent vectors to R3 at p. If F is an 
isometry of R3, then

Proof. Write . Now let

Since F* is linear,

A straightforward computation using Lemma 3.5 shows that

F F F* * *v w v w( ) ¥ ( ) = ¥( )e ,

F v F wi i i i* * .v e w e( ) = ( ) =Â Âand

e pi iF U= ( )( )* .

v p w p= ( ) = ( )Â ÂvU and wUi i i i  

F F F F* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

v w v w v w v w2 2 3 3 3 3 2 2 2 3 3 2 1e e e e e¥ + ¥ = -( ) .

v w e e e e e e¥ = + +( ) ¥ + +( )v v v w w w1 1 2 2 3 3 1 1 2 2 3 3

v w

e e e

¥ = e
1 2 3

1 2 3

1 2 3

v v v

w w w

,

w e= Âwi i

v e= Â vi i
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where

But U1, U2, U3 is positively oriented, so by Lemma 3.2, e = sgnF. ◆

Exercises

1. Prove

Deduce that sgn F = sgn (F -1).

2. If H0 is an orientation-reversing isometry of R3, show that every
orientation-reversing isometry has a unique expression H0F, where F is 
orientation-preserving.

3. Let v = (3, 1, -1) and w = (-3, -3, 1) be tangent vectors at some point.
If C is the orthogonal transformation given in Exercise 4 of Section 1, check
the formula

4. A rotation is an orthogonal transformation C such that det C = +1. Prove
that C does, in fact, rotate R3 around an axis. Explicitly, given a rotation C,
show that there exists a number J and points e1, e2, e3 with ei • ej = dij such
that (Fig. 3.5)

C e e3 3( ) = .

C e e e2 1 2( ) = - +sin cosJ J ,

C e e e1 1 2( ) = +cos sinJ J ,

C C C C* sgn * * .v w v w¥( ) = ( ) ( ) ¥ ( )

sgn sgn sgn sgn .FG F G GF( ) = ◊ = ( )

e = ¥ = ( )( ) ( )( ) ¥ ( )( )e e e p p p1 2 3 1 2 3• * • * * .F U F U F U

FIG. 3.5
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(Hint: The fact that the dimension of R3 is odd means that C has an eigen-
value +1, so there is a point p π 0 such that C(p) = p.)

5. Let a be a point of R3 such that || a || = 1. Prove that the formula

defines an orthogonal transformation. Describe its general effect on R3.

6. Prove
(a) The set O+(3) of all rotations of R3 is a subgroup of the orthogonal
group O(3) (see Ex. 8 of Sec. 3.1).
(b) The set E +(3) of all orientation-preserving isometries of R3 is a sub-
group of the Euclidean group E(3).

3.4 Euclidean Geometry

In the discussion at the beginning of this chapter, we recalled a fundamental
feature of plane geometry: If there is an isometry carrying one triangle onto
another, then the two (congruent) triangles have exactly the same geometric
properties. A close examination of this statement will show that it does not
admit a proof—it is, in fact, just the definition of “geometric property of a
triangle.” More generally, Euclidean geometry can be defined as the totality
of concepts that are preserved by isometries of Euclidean space. For example,
Corollary 2.2 shows that the notion of dot product on tangent vectors
belongs to Euclidean geometry. Similarly, Theorem 3.6 shows that the cross
product is preserved by isometries (except possibly for sign).

This famous definition of Euclidean geometry is somewhat generous,
however. In practice, the label “Euclidean geometry” is usually attached only
to those concepts that are preserved by isometries, but not by arbitrary map-
pings, or even the more restrictive class of mappings (diffeomorphisms) that
possess inverse mappings. An example should make this distinction clearer.
If a = (a1, a2, a3) is a curve in R3, then the various derivatives

look pretty much alike. Now, Theorem 7.8 of Chapter 1 asserts that velocity
is preserved by arbitrary mappings F: R3 Æ R3, that is, if b = F(a), then b¢ =
F*(a ¢). But it is easy to see that acceleration is not preserved by arbitrary map-
pings. For example, if a(t) = (t, 0, 0) and F = (x2, y, z), then a≤ = 0; hence
F*(a≤) = 0. But b = F(a) has the formula b(t) = (t2, 0, 0), so b≤ = 2U1. Thus

¢ = Ê
Ë

ˆ
¯ ¢¢ = Ê

Ë
ˆ
¯a

a a a
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dt

d
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d
dt

d
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in this case, b = F(a), but b≤ π F*(a≤). We shall see in a moment, however,
that acceleration is preserved by isometries.

For this reason, the notion of velocity belongs to the calculus of
Euclidean space, while the notion of acceleration belongs to Euclidean geom-
etry. In this section we examine some of the concepts introduced in Chapter
2 and prove that they are, in fact, preserved by isometries. (We leave largely
to the reader the easier task of showing that they are not preserved by 
diffeomorphisms.)

Recall the notion of vector field on a curve (Definition 2.2 of Chapter 2).
If Y is a vector field on a: I Æ R3 and F: R3 Æ R3 is any mapping, then =
F*(Y ) is a vector field on the image curve = F(a). In fact, for each t in I,
Y(t) is a tangent vector to R3 at the point a(t). But then (t) = F*(Y(t)) is a
tangent vector to R3 at the point F(a(t)) = (t).

(These relationships are illustrated in Fig. 3.6.) Isometries preserve the
derivatives of such vector fields.

4.1 Corollary Let Y be a vector field on a curve a in R3, and let F be an
isometry of R3. Then = F*(Y ) is a vector field on = F(a), and

Proof. To differentiate a vector field , one simply differenti-
ates its Euclidean coordinate functions, so

¢ = ÂY
dy
dt

Uj
j .

Y y Uj j= Â

¢ = ¢( )Y F Y* .

aY

a
Y

a
Y

FIG. 3.6
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Thus by the coordinate version of Theorem 2.1, we get

On the other hand,

But each cij is constant, being by definition an entry in the matrix of the
orthogonal part of the isometry F. Hence

Thus the vector fields F*(Y¢) and ¢ are the same. ◆

We claimed earlier that isometries preserve acceleration: If = F(a), where
F is an isometry, then ≤ = F*(a≤). This is an immediate consequence of the
preceding result, for if we set Y = a ¢, then by Theorem 7.8 of Chapter 1,

= ¢; hence

Now we show that the Frenet apparatus of a curve is preserved by isome-
tries. This is certainly to be expected on intuitive grounds, since a rigid motion
ought to carry one curve into another that turns and twists in exactly 
the same way. And this is what happens when the isometry is orientation-
preserving.

4.2 Theorem Let b be a unit-speed curve in R3 with positive cur-
vature, and let = F(b) be the image curve of b under an isometry F of R3.
Then

where sgnF = ±1 is the sign of the isometry F.

Proof. Note that is also a unit-speed curve, since

¢ = ¢( ) = ¢ =b b bF* .1

b

B F F B= ( ) ( )sgn * ,

t t= ( ) = ( )sgn *F N F N, ,

k k= = ( ), T F T* ,

b

¢¢ = ¢ = ¢( ) = ¢¢( )a aY F Y F* * .

aY

a
a

Y

¢ = ( ) =Â ÂY
d
dt

c y U c
dy
dt

Uij j i ij
j

i .

Y F Y c y Uij j i= ( ) = Â* .

F Y c
dy
dt

Uij
j

i* .¢( ) = Â



3.4 Euclidean Geometry 119

Thus the definitions in Section 3 of Chapter 2 apply to both b and , so

Since F* preserves both acceleration and norms, it follows from the 
definition of curvature that

To get the full Frenet frame, we now use the hypothesis k > 0 (which
implies > 0, since = k). By definition, N = b≤/k ; hence using preced-
ing facts, we find

It remains only to prove the interesting cases B and t. Since the defini-
tion B = T ¥ N involves a cross product, we use Theorem 3.6 to get

The definition of torsion is essentially t = -B¢ • N = B • N¢. Thus, using
the results above for B and N, we get

◆

The presence of sgn F in the formula for the torsion of F(b) shows that
the torsion of a curve gives a more subtle description of the curve than has
been apparent so far. The sign of t measures the orientation of the twisting of
the curve. If F is orientation-reversing, the formula = -t proves that the
twisting of the image of curve F(b) is exactly opposite to that of b itself.

A simple example will illustrate this reversal.

4.3 Example Let b be the unit-speed helix

gotten from Example 3.3 of Chapter 2 by setting a = b = 1; hence c = .
We know from the general formulas for helices that k = t = 1/2. Now let R
be reflection in the xy plane, so R is the isometry R(x, y, z) = (x, y, -z). Thus
the image curve = R(b) is the mirror image

b s
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s
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of the original curve. One can see in Fig. 3.7 that the mirror has its usual
effect: b and twist in opposite ways—if b is “right-handed,” then is
“left-handed.” (The fact that b is going up and down is, in itself, irrele-
vant.) Formally: The reflection R is orientation-reversing; hence the theorem
predicts and Since is just the helix gotten in
Example 3.3 of Chapter 2 by taking a = 1 and b = -1, this may be checked
by the general formulas there.

Exercises

1. Let F = TC be an isometry of R3, b a unit speed curve in R3. Prove
(a) If b is a cylindrical helix, then F(b) is a cylindrical helix.
(b) If b has spherical image s, then F(b) has spherical image C(s).

2. Let Y = (t, 1 - t2, 1 + t2) be a vector field on the helix

and let C be the orthogonal transformation

Compute = C(a) and = C*(Y ), and check that

C Y Y C Y Y* * • • .¢( ) = ¢ ¢¢( ) = ¢¢ ¢ ¢¢ = ¢ ¢¢, ,a a a a

Ya

C =
-

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜

1 0 0

0 1 2 1 2

0 1 2 1 2

.

a t t t t( ) = ( )cos sin, , ,2

bt t= - = - 1
2 .k k= = 1

2

b
bb

FIG. 3.7
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3. Sketch the triangles in R2 that have vertices

Show that these triangles are congruent by exhibiting an isometry F =
TC that carries D1 to D2. (Hint: the orthogonal part C is not altered if the
triangles are translated.)

4. If F: R3 Æ R3 is a diffeomorphism such that F* preserves dot products,
show that F is an isometry. (Hint: Show that F preserves lengths of curve 
segments and deduce that F-1 does also.)

5. Let F be an isometry of R3. For each vector field V let be the vector
field such that F*(V(p)) = (F(p)) for all p. Prove that isometries preserve
covariant derivatives; that is, show =

3.5 Congruence of Curves

In the case of curves in R3, the general notion of congruence takes the fol-
lowing form.

5.1 Definition Two curves a, b: I Æ E3 are congruent provided there
exists an isometry F of R3 such that b = F(a); that is, b(t) = F(a(t)) for all t
in I.

Intuitively speaking, congruent curves are the same except for position in
space. They represent trips at the same speed along routes of the same shape.
For example, the helix a(t) = (cos t, sin t, t) spirals around the z axis in exactly
the same way the helix b(t) = (t, cos t, sin t) spirals around the x axis. Evi-
dently these two curves are congruent, since if F is the isometry such that

then F (a) = b.
To decide whether given curves a and b are congruent, it is hardly practi-

cal to try all the isometries of R3 to see whether there is one that carries a to
b. What we want is a description of the shape of a unit-speed curve so accu-
rate that if a and b have the same description, then they must be congruent.
The proper description, as the reader will doubtless suspect, is given by cur-
vature and torsion. To prove this we need one preliminary result.

Curves whose congruence is established by a translation are said to be 
parallel. Thus, curves a, b: I Æ E3 are parallel if and only if there is a point

F p p p p p p1 2 3 3 1 2, , , , ,( ) = ( )

—V W.—V W
V

V

D D1 23 1 7 1 7 4 2 0 2 5 2 5 16 5: : ., , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) -( )
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p in R3 such that b(s) = a(s) + p for all s in I, or, in functional notation,
b = a + p.

5.2 Lemma Two curves a, b: I Æ R3 are parallel if their velocity vectors
a ¢(s) and b¢(s) are parallel for each s in I. In this case, if a(s0) = b(s0) for some
one s0 in I, then a = b.

Proof. By definition, if a ¢(s) and b¢(s) are parallel, they have the same
Euclidean coordinates. Thus

where ai and bi are the Euclidean coordinate functions of a and b. But 
by elementary calculus, the equation dai/ds = dbi/ds implies that there is 
a constant pi such that bi = ai + pi. Hence b = a + p. Furthermore, if
a(s0) = b(s0), we deduce that p = 0; hence a = b. ◆

5.3 Theorem If a, b: I Æ R3 are unit-speed curves such that ka = kb and
ta = ±tb, then a and b are congruent.

Proof. There are two main steps:
(1) Replace a by a suitably chosen congruent curve F(a).
(2) Show that F(a) = b (Fig. 3.8).
Our guide for the choice in (1) is Theorem 4.2. Fix a number, say 0, in

the interval I. If ta = tb, then let F be the (orientation-preserving) isome-
try that carries the Frenet frame Ta(0), Na(0), Ba(0) of a at a(0) to the

d
ds

s
d
ds

s ii ia b( ) = ( ) for ,1 3� �

FIG. 3.8
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Frenet frame Tb(0), Nb(0), Bb(0), of b at b(0). (The existence of this isom-
etry is guaranteed by Theorem 2.3.) Denote the Frenet apparatus of =
F(a) by , , , , ; then it follows immediately from Theorem 4.2 and
the information above that

(‡)

On the other hand, if ta = -tb, we choose F to be the (orientation-
reversing) isometry that carries Ta(0), Na(0), Ba(0) at a(0) to the frame
Tb(0), Nb(0), Bb(0) at b(0). (Frenet frames are positively oriented; hence
this last frame is negatively oriented: This is why F is orientation-
reversing.) Then it follows from Theorem 4.2 that the equations (‡) hold
also for = F(a) and b. For example,

For step (2) of the proof, we shall show = Tb; that is, the unit tan-
gents of = F(a) and b are parallel at each point. Since (0) = b(0), it
will follow from Lemma 5.2 that F(a) = b. On the interval I, consider the
real-valued function f = • Tb + • Nb + • Bb. Since these are unit
vector fields, the Schwarz inequality (Sec. 1, Ch. 2) shows that

furthermore, • Tb = 1 if and only if = Tb. Similar remarks hold for the
other two terms in f. Thus it suffices to show that f has constant value 3. By
(‡), f(0) = 3. Now consider

A simple computation completes the proof. Substitute the Frenet for-
mulas in this expression and use the equations = kb, = tb from (‡). The
resulting eight terms cancel in pairs, so f ¢ = 0, and f has, indeed, constant
value 3. ◆

Thus, a unit-speed curve is determined but for position in R3 by its curvature
and torsion.

Actually the proof of Theorem 5.3 does more than establish that a and b
are congruent; it shows how to compute explicitly an isometry carrying a to
b. We illustrate this in a special case.

tk

¢ = ¢ + ¢ + ¢ + ¢ + ¢ + ¢f T T T T N N N N B B B B• • • • • •b b b b b b
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5.4 Example Consider the unit-speed curves a, b: R Æ R3 such that

where c = . Obviously, these curves are congruent by means of a reflec-
tion—they are the helices considered in Example 4.3—but we shall ignore
this in order to describe a general method for computing the required isom-
etry. According to Example 3.3 of Chapter 2, a and b have the same curva-
ture, ka = 1/2 = kb ; but torsions of opposite sign, ta = 1/2 = -tb. Thus the
theorem predicts congruence by means of an orientation-reversing isometry
F. From its proof we see that F must carry the Frenet frame

where a = 1/ , to the frame

where the minus sign will produce orientation reversal. (These explicit for-
mulas also come from Example 3.3 of Chapter 2.) By the remark following
Theorem 2.3, the isometry F has orthogonal part C = tBA, where A and B
are the attitude matrices of the two frames above. Thus

since a = 1/ . These two frames have the same point of application a(0) =
b(0) = (1, 0, 0). But C does not move this point, so the translation part of F
is just the identity map. Thus we have (correctly) found that the reflection 
F = C carries a to b.

From the viewpoint of Euclidean geometry, two curves in R3 are “the
same” if they differ only by an isometry of R3. What, for example, is a helix?
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It is not just a curve that spirals around the z axis as in Example 3.3 of
Chapter 2, but any curve congruent to one of these special helices. One can
give general formulas, but the best characterization follows.

5.5 Corollary Let a be a unit speed curve in R3. Then a is a helix if and
only if both its curvature and torsion are nonzero constants.

Proof. For any numbers a > 0 and b π 0, let ba,b be the special helix given
in Example 3.3 of Chapter 2. If a is congruent to ba,b, then (changing 
the sign of b if necessary) we can assume the isometry is orientation-
preserving. Thus, a has curvature and torsion

Conversely, suppose a has constant nonzero k and t. Solving the pre-
ceding equations, we get

Thus a and ba,b have the same curvature and torsion; hence they are 
congruent. ◆

Our results so far demand unit speed, but it is easy to weaken this 
restriction.

5.6 Corollary Let a, b: I Æ R3 arbitrary-speed curves. If

then the curves a and b are congruent.

The proof is immediate, for the data ensures that the unit speed parame-
trizations of a and b have the same curvature and torsion—hence they are
congruent. But then the original curves are congruent under the same 
isometry since their speeds are the same.

The theory of curves we have presented applies only to regular curves with
positive curvature k > 0, because only for such curves is it possible to define
the Frenet frame field. However, an arbitrary curve a in R3 can be studied by
means of an arbitrary frame field on a, that is, three unit-vector fields E1, E2,
E3 on a that are orthogonal at each point.
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At a critical point later on, we will need this generalization of the congru-
ence theorem (5.3):

5.7 Theorem Let a, b: I Æ R3 be curves defined on the same interval.
Let E1, E2, E3 be a frame field on a, and F1, F2, F3 a frame field on b. If

(1) a ¢ • Ei = b¢ • Fi (1 � i � 3),
(2) Ei¢ • Ej = Fi¢ • Fj (1 � i, j � 3),

then a and b are congruent.
Explicitly, for any t0 in I, if F is the unique Euclidean isometry that sends

each Ei(t0) to Fi(t0), then F(a) = b.

Proof. Let F be the specified isometry. Since F* preserves dot products,
it follows that the vector fields = F*(Ei) for 1 £ i £ 3 form a frame field
on = F(a). And since F* preserves velocities of curves and derivatives
of vector fields, by using condition (1) in the theorem, we find

(*)

Similarly, from condition (2), we get

(**)

In view of this last equation, orthonormal expansion yields

with the same coefficient functions aij. Note that aij + aji = 0; hence aii = 0.
(Proof: Differentiate • = dij.)

Now let f = • Fi. We prove f = 3 as before: f(t0) = 3, and

Thus each • Fi = 1, that is, and Fi are parallel at each point. By (*)
the same is true for

Since a(t0) = b(t0), Lemma 5.2 gives the required result, F(a) = = b.
◆

5.8 Remark Existence theorem for curves in R3. Curvature and torsion
tell whether two unit-speed curves are isometric, but they do more than that:

a
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Given any two continuous functions k > 0 and t on an interval I, there exists a
unit-speed curve a: I Æ R3 that has these functions as its curvature and torsion.
(As we know, any two such curves are congruent.) Thus the natural descrip-
tion of curves in R3 is devoid of geometry, consisting of a pair of real-valued
functions.

The proof of the existence theorem requires advanced methods, so we have
preferred to illustrate it by the corresponding result for plane curves 
(Exercises 7–10). Though simpler, this 2-dimensional version has the advan-
tage that plane curvature is not required to be positive.

Exercises

1. Given a curve a = (a1, a2, a3): I Æ R3, prove that b: I Æ R3 is con-
gruent to a if and only if b can be written as

where ei • ej = dij.

2. Let E1, E2, E3, be a frame field on R3 with dual forms qi and connection
forms wij. Prove that two curves a, b: I Æ R3 are congruent if qi(a ¢) = qi(b¢)
and wij(a ¢) = wij(b¢) for 1 � i, j � 3 (Hint: Use Thm. 5.7.)

3. Show that the curve

is a helix by finding its curvature and torsion. Find a helix of the form 
a(t) = (acos t, asin t, bt) and an isometry F such that F(a) = b.

4. (Computer; see Appendix.) (a) Show that the curves

defined on the entire real line, have the same speed, curvature, and torsion.
(b) Find formulas for T and C such that the isometry F = TC carries a to b
and verify explicitly that F(a) = b. (Hint: Use Ex. 5 of Sec. 2.)

5. (Computer optional.) Is the following curve a helix? Prove your answer.

6. Congruence of curves.
(a) Prove that curves a, b: I Æ R2 are congruent if a = b and they have
the same speed.

k̃k̃

c t t t t t t t t t t( ) = - + + + + + -( )2 2 2 2 4 2 4cos sin cos sin cos sin ., ,

a bt t t t t t t t t t t t( ) = + - +( ) ( ) = + - -( )2 2 3 2 3 2 31 2 1 2, , , , , ,

b t t t t t t( ) = + -( )3 2 3sin cos sin, ,
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(b) Show that the space curves

are congruent. Find an isometry that carries a to b.

7. Given a continuous function f on an interval I, prove—using ordinary
integration of functions—that there exists a unit-speed curve b(s) in R2 for
which f(s) is the plane curvature. (Hint: Reverse the logic in Ex. 8 of Sec. 2.3.)

8. Show that b(s) = (x(s), y(s)) in the preceding exercise is given by the solu-
tions of the differential equations

with initial conditions x(0) = y(0) = j(0) = 0. (These initial conditions suffice,
since any other b differs at most by a Euclidean isometry and a reparame-
trization s Æ s + c.)

Explicit integration is rarely possible; the following exercises use numeri-
cal integration.

9. (Numerical integration, computer graphics.) Write computer commands
that (a) given f(s), produce a numerical description of the solution curve b(s)
in the preceding exercise, and (b) given f(s), plot the solution curve.

10. (Continuation.) Plot unit-speed plane curves with the given plane cur-
vature function f on at least the given interval.

(a) f(s) = 1 + es, on -6 £ s £ 3.
(b) f(s) = 2 + 3 cos3s, on 0 £ s £ 2 p.
(c) f(s) = 3 - 2s2 + s3, on -2.5 £ s £ 3.5.

Adjust scales on axes as needed.

3.6 Summary

The basic result of this chapter is that an arbitrary isometry of Euclidean
space can be uniquely expressed as an orthogonal transformation followed
by a translation. A consequence is that the tangent map of an isometry F
is, at every point, essentially just the orthogonal part of F. Then it is a 
routine matter to test the concepts introduced earlier to see which belong to
Euclidean geometry, that is, which are preserved by isometries of Euclidean
space.

¢( ) = ( ) ¢( ) = ( ) ¢( ) = ( )x s s y s s s f scos sin ,j j j, ,

a bt t t t t t t( ) = ( ) ( ) = -( )2 02 2, , and , ,
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Finally, we proved an analogue for curves of the various criteria for con-
gruence of triangles in plane geometry; namely, we showed that a necessary
and sufficient condition for two curves in R3 to be congruent is that they have
the same curvature and torsion (and speed). Furthermore, the sufficiency
proof shows how to find the required isometry explicitly.
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