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Roughly speaking, geometry begins with the measurement of distances and
angles. We shall see that the geometry of Euclidean space can be derived from
the dot product, the natural inner product on Euclidean space.

Much of this chapter is devoted to the geometry of curves in R3. We
emphasize this topic not only because of its intrinsic importance, but also
because the basic method used to investigate curves has proved effective
throughout differential geometry. A curve in R3 is studied by assigning at each
point a certain frame—that is, set of three orthogonal unit vectors. The rate
of change of these vectors along the curve is then expressed in terms of the
vectors themselves by the celebrated Frenet formulas (Theorem 3.2). In a real
sense, the theory of curves in R3 is merely a corollary of these fundamental
formulas.

Later on we shall use this “method of moving frames” to study a surface
in R3. The general idea is to think of a surface as a kind of two-dimensional
curve and follow the Frenet approach as closely as possible. To carry out this
scheme we shall need the generalization (Theorem 7.2) of the Frenet formu-
las devised by E. Cartan. It was Cartan who, in the early 1900s, first realized
the full power of this method not only in differential geometry but also in a
variety of related fields.

2.1 Dot Product

We begin by reviewing some basic facts about the natural inner product on
the vector space R3.



1.1 Definition The dot product of points p = ( p1, p2, p3) and q = (q1, q2,
q3) in R3 is the number

The dot product is an inner product since it has the following three 
properties:

(1) Bilinearity:

(2) Symmetry: p • q = q • p.
(3) Positive definiteness: p • p � 0, and p • p = 0 if and only if p = 0.
(Here p, q, and r are arbitrary points of R3, and a and b are numbers.)

The norm of a point p = ( p1, p2, p3) is the number

The norm is thus a real-valued function on R3; it has the fundamental 
properties � p + q � � � p � + � q � and � ap � = | a | � p �, where | a | is the
absolute value of the number a.

In terms of the norm we get a compact version of the usual distance
formula in R3.

1.2 Definition If p and q are points of R3, the Euclidean distance from 
p to q is the number

In fact, since

expansion of the norm gives the well-known formula (Fig. 2.1)

Euclidean distance may be used to give a more precise definition of open
sets (Chapter 1, Section 1). First, if p is a point of R3 and e > 0 is a number,
the e neighborhood Ne of p in R3 is the set of all points q of R3 such that d(p,
q) < e. Then a subset O of R3 is open provided that each point of O has an e
neighborhood that is entirely contained in O. In short, all points near enough
to a point of an open set are also in the set. This definition is valid with R3

replaced by Rn—or indeed any set furnished with a reasonable distance function.
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We saw in Chapter 1 that for each point p of R3 there is a canonical iso-
morphism v Æ vp from R3 onto the tangent space Tp(R3) at p. These isomor-
phisms lie at the heart of Euclidean geometry—using them, the dot product
on R3 itself may be transferred to each of its tangent spaces.

1.3 Definition The dot product of tangent vectors vp and wp at the same
point of R3 is the number vp • wp = v • w.

For example, (1, 0, -1)p • (3, -3, 7)p = 1(3) + 0(-3) + (-1)7 = -4. Evidently
this definition provides a dot product on each tangent space Tp(R3) with the
same properties as the original dot product on R3. In particular, each tangent
vector vp to R3 has norm (or length) � vp � = � v �.

A fundamental result of linear algebra is the Schwarz inequality | v • w |
� � v � � w �. This permits us to define the cosine of the angle J between v
and w by the equation (Fig. 2.2).

Thus the dot product of two vectors is the product of their lengths times the
cosine of the angle between them. (The angle J is not uniquely determined
unless further restrictions are imposed, say 0 � J � p.)

In particular, if J = p/2, then v • w = 0. Thus we shall define two vectors
to be orthogonal provided their dot product is zero. A vector of length 1 is
called a unit vector.

1.4 Definition A set e1, e2, e3 of three mutually orthogonal unit vectors
tangent to R3 at p is called a frame at the point p.

Thus e1, e2, e3 is a frame if and only if
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By the symmetry of the dot product, the second row of equations is, of
course, the same as

Using index notation, all nine equations may be concisely expressed as 
ei • ej = dij for 1 � i j � 3, where dij is the Kronecker delta (0 if i π j, 1 if
i = j). For example, at each point p of R3, the vectors U1(p), U2(p), U3(p) of
Definition 2.4 in Chapter 1 constitute a frame at p.

1.5 Theorem Let e1, e2, e3 be a frame at a point p of R3. If v is any tangent
vector to R3 at p, then (Fig. 2.3)

Proof. First we show that the vectors e1, e2, e3 are linearly independent.
Suppose aiei = 0. Then

where all sums are over i = 1, 2, 3. Thus

as required. Now, the tangent space Tp(R3) has dimension 3, since it is lin-
early isomorphic to R3. Thus by a well-known theorem of linear algebra,
the three independent vectors e1, e2, e3 form a basis for Tp(R3). Hence for
each vector v there are three (unique) numbers c1, c2, c3 such that

But
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and thus

◆

This result (valid in any inner-product space) is one of the great labor-
saving devices in mathematics. For to find the coordinates of a vector v with
respect to an arbitrary basis, one must in general solve a set of nonhomoge-
neous linear equations, a task that even in dimension 3 is not always entirely
trivial. But the theorem shows that to find the coordinates of v with respect
to a frame (that is, an orthonormal basis) it suffices merely to compute the
three dot products v • e1, v • e2, v • e3. We call this process orthonormal expan-
sion of v in terms of the frame e1, e2, e3. In the special case of the natural
frame U1(p), U2(p), U3(p), the identity

is an orthonormal expansion, and the dot product is defined in terms of these
Euclidean coordinates by If we use instead an arbitrary frame
e1, e2, e3, then each vector v has new coordinates ai = v • ei relative to this
frame, but the dot product is still given by the same simple formula

since

When applied to more complicated geometric situations, the advantage of
using frames becomes enormous, and this is why they appear so frequently
throughout this book.

The notion of frame is very close to that of orthogonal matrix.

1.6 Definition Let e1, e2, e3 be a frame at a point p of R3. The 3 ¥ 3 matrix
A whose rows are the Euclidean coordinates of these three vectors is called
the attitude matrix of the frame.

Explicitly, if
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then

Thus A does describe the “attitude” of the frame in R3, although not its point
of application.

Evidently the rows of A are orthonormal, since

By definition, this means that A is an orthogonal matrix.
In terms of matrix multiplication, these equations may be written 

A tA = I, where I is the 3 ¥ 3 identity matrix and tA is the transpose of A:

It follows by a standard theorem of linear algebra that tAA = I, so that 
tA = A-1, the inverse of A.

There is another product on R3, closely related to the wedge product of 1-
forms and second in importance only to the dot product. We shall transfer it
immediately to each tangent space of R3.

1.7 Definition If v and w are tangent vectors to R3 at the same point p,
then the cross product of v and w is the tangent vector

This formal determinant is to be expanded along its first row. For example,
if v = (1, 0, -1)p and w = (2, 2, -7)p, then

Familiar properties of determinants show that the cross product v ¥ w is
linear in v and in w, and satisfies the alternation rule
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Hence, in particular, v ¥ v = 0. The geometric usefulness of the cross product
is based mostly on this fact:

1.8 Lemma The cross product v ¥ w is orthogonal to both v and w, and
has length such that

Proof. Let Then the dot product v • (v ¥ w) is just
But by the definition of cross product, the Euclidean coordinates

c1, c2, c3 of v ¥ w are such that

This determinant is zero, since two of its rows are the same; thus v ¥ w is
orthogonal to v, and similarly, to w.

Rather than use tricks to prove the length formula, we give a brute-force
computation. Now,

On the other hand,

and expanding these squares gives the same result as above. ◆

A more intuitive description of the length of a cross product is

where 0 � J � p is the smaller of the two angles from v to w. The direction
of v ¥ w on the line orthogonal to v and w is given, for practical purposes,
by this “right-hand rule”: If the fingers of the right hand point in the 
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direction of the shortest rotation of v to w, then the thumb points in the
direction of v ¥ w (Fig. 2.4).

Combining the dot and cross product, we get the triple scalar product,
which assigns to any three vectors u, v, w the number u • v ¥ w (Exercise 4).
Parentheses are unnecessary: u • (v ¥ w) is the only possible meaning.

Exercises

1. Let v = (1, 2, -1) and w = (-1, 0, 3) be tangent vectors at a point of R3.
Compute:

(a) v • w. (b) v ¥ w.
(c) v/� v �, w/� w �. (d) � v ¥ w �.
(e) the cosine of the angle between v and w.

2. Prove that Euclidean distance has the properties
(a) d(p, q) � 0; d(p, q) = 0 if and only if p = q,
(b) d(p, q) = d(q, p),
(c) d(p, q) + d(q, r) � d(p, r), for any points p, q, r in R3.

3. Prove that the tangent vectors

constitute a frame. Express v = (6, 1, -1) as a linear combination of these
vectors. (Check the result by direct computation.)

4. Let u = (u1, u2, u3), v = (v1, v2, v3), w = (w1, w2, w3). Prove that

(a) u v w• .¥ =
u u u
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(b) u • v ¥ w π 0 if and only if u, v, and w are linearly independent.
(c) If any two vectors in u • v ¥ w are reversed, the product changes sign.
(d) u • v ¥ w = u ¥ v • w.

5. Prove that v ¥ w π 0 if and only if v and w are linearly independent, and
show that � v ¥ w � is the area of the parallelogram with sides v and w.

6. If e1, e2, e3 is a frame, show that

Deduce that any 3¥3 orthogonal matrix has determinant ±1.

7. If u is a unit vector, then the component of v in the u direction is

Show that v has a unique expression v = v1 + v2, where v1 • v2 = 0 and v1 is
the component of v in the u direction.

8. Prove: The volume of the parallelepiped with sides u, v, w is ±u • v ¥ w
(Fig. 2.5). (Hint: Use the indicated unit vector e = v ¥ w/� v ¥ w �.)

9. Prove, using e-neighborhoods, that each of the following subsets of R3

is open:
(a) All points p such that � p � < 1.
(b) All p such that p3 > 0. (Hint: | pi - qi | � d(p, q).)

10. In each case, let S be the set of all points p that satisfy the given con-
dition. Describe S, and decide whether it is open.

(a) p1
2 + p2

2 + p3
2 = 1. (b) p3 π 0.

(c) p1 = p2 π p3. (d) p1
2 + p2

2 < 9.

11. If f is a differentiable function on R3, show that the gradient
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∂
∂Âf
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U
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(Ex. 8 of Sec. 1.6) has the following properties:
(a) v [ f ] = (df )(v) = v • (—f )(p) for any tangent vector at p.

(b) The norm of (—f ) (p) is the maximum
of the directional derivatives u[ f ] for all unit vectors at p. Furthermore, if
(—f )(p) π 0, the unit vector for which the maximum occurs is

The notations grad f, curl V, and div V (in the exercise referred to) are
often replaced by —f, — ¥ V, and — • V, respectively.

12. Angle functions. Let f and g be differentiable real-valued functions on
an interval I. Suppose that f 2 + g2 = 1 and that J0 is a number such that 
f(0) = cosJ0, g(0) = sinJ0. If J is the function such that

prove that

Hint: We want ( f - cosJ)2 + (g - sinJ)2 = 0, so show that its derivative is
zero.

The point of this exercise is that J is a differentiable function, unambigu-
ously defined on the whole interval I.

2.2 Curves

We begin the geometric study of curves by reviewing some familiar defini-
tions. Let a: I Æ R3 be a curve. In Chapter 1, Section 4, we defined the veloc-
ity vector a ¢(t) of a at t. Now we define the speed of a at t to be the length
v(t) = � a ¢(t) � of the velocity vector. Thus speed is a real-valued function on
the interval I. In terms of Euclidean coordinates a = (a1, a2, a3), we have

Hence the speed function v of a is given by the usual formula

In physics, the distance traveled by a moving point is determined by inte-
grating its speed with respect to time. Thus we define the arc length of a from
t = a to t = b to be the number
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Substituting the formula for � a¢ � given above, we get the usual formula
for arc length. This length involves only the restriction of a (defined on 
some open interval) to the closed interval [a, b]: a � t � b. Such a restriction
s: [a, b] Æ R3 is called a curve segment, and its length is denoted by 
L(s). Note that the velocity of s is well defined at the endpoints a and b of
[a, b].

Sometimes one is interested only in the route followed by a curve 
and not in the particular speed at which it traverses its route. One way 
to ignore the speed of a curve a is to reparametrize to a curve b that has 
unit speed � b¢ � = 1. Then b represents a “standard trip” along the route 
of a.

2.1 Theorem If a is a regular curve in R3, then there exists a reparame-
trization b of a such that b has unit speed.

Proof. Fix a number a in the domain I of a: I Æ R3, and consider the
arc length function

(The resulting reparametrization is said to be based at t = a.) Thus the
derivative of the function s = s(t) is the speed function v = � a ¢ � of
a. Since a is regular, by definition a ¢ is never zero; hence > 0. By 
a standard theorem of calculus, the function s has an inverse function 
t = t(s), whose derivative at s = s(t) is the reciprocal of at 
t = t(s). In particular, > 0.

Now let b be the reparametrization b(s) = a(t(s)) of a. We assert that
b has unit speed. In fact, by Lemma 4.5 of Chapter 1,

Hence, by the preceding remarks, the speed of b is

◆

We shall use the notation of this proof frequently in later work. The unit-
speed curve b is sometimes said to have arc-length parametrization, since the
arc length of b from s = a to s = b (a < b) is just b - a.
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For example, consider the helix a in Example 4.2 of Chapter 1. Since 
a(t) = (acos t, asin t, bt), the velocity a ¢ is given by the formula

Hence

Thus a has constant speed c = � a ¢ � = (a2 + b2)1/2. If we measure arc length
from t = 0, then

Hence, t(s) = s/c. Substituting in the formula for a, we get the unit-speed 
reparametrization

It is easy to check directly that � b¢(s) � = 1 for all s.
A reparametrization a(h) of a curve a is orientation-preserving if h¢ ≥ 0 and

orientation-reversing if h¢ £ 0. In the latter case, a(h) still follows the route of
a but in the opposite direction. By definition, a unit-speed reparametrization
is always orientation-preserving since > 0 for a regular curve.

In the theory of curves we will frequently reparametrize regular curves to
obtain unit speed; however, it is rarely possible to do this in practice. The
problem is basic calculus: Even when the coordinate functions of the curve
are rather simple, the speed function cannot usually be integrated explicitly—
at least in terms of familiar functions.

The general notion of vector field (Definition 2.3 of Chapter 1) can be
adapted to curves as follows.

2.2 Definition A vector field Y on curve a: I Æ R3 is a function 
that assigns to each number t in I a tangent vector Y(t) to R3 at the point
a(t).

We have already met such vector fields: For any curve a, its velocity a ¢ evi-
dently satisfies this definition. Note that unlike a ¢, arbitrary vector fields on
a need not be tangent to a, but may point in any direction (Fig. 2.6).

The properties of vector fields on curves are analogous to those of vector
fields on R3. For example, if Y is a vector field on a: I Æ R3, then for each t
in I we can write
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We have thus defined real-valued functions y1, y2, y3 on I, called the Euclid-
ean coordinate functions of Y. These will always be assumed to be differen-
tiable. Note that the composite function t Æ Ui (a(t)) is a vector field on a.
Where it seems safe to do so, we shall often write merely Ui instead of Ui(a(t)).

The operations of addition, scalar multiplication, dot product, and cross
product of vector fields (on the same curve) are all defined in the usual point-
wise fashion. Thus if

and f(t) = (t + 1)/t, we obtain the vector fields

and the real-valued function

To differentiate a vector field on a one simply differentiates its Euclidean
coordinate functions, thus obtaining a new vector field on a. Explicitly, if

then Thus, for Y as above, we get
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In particular, the derivative a≤ of the velocity a ¢ of a is called the accelera-
tion of a. Thus if a = (a1, a2, a3), the acceleration a≤ is the vector field

on a. By contrast with velocity, acceleration is generally not tangent to the
curve.

As we mentioned earlier, in whatever form it appears, differentiation always
has suitable linearity and Leibnizian properties. In the case of vector fields
on a curve, it is easy to prove the linearity property

(a and b numbers) and the Leibnizian properties

If the function Y • Z is constant, the last formula shows that

This observation will be used frequently in later work. In particular, if Y has
constant length � Y �, then Y and Y ¢ are orthogonal at each point, since 
� Y �2 = Y • Y constant implies 2Y • Y ¢ = 0.

Recall that tangent vectors are parallel if they have the same vector parts.
We say that a vector field Y on a curve is parallel provided all its (tangent vector)
values are parallel. In this case, if the common vector part is (c1, c2, c3), then

Thus parallelism for a vector field is equivalent to the constancy of its 
Euclidean coordinate functions.

Vanishing of derivatives is always important in calculus; here are three
simple cases.

2.3 Lemma (1) A curve a is constant if and only if its velocity is zero,
a ¢ = 0.

(2) A nonconstant curve a is a straight line if and only if its acceleration
is zero, a≤ = 0.

(3) A vector field Y on a curve is parallel if and only if its derivative is
zero, Y ¢ = 0.

Proof. In each case it suffices to look at the Euclidean coordinate func-
tions. For example, we shall prove (2). If a = (a1, a2, a3), then
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Thus a≤ = 0 if and only if each . By elementary calculus, this
is equivalent to the existence of constants pi and qi such that

Thus a(t) = p + tq, and a is a straight line as defined in Example 4.2 of
Chapter 1. (Note that nonconstancy implies q π 0.) ◆

Exercises

1. For the curve a(t) = (2t, t2, t3/3),
(a) find the velocity, speed, and acceleration for arbitrary t, and at t = 1;
(b) find the arc length function s = s(t) (based at t = 0), and determine
the arc length of a from t = -1 to t = +1.

2. Show that a curve has constant speed if and only if its acceleration is
everywhere orthogonal to its velocity.

3. Show that the curve a(t) = (cosh t, sinh t, t) has arc length function
sinh t, and find a unit-speed reparametrization of a.

4. Consider the curve a(t) = (2t, t2, log t) on I: t > 0. Show that this curve
passes through the points p = (2, 1, 0) and q = (4, 4, log2), and find its arc
length between these points.

5. Suppose that b1 and b2 are unit-speed reparametrizations of the same
curve a. Show that there is a number s0 such that b2(s) = b1(s + s0) for all s.
What is the geometric significance of s0?

6. Let Y be a vector field on the helix a(t) = (cos t, sin t, t). In each of the 
following cases, express Y in the form yiUi:

(a) Y(t) is the vector from a(t) to the origin of R3.
(b) Y(t) = a ¢(t) - a≤(t).
(c) Y(t) has unit length and is orthogonal to both a ¢(t) and a ≤(t).
(d) Y(t) is the vector from a(t) to a(t + p).

7. A reparametrization a(h): [c, d ] Æ R3 of a curve segment a: [a, b] Æ R3

is monotone provided either

(i) h¢ ≥ 0, h(c) = a, h(d) = b or (ii) h¢ � 0, h(c) = b, h(d) = a.

Prove that monotone reparametrization does not change arc length.
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8. Let Y be a vector field on a curve a. If a(h) is a reparametrization of a,
show that the reparametrization Y(h) is a vector field on a(h), and prove the
chain rule Y(h)¢ = h¢Y ¢(h).

9. (Numerical integration.) The curve segments

defined on 0 � t � p, run from the origin 0 to (0, p2, 0). Which is shorter?
(See Integration in the Appendix.)

10. Let a, b: I Æ R3 be curves such that a ¢(t) and b¢(t) are parallel (same
Euclidean coordinates) at each t. Prove that a and b are parallel in the sense
that there is a point p in R3 such that b(t) = a(t) + p for all t.

11. Prove that a straight line is the shortest distance between two points in
R3. Use the following scheme; let a: [a, b] Æ R3 be an arbitrary curve segment
from p = a(a) to q = a(b). Let u = (q - p)/� q - p �.

(a) If s is a straight line segment from p to q, say

show that L(s) = d(p, q).
(b) From � a ¢ � � a ¢ • u, deduce L(a) � d(p, q), where L(a) is the length
of a and d is Euclidean distance.
(c) Furthermore, show that if L(a) = d(p, q), then (but for parametriza-
tion) a is a straight line segment. (Hint: write a ¢ = (a ¢ • u)u + Y, where 
Y • u = 0.)

2.3 The Frenet Formulas

We now derive mathematical measurements of the turning and twisting of a
curve in R3. Throughout this section we deal only with unit-speed curves; in
the next we extend the results to arbitrary regular curves.

Let b: I Æ R3 be a unit-speed curve, so � b ¢ (s) � = 1 for each s in I.
Then T = b¢ is called the unit tangent vector field on b. Since T has constant
length 1, its derivative T ¢ = b≤ measures the way the curve is turning in R3.
We call T ¢ the curvature vector field of b. Differentiation of T • T = 1 gives
2T ¢ • T = 0, so T ¢ is always orthogonal to T, that is, normal to b.

The length of the curvature vector field T ¢ gives a numerical measurement
of the turning of b. The real-valued function k such that k(s) = � T ¢ (s) � for

s t t t t( ) = -( ) + ( )1 0 1p q � � ,

a bt t t t t t t t t t t( ) = ( ) ( ) = +( )( )sin cos sin sin cos,  ,  , , , ,2 2 2 22 1
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all s in I is called the curvature function of b. Thus k � 0, and the larger k
is, the sharper the turning of b.

To carry this analysis further, we impose the restriction that k is never zero
so k > 0. The unit-vector field N = T ¢/k on b then tells the direction in which b
is turning at each point. N is called the principal normal vector field of b (Fig.
2.7). The vector field B = T ¥ N on b is called the binormal vector field of b.

3.1 Lemma Let b be a unit-speed curve in R3 with k > 0. Then the three
vector fields T, N, and B on b are unit vector fields that are mutually orthog-
onal at each point. We call T, N, B the Frenet frame field on b.

Proof. By definition � T � = 1. Since k = � T ¢ � > 0,

We saw above that T and N are orthogonal—that is, T • N = 0. Then by
applying Lemma 1.8 at each point, we conclude that � B � = 1, and B is
orthogonal to both T and N. ◆

In summary, we have T = b¢, N = T ¢/k, and B = T ¥ N, satisfying T • T =
N • N = B • B = 1, with all other dot products zero.

The key to the successful study of the geometry of a curve b is to use its
Frenet frame field T, N, B whenever possible, instead of the natural frame
field U1, U2, U3. The Frenet frame field of b is full of information about b,
whereas the natural frame field contains none at all.

The first and most important use of this idea is to express the derivatives
T ¢, N¢, B¢ in terms of T, N, B. Since T = b¢, we have T ¢ = b≤ = kN. Next
consider B¢. We claim that B¢ is, at each point, a scalar multiple of N. To
prove this, it suffices by orthonormal expansion to show that B¢ • B = 0 and
B¢ • T = 0. The former holds since B is a unit vector. To prove the latter, dif-
ferentiate B • T = 0, obtaining B¢ • T + B • T ¢ = 0; then

¢ = - ¢ = - =B T B T B N• • • .k 0

N T= ( ) ¢ =1 1k .
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Thus we can now define the torsion function t of the curve b to be the real-
valued function on the interval I such that B¢ = -tN. (The minus sign is tra-
ditional.) By contrast with curvature, there is no restriction on the values of
t—it may be positive, negative, or zero at various points of I. We shall
presently show that t does measure the torsion, or twisting, of the curve b.

3.2 Theorem (Frenet formulas). If b: I Æ R3 is a unit-speed curve with
curvature k > 0 and torsion t, then

Proof. As we saw above, the first and third formulas are essentially just
the definitions of curvature and torsion. To prove the second, we use ortho-
normal expansion to express N¢ in terms of T, N, B:

These coefficients are easily found. Differentiating N • T = 0, we get 
N¢ • T + N • T ¢ = 0; hence

As usual, N¢ • N = 0, since N is a unit vector field. Finally,

◆

3.3 Example We compute the Frenet frame T, N, B and the curvature
and torsion functions of the unit-speed helix

where c = (a2 + b2)1/2 and a > 0. Now
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Thus

Since T ¢ = kN, we get

Note that regardless of what values a and b have, N always points straight in
toward the axis of the cylinder on which b lies (Fig. 2.8).

Applying the definition of cross product to B = T ¥ N gives

It remains to compute torsion. Now,

and by definition, B¢ = -tN. Comparing the formulas for B¢ and N, we con-
clude that

So the torsion of the helix is also constant.
Note that when the parameter b is zero, the helix reduces to a circle of

radius a. The curvature of this circle is k = 1/a (so the smaller the radius, the
larger the curvature), and the torsion is identically zero.

This example is a very special one—in general (as the examples in the exer-
cises show) neither the curvature nor the torsion functions of a curve need
be constant.
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3.4 Remark We have emphasized all along the distinction between a
tangent vector and a point of R3. However, Euclidean space has, as we have
seen, the remarkable property that given a point p, there is a natural one-to-
one correspondence between points (v1, v2, v3) and tangent vectors (v1, v2, v3)p

at p. Thus one can transform points into tangent vectors (and vice versa) by
means of this canonical isomorphism. In the next two sections particularly,
it will often be convenient to switch quietly from one to the other without
change of notation. Since corresponding objects have the same Euclidean coor-
dinates, this switching can have no effect on scalar multiplication, addition,
dot products, differentiation, or any other operation defined in terms of
Euclidean coordinates.

Thus a vector field Y = ( y1, y2, y3)b on a curve b becomes itself a curve ( y1,
y2, y3) in R3. In particular, if Y is parallel, its Euclidean coordinate functions
are constant, so Y is identified with a single point of R3.

A plane in R3 can be described as the union of all the perpendiculars to 
a given line at a given point. In vector language then, the plane through p
orthogonal to q π 0 consists of all points r in R3 such that (r - p) • q = 0. By
the remark above, we may picture q as a tangent vector at p as shown in 
Fig. 2.9.

We can now give an informative approximation of a given curve near an
arbitrary point on the curve. The goal is to show how curvature and torsion
influence the shape of the curve. To derive this approximation we use a Taylor
approximation of the curve—and express this in terms of the Frenet frame
at the selected point.

For simplicity, we shall consider the unit-speed curve b = (b1, b2, b3) near
the point b(0). For s small, each coordinate bi(s) is closely approximated by
the initial terms of its Taylor series:

b b
b b b

i i
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d
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Hence

But b¢(0) = T0, and b≤(0) = k0N0, where the subscript indicates evaluation at
s = 0, and we assume k0 π 0. Now

Thus by the Frenet formula for N¢, we get

Finally, substitute these derivatives into the approximation of b(s) given
above, and keep only the dominant term in each component (that is, the one
containing the smallest power of s). The result is

Denoting the right side by b̂(s), we obtain a curve b̂ called the Frenet approxi-
mation of b near s = 0. We emphasize that b has a different Frenet approx-
imation near each of its points; if 0 is replaced by an arbitrary number s0,
then s is replaced by s - s0, as usual in Taylor expansions.

Let us now examine the Frenet approximation given above. The first term
in the expression for b̂ is just the point b(0). The first two terms give the
tangent line s Æ b(0) + sT0 of b at b(0)—the best linear approximation of b
near b(0). The first three terms give the parabola

which is the best quadratic approximation of b near b(0). Note that this
parabola lies in the plane through b(0) orthogonal to B0, the osculating plane
of b at b(0). This parabola has the same shape as the parabola y = k0x2/2 in
the xy plane, and is completely determined by the curvature k0 of b at s = 0.

Finally, the torsion t0, which appears in the last and smallest term of b̂ ,
controls the motion of b orthogonal to its osculating plane at b(0), as shown
in Fig. 2.10.

On the basis of this discussion, it is a reasonable guess that if a unit-speed
curve has curvature identically zero, then it is a straight line. In fact, this follows
immediately from (2) of Lemma 2.3, since k = � T ¢ � = � b≤ �, so that k = 0 
if and only if b≤ = 0. Thus curvature does measure deviation from 
straightness.
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A plane curve in R3 is a curve that lies in a single plane of R3. Evidently a
plane curve does not twist in as interesting a way as even the simple helix in
Example 3.3. The discussion above shows that for s small the curve b tends
to stay in its osculating plane at b(0); it is t0 π 0 that causes b to twist out of
the osculating plane. Thus if the torsion of b is identically zero, we may well
suspect that b never leaves this plane.

3.5 Corollary Let b be a unit-speed curve in R3 with k > 0. Then b is a
plane curve if and only if t = 0.

Proof. Suppose b is a plane curve. Then by the remarks above, there exist
points p and q such that (b(s) - p) • q = 0 for all s. Differentiation yields

Thus q is always orthogonal to T = b¢ and N = b≤/k. But B is also orthog-
onal to T and N, so, since B has unit length, B = ±q/�q�. Thus B¢ = 0, and
by definition t = 0 (Fig. 2.11).

Conversely, suppose t = 0. Thus B¢ = 0; that is, B is parallel and may
thus be identified (by Remark 3.4) with a point of R3. We assert that b lies
in the plane through b(0) orthogonal to B. To prove this, consider the real-
valued function

f s s B s( ) = ( ) - ( )( )b b 0 • .for all

¢( ) = ¢¢( ) =b bs s s• • .q q 0 for all
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Then

But obviously, f(0) = 0, so f is identically zero. Thus

which shows that b lies entirely in this plane orthogonal to the (parallel)
binormal of b. ◆

We saw at the end of Example 3.3 that a circle of radius a has curvature
1/a and torsion zero. Furthermore, the formula given there for the principal
normal shows that for a circle, N always points toward its center. This sug-
gests how to prove the following converse.

3.6 Lemma If b is a unit-speed curve with constant curvature k > 0 and
torsion zero, then b is part of a circle of radius 1/k.

Proof. Since t = 0, b is a plane curve. What we must now show is that
every point of b is at distance 1/k from some fixed point—which will thus
be the center of the circle. Consider the curve g = b + (1/k)N. Using the
hypothesis on b, and (as usual) a Frenet formula, we find

Hence the curve g is constant; that is, b(s) + (1/k)N(s) has the same value,
say c, for all s (see Fig. 2.12). But the distance from c to b(s) is

◆d s s N sc c, b b
k k
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In principle, every geometric problem about curves can be solved by means
of the Frenet formulas. In simple cases it may be just enough to record the
data of the problem in convenient form, differentiate, and use the Frenet for-
mulas. For example, suppose b is a unit-speed curve that lies entirely in the
sphere of radius a centered at the origin of R3. To stay in the sphere, b
must curve; in fact it is a reasonable guess that the minimum possible curva-
ture occurs when b is on a great circle of . Such a circle has radius a, so
we conjecture that a spherical curve b has curvature k � 1/a, where a is the
radius of its sphere.

To prove this, observe that since every point of has distance a from the
origin, we have b • b = a2. Differentiation yields 2b¢ • b = 0, that is, b • T =
0. Another differentiation gives b¢ • T + b • T ¢ = 0, and by using a Frenet
formula we get T • T + kb • N = 0; hence

By the Schwarz inequality,

and since k � 0 we obtain the required result:

Continuation of this procedure leads to a necessary and sufficient condition
(expressed in terms of curvature and torsion) for a curve to be spherical, that
is, lie on some sphere in R3 (Exercise 10).

Exercises

1. Compute the Frenet apparatus k, t, T, N, B of the unit-speed curve 
b(s) = (4/5 coss, 1 - sins, -3/5 coss). Show that this curve is a circle; find its
center and radius.

2. Consider the curve

defined on I: -1 < s < 1. Show that b has unit speed, and compute its Frenet
apparatus.
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3. For the helix in Example 3.3, check the Frenet formulas by direct sub-
stitution of the computed values of k, t, T, N, B.

4. Prove that

(A formal proof uses properties of the cross product established in the Exer-
cises of Section 1—but one can recall these formulas by using the right-hand
rule given at the end of that section.)

5. If A is the vector field tT + kB on a unit-speed curve b, show that the
Frenet formulas become

6. A unit-speed parametrization of a circle may be written

where ei • ej = dij.
If b is a unit-speed curve with k(0) > 0, prove that there is one and only

one circle g that approximates b near b(0) in the sense that

Show that g lies in the osculating plane of b at b(0) and find its center c and
radius r (see Fig. 2.13). The circle g is called the osculating circle and c the
center of curvature of b at b(0). (The same results hold when 0 is replaced by
any number s.)
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7. If a and a reparametrization = a(h) are both unit-speed curves, show
that

(a) h(s) = ± s + s0 for some number s0;
(b) = ±T(h),

= N(h), = k (h), t = t (h),
= ±B(h),

where the sign (±) is the same as that in (a), and we assume k > 0. Thus even
in the orientation-reversing case, the principal normals N and still point
in the same direction.

8. Curves in the plane. For a unit-speed curve b(s) = (x(s), y(s)) in R2, the
unit tangent is T = b¢ = (x¢, y¢) as usual, but the unit normal N is defined by
rotating T through +90°, so N = (-y¢, x¢). Thus T ¢ and N are collinear, and
the plane curvature k̃ of b is defined by the Frenet equation T ¢ = k̃N.

(a) Prove that k̃ = T ¢ • N and N¢ = -k̃T.
(b) The slope angle j(s) of b is the differentiable function such that

(The existence of j derives from Ex. 12 of Sec. 1.) Show that k̃ = j¢.
(c) Find the curvature k̃ of the following plane curves.

(i) (rcos , rsin ), counterclockwise circle.

(ii) (rcos(- ), rsin(- )), clockwise circle.

(d) Show that if k̃ does not change sign, then |k̃ | is the usual R3 curvature
k. (For such comparisons we can always regard R2 as, say, the xy plane 
in R3.)

9. Let b̃ be the Frenet approximation of a unit-speed curve b with t π 0
near s = 0.

If, say, the B0 component of b is removed, the resulting curve is the orthog-
onal projection of b̃ in the T0N0 plane. It is the view of b ª b̃ that one gets
by looking toward b(0) = b̃ (0) directly along the vector B0.

Sketch the general shape of the orthogonal projections of b̃ near s = 0 in
each of the planes T0N0 (osculating plane), T0B0 (rectifying plane), and N0B0

(normal plane). These views of b ª b̃ can be confirmed experimentally using
a bent piece of wire. For computer views, see Exercise 15 of Section 4.

10. Spherical curves. Let a be a unit-speed curve with k > 0, t π 0.
(a) If a lies on a sphere of center c and radius r, show that

a r r s- = - - ¢c N B,
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where r = 1/k and s = 1/t . Thus r2 = r2 + (r¢s)2.

(b) Conversely, if r2 + (r¢s)2 has constant value r2 and r¢ π 0, show that
a lies on a sphere of radius r.
(Hint: For (b), show that the “center curve” g = a + rN + r¢sB—suggested
by (a)—is constant.)

11. Let b, : I Æ R3 be unit-speed curves with nonvanishing curvature and
torsion. If T = , then b and are parallel (Ex. 10 of Sec. 2). If
B = , prove that is parallel to either b or the curve s Æ -b(s).

2.4 Arbitrary-Speed Curves

It is a simple matter to adapt the results of the previous section to the study
of a regular curve a: I Æ R3 that does not necessarily have unit speed. We
merely transfer to a the Frenet apparatus of a unit-speed reparametrization

of a. Explicitly, if s is an arc length function for a as in Theorem 2.1, then

or, in functional notation, a = (s), as suggested by Fig. 2.14. Now if
> 0, t , , , and are defined for as in Section 3, we define for a the

curvature function: k = (s),
torsion function: t = (s),
unit tangent vector field: T = (s),
principal normal vector field: N = (s),
binormal vector field: B = (s).

In general k and are different functions, defined on different intervals.
But they give exactly the same description of the turning of the common route
of a and , since at any point a(t) = (s(t)) the numbers k(t) and (s(t)) arekaa
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by definition the same. Similarly with the rest of the Frenet apparatus; since
only a change of parametrization is involved, its fundamental geometric
meaning is the same as before. In particular, T, N, B is again a frame field 
on a linked to the shape of a as indicated in the discussion of Frenet 
approximations.

For purely theoretical work, this simple transference is often all that is
needed. Data about a converts into data about the unit-speed reparame-
trization ; results about convert to results about a. For example, if a is
a regular curve with t = 0, then by the definition above has = 0; by 
Corollary 3.5, is a plane curve, so obviously a is too.

However, for explicit numerical computations—and occasionally for the
theory as well—this transference is impractical, since it is rarely possible to
find explicit formulas for . (For example, try to find a unit-speed parame-
trization for the curve a(t) = (t, t2, t3).)

The Frenet formulas are valid only for unit-speed curves; they tell the rate
of change of the frame field T, N, B with respect to arc length. However, the
speed v of the curve is the proper correction factor in the general case.

4.1 Lemma If a is a regular curve in R3 with k > 0, then

Proof. Let be a unit-speed reparametrization of a. Then by definition,
T = (s), where s is an arc length function for a. The chain rule as applied
to differentiation of vector fields (Exercise 7 of Section 2) gives

By the usual Frenet equations, . Substituting the function s in this
equation yields

by the definition of k and N in the arbitrary-speed case. Since ds/dt is the
speed function v of a, these two equations combine to yield T¢ = kvN. The
formulas for N¢ and B¢ are derived in the same way. ◆

There is a commonly used notation for the calculus that completely ignores
change of parametrization. For example, the same letter would designate
both a curve a and its unit-speed parametrization , and similarly with thea

¢( ) = ( ) ( ) =T s s N s Nk k

¢ =T Nk

¢ = ¢( )T T s
ds
dt

.

T
a

¢ =
¢ = - +
¢ = -

T vN

N vT vB

B vN

k
k t

t

,

, 

.

a

a
ta

aa
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Frenet apparatus of these two curves. Differences in derivatives are handled
by writing, say, dT/dt for T ¢, but dT/ds for either or its reparametrization

(s). If these conventions were used, the proof above would combine the
chain rule dT/dt = (dT/ds) (ds/dt) and the Frenet formula dT/ds = kN to give
dT/dt = kvN.

Only for a constant-speed curve is acceleration always orthogonal to veloc-
ity, since b¢ • b¢ constant is equivalent to (b¢ • b¢)¢ = 2b¢ • b≤ = 0. In the general
case, we analyze velocity and acceleration by expressing them in terms of the
Frenet frame field.

4.2 Lemma If a is a regular curve with speed function v, then the veloc-
ity and acceleration of a are given by (Fig. 2.15.)

Proof. Since a = (s), where s is the arc length function of a, we find,
using Lemma 4.5 of Chapter 1, that

Then a second differentiation yields

where we use Lemma 4.1. ◆

The formula a ¢ = vT is to be expected since a ¢ and T are each tangent 
to the curve and T has a unit length, while � a ¢ � = v. The formula for 
acceleration is more interesting. By definition, a≤ is the rate of change of the

¢¢ = + ¢ = +a k
dv
dt

T vT
dv
dt

T v N2 ,

¢ = ¢( ) = ( ) =a a s
ds
dt

vT s vT.

a

¢ = ¢¢ = +a a kvT
dv
dt

T v N, 2 .

¢T
¢T
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velocity a ¢, and in general both the length and the direction of a ¢ are chang-
ing. The tangential component (dv/dt)T of a≤ measures the rate of change of
the length of a ¢ (that is, of the speed of a). The normal component kv2N mea-
sures the rate of change of the direction of a ¢. Newton’s laws of motion show
that these components may be experienced as forces. For example, in a car
that is speeding up or slowing down on a straight road, the only force one
feels is due to (dv/dt)T. If one takes an unbanked curve at speed v, the result-
ing sideways force is due to kv2N. Here k measures how sharply the road turns;
the effect of speed is given by v2, so 60 miles per hour is four times as unset-
tling as 30.

We now find effectively computable expressions for the Frenet apparatus.

4.3 Theorem Let a be a regular curve in R3. Then

Proof. Since v = � a ¢ � > 0, the formula T = a ¢/�a ¢� is equivalent to 
a ¢ = vT. From the preceding lemma we get

since T ¥ T = 0. Taking norms we find

because � B � = 1, k � 0, and v > 0. Indeed, this equation shows that for
regular curves, � a ¢ ¥ a≤ � > 0 is equivalent to the usual condition k > 0.
(Thus for k > 0, a ¢ and a≤ are linearly independent and determine the oscu-
lating plane at each point, as do T and N.) Then

Since N = B ¥ T is true for any Frenet frame field (Exercise 4 of Section
3), only the formula for torsion remains to be proved.

To find the dot product (a ¢ ¥ a≤) • a� we express everything in terms of
T, N, B. We already know that a ¢ ¥ a≤ = kv3B. Thus, since 0 = T • B =
N • B, we need only find the B component of a�. But

B
v

=
¢ ¥ ¢¢

=
¢ ¥ ¢¢
¢ ¥ ¢¢

a a
k

a a
a a3

.

¢ ¥ ¢¢ = =a a k kv B v3 3

¢ ¥ ¢¢ = ( ) ¥ +Ê
Ë

ˆ
¯

= ¥ + ¥ =

a a k

k k

vT
dv
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where we use Lemma 4.1. Consequently, (a ¢ ¥ a≤) • a � = k2v6t, and since 
� a ¢ ¥ a≤ � = kv3, we have the required formula for t. ◆

The triple scalar product in this formula for t could (by Exercise 4 of
Section 1) also be written a ¢ • a≤ ¥ a�. But we need a ¢ ¥ a≤ anyway, so it is
more efficient to find (a ¢ ¥ a≤) • a�.

4.4 Example We compute the Frenet apparatus of the 3-curve

The derivatives are

Now,

so

Applying the definition of cross product yields

Dotting this vector with itself, we get

Hence

The expressions above for a ¢ ¥ a≤ and a� yield

¢ ¥ ¢¢( ) ¢¢¢ =a a a• • • .6 18 2

¢( ) ¥ ¢¢( ) = +( )a at t t18 2 1 2 .
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It remains only to substitute this data into the formulas in Theorem 4.3, with
N being computed by another cross product. The final results are

Alternatively, we could use the identity in Lemma 1.8 to compute � a ¢ ¥
a≤ � and express

as a determinant by Exercise 4 of Section 1.
To summarize, we now have the Frenet apparatus for an arbitrary regular

curve a, namely, its curvature, torsion, and Frenet frame field. This appara-
tus satisfies the extended Frenet formulas with speed factor v and can be com-
puted by Theorem 4.3. If v = 1, that is, if a is a unit-speed curve, the results
of Section 3 are recovered.

Let us consider some applications of the Frenet formulas. There are a
number of natural ways in which a given curve b gives rise to a new curve 
b̃ whose geometric properties illuminate some aspect of the behavior of b.

For example, the spherical image of a unit-speed curve b is the curve 
s ª T with the same Euclidean coordinates as T = b¢. Geometrically, s is
gotten by moving each T(s) to the origin of R3, as suggested in Fig. 2.16.
Thus s lies on the unit sphere S, and the motion of s represents the turning
of b.
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For instance, if b is the helix in Example 3.3, the formula there for T shows
that

So the spherical image of a helix lies on the circle cut from by the plane 
z = b/c.

Although the original curve b has unit speed, we cannot expect that s
does also. In fact, s = T implies s ¢ = T ¢ = kN, so the speed of s equals the
curvature k of b. Thus to compute the curvature of s, we must use the
extended Frenet formulas in Theorem 4.3. From

we get

By Theorem 4.3 the curvature of the spherical image s is

and thus depends only on the ratio of torsion to curvature for the original
curve b.

Here is a closely related application in which this ratio t/k turns out to be
decisive.

4.5 Definition A regular curve a in R3 is a cylindrical helix provided the
unit tangent T of a has constant angle J with some fixed unit vector u; that
is, T(t) • u = cosJ for all t.

This condition is not altered by reparametrization, so for theoretical pur-
poses we need only deal with a cylindrical helix b that has unit speed. So
suppose b is a unit-speed curve with T • u = cosJ. If we pick a reference
point, say b(0), on b, then the real-valued function

tells how far b(s) has “risen” in the u direction since leaving b(0) (Fig. 2.17).
But

h s s( ) = ( ) - ( )( )b b 0 • u
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so b is rising at a constant rate relative to arc length, and h(s) = s cosJ. If we
shift to an arbitrary parametrization, this formula becomes

where s is the arc length function.
By drawing a line through each point of b in the u direction, we construct

a cylinder C on which b moves in such a way as to cut each such line at con-
stant angle J, as in Fig. 2.18. In the special case when this cylinder is circu-
lar, b is evidently a helix of the type defined in Example 3.3.

It turns out to be quite easy to identify cylindrical helices.

4.6 Theorem A regular curve a with k > 0 is a cylindrical helix if and
only if the ratio t/k is constant.

Proof. It suffices to consider the case where a has unit speed. If a is a
cylindrical helix with T • u = cosJ, then

Since k > 0, we conclude that N • u = 0. Thus for each s, u lies in the plane
determined by T(s) and B(s). Orthonormal expansion yields

u = +cos sin .J JT B

0 = ( )¢ = ¢ =T T N• • • .u u uk

h t s t( ) = ( ) cos J,

dh
ds

T= ¢ = =b J• • cosu u ,
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As usual we differentiate and apply Frenet formulas to obtain

Hence t sinJ = kcosJ, so that t/k has constant value cotJ.
Conversely, suppose that t/k is constant. Choose an angle J such that

cotJ = t/k. If

we find

This parallel vector field U then determines (as in Remark 3.4) a unit vector
u such that T • u = cosJ, so a is a cylindrical helix. ◆

In Exercise 9 this information about cylindrical helices is used to show that
circular helices are characterized by constancy of curvature and torsion (see
also Corollary 5.5 of Chapter 3).

Simple hypotheses on a regular curve in R3 thus have the following effects
(¤ means “if and only if”):

Exercises

Computer commands that produce the Frenet apparatus, k, t, T, N, B, of a
curve are given in the Appendix. Their use is optional in the following 
exercises.

1. For the curve a(t) = (2t, t2, t3/3),
(a) Compute the Frenet apparatus.
(b) Sketch the curve for -4 � t � 4, showing T, N, B at t = 2.
(c) Find the limiting values of T, N, and B as t Æ -• and t Æ •.

2. Express the curvature and torsion of the curve a(t) = (cosh t, sinh t, t)
in terms of arc length s measured from t = 0.

k
t
k t
k t
t k

= ¤
= ¤

> = ¤
> > ¤

π ¤

0

0

0 0

0 0

0

straight line,

plane curve,

const and circle,

const and const circular helix,

const cylindrical helix.

¢ = -( ) =U Nk J t Jcos sin .0

U T B= +cos sinJ J ,

0 = -( )k J t Jcos sin .N
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3. The curve a(t) = (tcos t, tsin t, t) lies on a double cone and passes
through the vertex at t = 0.

(a) Find the Frenet apparatus of a at t = 0.
(b) Sketch the curve for -2p � t � 2p, showing T, N, B at t = 0.

4. Show that the curvature of a regular curve in R3 is given by

5. If a is a curve with constant speed c > 0, show that

where for N, B, t, we assume a≤ never zero, that is, k > 0.

6. (a) If a is a cylindrical helix, prove that its unit vector u (Thm. 4.5) is

and the coefficients here are cosJ and sinJ (for J as in Def. 4.5).
(b) Check (a) for the cylindrical helix in Example 4.2 of Chapter 1.

7. Let a: I Æ R3 be a cylindrical helix with unit vector u. For t0 Œ I, the
curve

is called a cross-sectional curve of the cylinder on which a lies. Prove:
(a) g lies in the plane through a(t0) orthogonal to u.
(b) The curvature of g is k/sin2 J, where k is the curvature of a.

8. Verify that the following curves are cylindrical helices and, for each, find
the unit vector u, angle J, and cross-sectional curve s.

(a) The curve in Exercise 1. (b) The curve in Example 4.4.
(c) The curve in Exercise 2.

9. If a is a curve with k > 0 and t both constant, show that a is a circular
helix.

10. (a) Prove that a curve is a cylindrical helix if and only if its spherical
image is part of a circle.

(b) Sketch the spherical image of the cylindrical helix in Exercise 1. Is it
a complete circle? Find its center.
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11. If a is a curve with k > 0, its central curve a* = a + (1/k)N consists of
all centers of curvature of a (Ex. 6 of Sec. 3). For nonzero numbers a and
b, let bab be the helix in Example 3.3.

(a) Show that the central curve of bab is the helix bâb, where â = -b2/a.
(b) Deduce that the central curve of bâb is the original helix bab.
(c) (Computer graphics.) Plot three complete turns of the mutually central

helices b2,1 and b-1/2,1 in the same figure.

12. If a(t) = (x(t), y(t)) is a regular curve in R2, show that its plane curva-
ture (Ex. 8 of Sec. 3) is given by

where J is the rotation operator J(a, b) = (-b, a).

13. (Continuation.) For a plane curve a with k̃ π 0, the central curve 
a* = a + (1/k̃ )N is called the evolute of a. Thus a* gives a direct pointwise
description of the turning of a.

(a) Show that

(b) Find a formula for the line segment lt from a(t) to a*(t). This segment
is the radius (line) of the approximating circle to a near a(t) (Ex. 6 of
Sec. 3)
(c) Prove that lt is normal to a at a(t) and tangent to a* at a*(t). (Hint:
It can be assumed that a has unit speed.)

14. (Continuation, Computer graphics.) In each case, plot the given plane
curve and its evolute on the same figure, showing some of the construction
lines lt.

(a) The ellipse a(t) = (2cos t, sin t).
(b) The cycloid a(t) = (t + sin t, 1 + cos t) for -2p £ t £ 2p. (Here the evolute
bears an unexpected relation to the original curve.)

15. (Computer continuation of Ex. 9 of Sec. 3.)
(a) Write the commands that, given a regular curve a with k(0) > 0, plot—
on a small interval -e � t � e —the orthogonal projection of a into the
osculating, rectifying, and normal planes at a(0). Show the projections as
curves in R2.
(b) Test (a) on the curves (3), (4), (5) in Example 4.2 of Chapter 1 and
those in Example 4.3 of Chapter 3. Compare results.

a a
a a

a a
a* = +

¢ ¢
¢¢ ¢( ) ¢( )•

•
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J
J

˜
•

k
a a

=
¢¢ ¢( )

=
¢ ¢¢ - ¢¢ ¢
¢ + ¢( )

J
v

x y x y

x y3 2 2 3 2 ,
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The following exercise shows that the condition k > 0 cannot be
avoided in a detailed study of the geometry of curves in R3 for even if
k is zero at only a single point, the geometric character of the curve
can change radically at that point. (This difficulty does not arise for
curves in the plane.)

16. It is shown in advanced calculus that the function

is infinitely differentiable (has continuous derivatives of all orders). Thus

is a well-defined differentiable curve.
(a) Sketch a on an interval -a � t � a.
(b) Show that the curvature of a is zero only at t = 0.
(c) What are the osculating planes of a for t < 0 and t > 0?

In the following exercise, a global geometric invariant of curves is gotten by
integrating a local invariant.

17. The total curvature of a unit-speed curve a: I Æ R3 is . If a is

merely regular, the formula becomes . Find the total curvature of

the following curves:
(a) The curve in Example 4.4.
(b) The helix in Example 3.3.
(c) The curve in Exercise 2.
(d) The ellipse a(t) = (acos t, bsin t) on 0 � t � 2p.

18. One definition of convexity for a smoothly closed plane curve is that
its curvature k is positive (hence its plane curvature k̃ is either always posi-
tive or always negative). Prove that a convex closed plane curve has total cur-
vature 2p. (Hint: Consider its spherical image.)

A theorem of Fenchel asserts that every regular closed curve a in R3 has
total curvature �2p. Surprisingly, this has an easy proof in terms of surface
theory (see Sec. 8 of Ch. 6).

19. (Computer.)
(a) Plot the curve

Even looking at this curve from different viewpoints may not make its cross-
ing pattern clear, but Exercise 21 of Section 5.4 will show that t is a trefoil knot.
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(Intuitively, a simple closed curve in R3 is a knot provided it cannot be contin-
uously deformed—always remaining simply closed—until it becomes a circle.)

The Fary-Milnor theorem asserts that every knot has total curvature
strictly greater than 4p. Show:

(b) The plane curve obtained from t by removing the z-component sin3t
has total curvature exactly 4p. (This curve is not simply closed, and hence
is not a knot.)
(c) t can be deformed to a knot that has (numerically estimated) total 
curvature less than 4.01p.

20. (Computer.)
(a) Write a command that, given an arbitrary regular curve, returns the
test function in Exercise 10 of Section 3 whose constancy implies that the
curve lies on a sphere. (Plotting this function provides a good test for con-
stancy and does not require simplifying it.) (Hint: To allow for arbitrary
parametrization, replace derivatives f ¢(s) by f ¢(t)v(t), where v(t) = ds/dt.)
(b) In each case, decide whether the curve lies on a sphere, and if so, find
its radius and center:

(i) a(t) = (2sin t, sin2t, 2sin2 t);
(ii) b(t) = (cos2 t, sin2t, 2sin t);

(iii) g (t) = (cos t, 1 + sin t, 2sin ).

21. Prove that the cubic curve g (t) = (at, bt2, ct3), abc π 0, is a cylindrical
helix if and only if 3ac = ±2b2. (Computer optional.)

2.5 Covariant Derivatives

In Chapter 1 the definition of a new object (curve, differential form, map-
ping, . . .) was usually followed by an appropriate notion of derivative of that
object. To see how to define the derivative of a vector field on a Euclidean
space, we mimic the definition of the derivative v[ f ] of a function f relative to
a tangent vector v at a point p (Definition 3.1 of Chapter 1). In fact, replacing
f by a vector field W on R3 gives a vector field t Æ W(p + tv) on the curve 
t Æ p + tv. The derivative of such a vector field was defined in Section 2. Then
the derivative of W with respect to v will be the derivative of t Æ W(p + tv) at
t = 0.

5.1 Definition Let W be a vector field on R3, and let v be a tangent vector
field to R3 at the point p. Then the covariant derivative of W with respect to
v is the tangent vector

at the point p.
— = +( )¢( )vW W tp v 0

t
2
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Evidently —vW measures the initial rate of change of W(p) as p moves in the
v direction. (The term “covariant” derives from the generalization of this
notion discussed in Chapter 7.)

For example, suppose W = x2U1 + yzU3, and

Then

so

where strictly speaking U1 and U3 are also evaluated at p + tv. Thus,

5.2 Lemma If W = wiUi is a vector field on R3, and v is a tangent
vector at p, then

Proof. We have

for the restriction of W to the curve t Æ p + tv. To differentiate such a
vector field (at t = 0), one simply differentiates its Euclidean coordinates
(at t = 0). But by the definition of directional derivative (Definition 3.1 of
Chapter 1), the derivative of wi(p + tv) at t = 0 is precisely v[wi]. Thus

◆

In short, to apply —v to a vector field, apply v to its Euclidean coordinates.
Thus the following linearity and Leibnizian properties of covariant deriva-
tive follow easily from the corresponding properties (Theorem 3.3 of Chapter
1) of directional derivatives.

5.3 Theorem Let v and w be tangent vectors to R3 at p, and let Y and Z
be vector fields on R3. Then for numbers a, b and functions f,

(1) —av+bwY = a—vY + b—wY.
(2) —v(aY + bZ) = a—vY + b—vZ.
(3) —v(fY) = v[f]Y(p) + f(p)—vY.
(4) v[Y • Z] = —vY • Z(p) + Y(p) • —vZ.

— = +( )¢( ) = [ ] ( )Âv i iW W t w Up v v p0 .

W t w t U ti ip v p v p v+( ) = +( ) +( )Â

— = [ ] ( )Âv i iW w Uv p .

Â

— = +( )¢( ) = - ( ) + ( )vW W t U Up v p p0 4 21 3 .

W t t U tUp v+( ) = -( ) +2 22
1 3,

p v+ = -( )t t t2 1 2, ,,

v p= -( ) = ( )1 0 2 2 1 0, , at , , .
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Proof. For example, let us prove (4). If

then

Hence by Theorem 3.3 of Chapter 1,

But by the preceding lemma,

Thus the two sums displayed above are precisely —vY • Z(p) and Y(p) • —vZ.
◆

Using the pointwise principle (Chapter 1, Section 2), we can take the
covariant derivative of a vector field W with respect to a vector field V, rather
than a single tangent vector v. The result is the vector field —VW whose value
at each point p is —V(p)W. Thus —VW consists of all the covariant derivatives
of W with respect to the vectors of V. It follows immediately from the lemma
above that if W = wiUi, then

Coordinate computations are easy using the basic identity Ui[ f ] = ∂f/∂xi.
For example, suppose V = (y - x)U1 + xyU3 and (as in the example above)
W = x2U1 + yzU3. Then

Hence

For the covariant derivative —VW as expressed entirely in terms of
vector fields, the properties in the preceding theorem take the following 
form.

5.4 Corollary Let V, W, Y, and Z be vector fields on R3. Then
(1) —fV+gWY = f —VY + g—WY, for all functions f and g.
(2) —V(aY + bZ) = a—VY + b—VZ, for all numbers a and b.

— = -( ) +VW x y x U xy U2 1
2

3.

V x y x U x x y x

V yz xyU yz xy

2
1

2
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2
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,

.
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(3) —V(fY) = V[ f ]Y + f —VY, for all functions f.
(4) V [Y • Z] = —VY • Z + Y • —VZ.

We shall omit the proof, which is an exercise in the use of parentheses based
on the (pointwise principle) definition (—VY )(p) = —V(p)Y.

Note that —VY does not behave symmetrically with respect to V and Y. This
is to be expected, since it is Y that is being differentiated, while the role of V
is merely algebraic. In particular, —fVY is f —VY, but —V( fY) is not f —VY: There
is an extra term arising from the differentiation of f by V.

Exercises

1. Consider the tangent vector v = (1, -1, 2) at the point p = (1, 3, -1).
Compute —vW directly from the definition, where

(a) W = x2U1 + yU2. (b) W = xU1 + x2U2 - z2U3.

2. Let V = -yU1 + xU3 and W = cosxU1 + sinxU2. Express the follow-
ing covariant derivatives in terms of U1, U2, U3:

(a) —VW. (b) —VV.
(c) —V (z2W ). (d) —W (V ).
(e) —V (—vW ). (f) —V (xV - zW ).

3. If W is a vector field with constant length �W �, prove that for any vector
field V, the covariant derivative —VW is everywhere orthogonal to W.

4. Let X be the special vector field xiUi, where x1, x2, x3 are the natural
coordinate functions of R3. Prove that —VX = V for every vector field V.

5. Let W be a vector field defined on a region containing a regular curve a.
Then t Æ W(a(t)) is a vector field on a called the restriction of W to a and
denoted by Wa.

(a) Prove that —a¢(t)W = (Wa)¢ (t).
(b) Deduce that the straight line in Definition 5.1 may be replaced by any
curve with initial velocity v. Thus the derivative Y¢ of a vector field Y on
a curve a is (almost) —a ¢Y.

2.6 Frame Fields

When the Frenet formulas were discovered (by Frenet in 1847, and indepen-
dently by Serret in 1851), the theory of surfaces in R3 was already a richly
developed branch of geometry. The success of the Frenet approach to curves

Â
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led Darboux (around 1880) to adapt this “method of moving frames” to the
study of surfaces. Then, as we mentioned earlier, it was Cartan who brought
the method to full generality. His essential idea was very simple: To each point
of the object under study (a curve, a surface, Euclidean space itself, . . .)
assign a frame; then using orthonormal expansion express the rate of change
of the frame in terms of the frame itself. This, of course, is just what the
Frenet formulas do in the case of a curve.

In the next three sections we shall carry out this scheme for the Euclidean
space R3. We shall see that geometry of curves and surfaces in R3 is not merely
an analogue, but actually a corollary, of these basic results. Since the main
application (to surface theory) comes only in Chapter 6, these sections may
be postponed, and read later as a preliminary to that chapter.

By means of the pointwise principle (Chapter 1, Section 2) we can 
automatically extend operations on individual tangent vectors to operations
on vector fields. For example, if V and W are vector fields on R3, then the
dot product V • W of V and W is the (differentiable) real-valued function 
on R whose value at each point p is V(p) • W(p). The norm �V� of V is the
real-valued function on R3 whose value at p is �V(p)�. Thus �V � = (V • V )1/2.
By contrast with V • W, the norm function �V � need not be differentiable at
points for which V(p) = 0, since the square-root function is badly behaved 
at 0.

In Chapter 1 we called the three vector fields U1, U2, U3 the natural frame
field on R3. Here is a simple but crucial generalization.

6.1 Definition Vector fields E1, E2, E3 on R3 constitute a frame field on
R3 provided

where dij is the Kronecker delta.

Thus at each point p the vectors E1(p), E2(p), E3(p) do in fact form a frame
(Definition 1.4) since they have unit length and are mutually orthogonal.

In elementary calculus, frame fields are usually derived from coordinate
systems, as in the following cases.

6.2 Example (1) The cylindrical frame field (Fig. 2.19). Let r, J, z be the
usual cylindrical coordinate functions on R3. We shall pick a unit vector field
in the direction in which each coordinate increases (when the other two are
held constant). For r, this is evidently

E U U1 1 2= +cos sinJ J ,

E E i ji j ij• = £ £( )d 1 3, ,
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pointing straight out from the z axis. Then

points in the direction of increasing J as in Fig. 2.19. Finally, the direction
of increase of z is, of course, straight up, so

It is easy to check that Ei • Ej = dij, so this is a frame field (defined on all
of R3 except the z axis). We call it the cylindrical frame field on R3.

(2) The spherical frame field on R3 (Fig. 2.20). In a similar way, a frame
field F1, F2, F3 can be derived from the spherical coordinate functions r, J, j
on R3. As indicated in the figure, we shall measure j up from the xy plane
rather than (as is usually done) down from the z axis.

Let E1, E2, E3 be the cylindrical frame field. For spherical coordinates, the
unit vector field F2 in the direction of increasing J is the same as above, so
F2 = E2. The unit vector field F1, in the direction of increasing r, points
straight out from the origin; hence it can be expressed as

(Fig. 2.21). Similarly, the vector field for increasing j is

F E E1 1 3= +cos sinj j

E U3 3= .

E U U2 1 2= - +sin cosJ J
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Thus the formulas for E1, E2, E3 in (1) yield

By repeated use of the identity sin2 + cos2 = 1, we check that F1, F2, F3 is
a frame field—the spherical frame field on R3. (Its actual domain of defini-
tion is R3 minus the z axis, as in the cylindrical case.)

The following useful result is an immediate consequence of orthonormal
expansion.

6.3 Lemma Let E1, E2, E3 be a frame field on R3.
(1) If V is a vector field on R3, then V = fiEi, where the functions 

fi = V • Ei are called the coordinate functions of V with respect to E1,
E2, E3.

(2) If V = fiEi and W = giEi, then V • W = figi. In particular,
� V � = ( fi

2)1/2.

Thus a given vector field V has a different set of coordinate functions with
respect to each choice of a frame field E1, E2, E3. The Euclidean coordinate
functions (Lemma 2.5 of Chapter 1), of course, come from the natural frame
field U1, U2, U3. In Chapter 1, we used this natural frame field exclusively, but
now we shall gradually shift to arbitrary frame fields. The reason is clear: In 
studying curves and surfaces in R3, we shall then be able to choose a frame
field specifically adapted to the problem at hand. Not only does this simplify
computations, but it gives a clearer understanding of geometry than if we
had insisted on using the same frame field in every situation.

Exercises

1. If V and W are vector fields on R3 that are linearly independent at each
point, show that

is a frame field, where W̃ = W - (W • E1)E1.

E
V
V

E
W

W
E E E1 2 3 1 2= = = ¥, ,

˜

˜

Â
ÂÂÂ

Â

F U U U

F U U

F U U U

1 1 2 3

2 1 2

3 1 2 3

= +( ) +

= - +

= - +( ) +

cos cos sin sin

sin cos

sin cos sin cos .

j J J j

J J

j J J j

,

,

F E E3 1 3= - +sin cos .j j
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2. Express each of the following vector fields (i) in terms of the cylindrical
frame field (with coefficients in terms of r, J, z) and (ii) in terms of the spher-
ical frame field (with coefficients in terms of r, J, j):

(a) U1. (b) cosJU1 + sinJU2 + U3.
(c) xU1 + yU2 + zU3.

3. Find a frame field E1, E2, E3 such that

2.7 Connection Forms

Once more we state the essential point: The power of the Frenet formulas
stems not from the fact that they tell what the derivatives T ¢, N¢, B¢ are, but
from the fact that they express these derivatives in terms of T, N, B—and
thereby define curvature and torsion. We shall now do the same thing with
an arbitrary frame field E1, E2, E3 on R3; namely, express the covariant deriv-
atives of these vector fields in terms of the vector fields themselves. We begin
with the covariant derivative with respect to an arbitrary tangent vector v at
a point p. Then

where by orthonormal expansion the coefficients of these equations are

These coefficients cij, depend on the particular tangent vector v, so a better
notation for them is

Thus for each choice of i and j, wij is a real-valued function defined on all
tangent vectors. But we have met that kind of function before.

7.1 Lemma Let E1, E2, E3 be a frame field on R3. For each tangent vector
v to R3 at the point p, let

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

w ij v i jE E i jv p( ) = — ( ) ( )• ., ,1 3� �

c E E i jij v i j= — ( )• .p for ,1 3� �

— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )
— = ( ) + ( ) + ( )

v

v

v

E c E c E c E

E c E c E c E

E c E c E c E

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

p p p

p p p

p p p

,

,

,

E x U x z U x z U1 1 2 3= + +cos sin cos sin sin .
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Then each wij is a 1-form, and wij = -wji. These 1-forms are called the con-
nection forms of the frame field E1, E2, E3.

Proof. By definition, wij is a real-valued function on tangent vectors, so
to verify that wij is a 1-form (Def. 5.1 of Ch. 1), it suffices to check the lin-
earity condition. Using Theorem 5.3, we get

To prove that wij = -wji we must show that wij(v) = -wji(v) for every
tangent vector v. By definition of frame field, Ei • Ej = dij, and since each
Kronecker delta has constant value 0 or 1, the Leibnizian formula (4) of
Theorem 5.3 yields

By the symmetry of the dot product, the two vectors in this last term may
be reversed, so we have found that 0 = wij(v) + wji(v). ◆

The geometric significance of the connection forms is no mystery. The def-
inition wij(v) = —vEi • Ej(p) shows that wij(v) is the initial rate at which Ei

rotates toward Ej as p moves in the v direction. Thus the 1-forms wij contain
this information for all tangent vectors to R3.

The following basic result is little more than a rephrasing of the definition
of connection forms.

7.2 Theorem Let wij (1 � i, j � 3) be the connection forms of a frame
field E1, E2, E3 on R3. Then for any vector field V on R3,

We call these the connection equations of the frame field E1, E2, E3.

Proof. For fixed i, both sides of this equation are vector fields. Thus we
must show that at each point p,

— = ( )( ) ( )( ) ÂV p i ij j
j

E V Ew p p .

— = ( ) ( )ÂV i ij j
j

E V E iw , 1 3� � .

0 = [ ] = — ( ) + ( ) —v p pE E E E E Ei j v i j i v j• • • .

w

w w

ij av bw i j

v i w i j

v i j w i j

ij ij

a b E E

a E b E E

a E E b E E

a b

v w p

p

p p

v w

+( ) = — ( )
= — + —( ) ( )
= — ( ) + — ( )
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+ •

•

• •

.
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But as we have already seen, the very definition of connection form makes
this equation a consequence of orthonormal expansion. ◆

When i = j, the skew-symmetry condition wij = -wji becomes wii = -wii;
thus

Hence this condition has the effect of reducing the nine 1-forms wij for 
1 � i, j � 3 to essentially only three, say w12, w13, w23. It is perhaps best to
regard the connection forms wij as the entries of a skew-symmetric matrix of
1-forms,

Thus in expanded form, the connection equations (Theorem 7.2) become

(*)

showing an obvious relation to the Frenet formulas

The absence from the Frenet formulas of terms corresponding to w13(V)E3

and -w13(V)E1 is a consequence of the special way the Frenet frame field is
fitted to its curve. Having gotten T(~E1), we chose N(~E2) so that the deriv-
ative T ¢ would be a scalar multiple of N alone and not involve B(~E3).

Another difference between the Frenet formulas and the equations above
stems from the fact that R3 has three dimensions, while a curve has but one.
The coefficients—curvature k and torsion t—in the Frenet formulas measure
the rate of change of the frame field T, N, B only along its curve, that is, in
the direction of T alone. But the coefficients in the connection equations must
be able to make this measurement for E1, E2, E3 with respect to arbitrary
vector fields in R3. This is why the connection forms are 1-forms and not just
functions.

These formal differences aside, a more fundamental distinction stands out.
It is because a Frenet frame field is specially fitted to its curve that the Frenet

¢ =
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¢ = -
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formulas give information about that curve. Since the frame field E1, E2, E3

used above is completely arbitrary, the connection equations give no direct
information about R3, but only information about the “rate of rotation” of
that particular frame field. This is not a weakness, but a strength, since as
indicated earlier, if we can fit a frame field to a geometric problem arising in
R3, then the connection equations will give direct information about that
problem. Thus, these equations play a fundamental role in all the differential
geometry of R3. For example, the Frenet formulas can be deduced from them
(Exercise 8).

Given an arbitrary frame field E1, E2, E3 on R3, it is fairly easy to find an
explicit formula for its connection forms. First use orthonormal expansion
to express the vector fields E1, E2, E3 in terms of the natural frame field U1,
U2, U3 on R3:

Here each aij = Ei • Uj is a real-valued function on R3. The matrix

with these functions as entries is called the attitude matrix of the frame field
E1, E2, E3. In fact, at each point p, the numerical matrix

is exactly the attitude matrix of the frame E1(p), E2(p), E3(p) as in Definition
1.6. Since attitude matrices are orthogonal, the transpose tA of A is equal to
its inverse A-1.

Define the differential of A = (aij) to be dA = (daij), so dA is a matrix
whose entries are 1-forms. We can now give a simple expression for the con-
nection forms in terms of the attitude matrix.

7.3 Theorem If A = (aij) is the attitude matrix and w = (wij) the matrix
of connection forms of a frame field E1, E2, E3, then

or equivalently,

w = ( )dA At matrix multiplication ,

A aijp p( ) = ( )( )

A a
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a a a

a a a
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Since the proof is routine, it may be more informative to illustrate the result
by an example. For the cylindrical frame field in Example 6.2, we found the
attitude matrix

Thus

Since w12 = dJ is the only nonzero connection form (except, of course,
w21 = -w12), the connection equations (*) reduce to

These equations have immediate geometrical significance. Because V is
arbitrary, the third equation says that the vector field E3 is parallel. We knew
this already since in the cylindrical frame field, E3 is just U3.

The first two equations tell us that the covariant derivatives of E1 and E2

with respect to a vector field V depend only on the rate of change of the angle
J in the V direction.

For example, the definition of J shows that V [J] = 0 whenever V is a
vector field that at each point is tangent to a plane through the z axis. Thus
for a vector field of this type the connection equations above predict that 
—VE1 = —VE2 = 0. In fact, it is clear from Fig. 2.19 that E1 and E2 do remain
parallel on any plane through the z axis.
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Exercises

1. For any function f, show that the vector fields

form a frame field, and find its connection forms.

2. Find the connection forms of the natural frame field U1, U2, U3.

3. For any function f, show that

is the attitude matrix of a frame field, and compute its connection forms.

4. Prove that the connection forms of the spherical frame field are

5. If E1, E2, E3 is a frame field and W = fiEi, prove the covariant deriva-
tive formula:

6. Let E1, E2, E3 be the cylindrical frame field. If V is a vector field such
that V[r] = r and V[J] = 1, compute —V (r cosJE1 + r sinJE3).

7. (Computer.) (a) Write a computer command that, given the attitude
matrix A of a frame field on R3, returns the matrix w = dA tA of its 
connection forms. (Hint: For Maple, use the differential operator d from 
the package difforms. For Mathematica, use the total differential Dt.) (b) 
Test part (a) on the cylindrical frame field and on the spherical frame field
(Ex. 4).

8. Let b be a unit-speed curve in R3 with k > 0, and suppose that E1, E2, E3

is a frame field on R3 such that the restriction of these vector fields to b gives
the Frenet-frame field T, N, B of b. Prove that

w k w w t12 13 230T T T( ) = ( ) = ( ) =, , .
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Then deduce the Frenet formulas from the connection equations. (Hint:
Ex. 5 of Sec. 5.)

2.8 The Structural Equations

We have seen that 1-forms—the connection forms—give the simplest descrip-
tion of the rate of rotation of a frame field. Furthermore, the frame field
itself can be described in terms of 1-forms.

8.1 Definition If E1, E2, E3 is a frame field on R3, then the dual 1-forms
q1, q2, q3 of the frame field are the 1-forms such that

for each tangent vector v to R3 at p.

Note that qi is linear on the tangent vectors at each point; hence it is a 1-
form. In particular, qi(Ej) = dij, so readers familiar with the notion of dual
vector spaces will recognize that at each point, q1, q2, q3 gives the dual basis
of E1, E2, E3.

In the case of the natural frame field U1, U2, U3, the dual forms are just
dx1, dx2, dx3. In fact, from Example 5.3 of Chapter 1 we get

for each tangent vector v; hence dxi = qi.
Using dual forms, the orthonormal expansion formula in Lemma 6.3 may

be written V = qi(V )Ei. In the characteristic fashion of duality, this
formula becomes the following lemma.

8.2 Lemma Let q1, q2, q3 be the dual 1-forms of a frame field E1, E2, E3.
Then any 1-form f on R3 has a unique expression

Proof. Two 1-forms are the same if they have the same value on any
vector field V. But

◆

f q f q

f q f

E V E V

V E V

i i i i

i i

( )( )( ) = ( ) ( )

= ( )( ) = ( )
Â Â

Â .

f f q= ( )Â Ei i .

Â

dx v Ui i iv v p( ) = = ( )•

q i iEv v p( ) = ( )•
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Thus f is expressed in terms of dual forms of E1, E2, E3 by evaluating it
on E1, E2, E3. This useful fact is the generalization to arbitrary frame fields
of Lemma 5.4 of Chapter 1.

We compared a frame field E1, E2, E3 to the natural frame field by means
of its attitude matrix A = (aij), for which

The dual formulation is just

with the same coefficients. In fact, by the preceding lemma,

But

These formulas for Ei and qi show plainly that q1, q2, q3 is merely the dual
description of the frame field E1, E2, E3.

In calculus, when a new function appears on the scene, it is natural to ask
what its derivative is. Similarly with 1-forms—having associated with each
frame field its dual forms and connection forms, it is reasonable to ask what
their exterior derivatives are. The answer is given by two neat sets of equa-
tions discovered by Cartan.

8.3 Theorem (Cartan structural equations.) Let E1, E2, E3 be a frame
field on R3 with dual forms q1, q2, q3 and connection forms wij (1 � i, j � 3).
The exterior derivatives of these forms satisfy

(1) the first structural equations:

(2) the second structural equations:

Because qi is the dual of Ei, the first structural equations may be easily rec-
ognized as the dual of the connection equations. Only later experience will
show that the second structural equations mean that R3 is flat—roughly
speaking, in the same sense that the plane R2 is flat.

d i jij ik kj
k

w w w= Ÿ ( )Â 1 3� �, .

d ii ij j
j

q w q= Ÿ ( )Â 1 3� � ;

q di j i j ik k j ik kj ijU E U a U U a a( ) = = ( ) = =Â Â• • .

q qi i j jU dx= ( )Â .

q i ij ja dx= Â

E a U ii ij j= £ £( )Â 1 3 .
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The most efficient proof of the structural equations requires some prelim-
inary remarks. In the Cartan approach, the fundamental objects are not indi-
vidual forms, but rather matrices whose entries are forms. We have already
seen that the simplest description of the connection forms wij of a frame field
is as a single skew-symmetric matrix w with entries wij. Then, for example, w
is expressed in terms of the attitude matrix A of the frame field by the matrix
equation w = dA tA. (Here, as always, to apply d to a matrix, apply it to each
entry of the matrix.)

Similarly, the dual forms of a frame field can be described by a single n ¥ 1
matrix q with entries qi. If x is the n ¥ 1 matrix whose entries are the natural
coordinates xi of R3, then

so the formula qi = aij dxj above can be written as

For such matrices of forms, matrix multiplication is defined as usual, but
of course when entries are multiplied it is by the wedge product.

The proof of Theorem 8.3 is now quite simple. Recall that since the atti-
tude matrix A is orthogonal, tAA is the identity matrix I, which can be inserted
in any matrix formula without effect.

Proof of the First Structural Equation. Since d 2 = 0, we evidently
have d(dx) = 0, so

Expressed in terms of entries, this is indeed the version in (1) of Theorem
8.3.

Proof of the Second Structural Equation. For functions f and g.

Thus, using the transpose rule t(AB) = tB tA, we get

where the last step uses the skew-symmetry of w. Again, in terms of entries,
this is the version in (2) of Theorem 8.3. ◆

d d dA A dA d A dA A A dAt t t t tw w w ww= ( ) = - ◊ ( ) = - ◊ ( ) = - = ,
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8.4 Example Structural equations for the spherical frame field (Example
6.2). The dual forms and connection forms are

Let us check, say, the first structural equation

Using the skew-symmetry wij = -wji and the general properties of forms
developed in Chapter 1, we get

(the latter since dJ Ÿ dJ = 0). The sum of these terms is, correctly,

Second structural equations involve only one wedge product. For example,
since w11 = w22 = 0,

In this case,

which is the same as

To derive the expressions given above for the dual 1-forms, first compute
dx1, dx2, dx3 by differentiating the well-known equations

Then substitute in the formula qi = aij dxj, where A = (aij) is the atti-
tude matrix from Example 6.2. This result, somewhat disguised, is derived in 
elementary calculus by a familiar plausibility argument: If at each point the
spherical coordinates r, J, j are altered by increments dr, dJ, dj, then the
sides of the resulting infinitesimal box (Fig. 2.22) are dr, r cosj dJ, r dj.
These are exactly the formulas for q1, q2, q3.
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The structural equations provide a powerful method for dealing with geo-
metrical problems in R3: Select a frame field well adapted to the problem at
hand; find its dual 1-forms and connection forms; apply the structural equa-
tions; interpret the results. We will use this method later to study the geom-
etry of surfaces in R3.

Exercises

1. For a 1-form f = fiqi, prove

(Compare Ex. 5 of Sec. 7.)

2. Check all the structural equations of the spherical frame field.

3. For the cylindrical frame field E1, E2, E3.
(a) Starting from the basic cylindrical equations x = r cosJ, y = r sinJ,
z = z, show that the dual 1-forms are

(b) Deduce that E1[r] = 1, E2[J] = 1/r, E3[z] = 1 and that the other six 
possibilities E1[J], . . . are all zero.
(c) For a function f(r, J, z), show that

q q J q1 2 3= = =dr r d dz, , .

d df fj i ij
i

j
j

f w q= +ÏÌ
Ó

¸̋
˛

ŸÂÂ .

Â
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4. Frame fields on R2. Given a frame field E1, E2 on R2 there is an angle
function y such that

(a) Express the connection form and dual 1-forms in terms of y and the
natural coordinates x, y.
(b) What are the structural equations in this case? Check that the results
in part (a) satisfy these equations.

(Hint: Defining E3 = U3 gives a frame field on R3.)

2.9 Summary

We have accomplished the aims set at the beginning of this chapter. The idea
of a moving frame has been expressed rigorously as a frame field—either on
a curve in R3 or on an open set of R3 itself. In the case of a curve, we used
only the Frenet frame field T, N, B of the curve. Expressing the derivatives
of these vector fields in terms of the vector fields themselves, we discovered
the curvature and torsion of the curve. It is already clear that curvature and
torsion tell a lot about the geometry of a curve; we shall find in Chapter 3
that they tell everything. In the case of an open set of R3, we dealt with an
arbitrary frame field E1, E2, E3. Cartan’s generalization (Theorem 7.2) of the
Frenet formulas followed the same pattern of expressing the (covariant)
derivatives of these vector fields in terms of the vector fields themselves.
Omitting the vector field V from the notation in Theorem 7.2, we have

Cartan’s equations are not conspicuously more complicated than Frenet’s,
because the notion of 1-form is available for the coefficients wij, the connec-
tion forms.

Cartan Frenet
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