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Calculus on Euclidean Space
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As mentioned in the Preface, the purpose of this initial chapter is to estab-
lish the mathematical language used throughout the book. Much of what we
do is simply a review of that part of elementary calculus dealing with differ-
entiation of functions of three variables and with curves in space. Our defi-
nitions have been formulated so that they will apply smoothly to the later
study of surfaces.

1.1 Euclidean Space

Three-dimensional space is often used in mathematics without being formally
defined. Looking at the corner of a room, one can picture the familiar process
by which rectangular coordinate axes are introduced and three numbers are
measured to describe the position of each point. A precise definition that
realizes this intuitive picture may be obtained by this device: instead of saying
that three numbers describe the position of a point, we define them to be a
point.

1.1 Definition Euclidean 3-space R3 is the set of all ordered triples of real
numbers. Such a triple p = ( p1, p2, p3) is called a point of R3.

In linear algebra, it is shown that R3 is, in a natural way, a vector space
over the real numbers. In fact, if p = ( p1, p2, p3) and q = (q1, q2, q3) are points
of R3, their sum is the point

p q+ = + + +( )p q p q p q1 1 2 2 3 3, , .



The scalar multiple of a point p = ( p1, p2, p3) by a number a is the point

It is easy to check that these two operations satisfy the axioms for a vector
space. The point 0 = (0, 0, 0) is called the origin of R3.

Differential calculus deals with another aspect of R3 starting with the
notion of differentiable real-valued functions on R3. We recall some 
fundamentals.

1.2 Definition Let x, y, and z be the real-valued functions on R3 such
that for each point p = ( p1, p2, p3)

These functions x, y, z are called the natural coordinate functions of R3. We
shall also use index notation for these functions, writing

Thus the value of the function xi on a point p is the number pi, and so we
have the identity p = ( p1, p2, p3) = (x1(p), x2(p), x3(p)) for each point p of R3.
Elementary calculus does not always make a sharp distinction between the
numbers p1, p2, p3 and the functions x1, x2, x3. Indeed the analogous distinc-
tion on the real line may seem pedantic, but for higher-dimensional spaces
such as R3, its absence leads to serious ambiguities. (Essentially the same dis-
tinction is being made when we denote a function on R3 by a single letter f,
reserving f (p) for its value at the point p.)

We assume that the reader is familiar with partial differentiation and its
basic properties, in particular the chain rule for differentiation of a compos-
ite function. We shall work mostly with first-order partial derivatives ∂f /∂x,
∂f /∂y, ∂f /∂z and second-order partial derivatives ∂2f /∂x2, ∂2f /∂x∂y, . . . In a
few situations, third- and even fourth-order derivatives may occur, but to
avoid worrying about exactly how many derivatives we can take in any given
context, we establish the following definition.

1.3 Definition A real-valued function f on R3 is differentiable (or infi-
nitely differentiable, or smooth, or of class C •) provided all partial derivatives
of f, of all orders, exist and are continuous.

Differentiable real-valued functions f and g may be added and multiplied
in a familiar way to yield functions that are again differentiable and real-

x x x y x z1 2 3= = =, , .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .

a ap ap app = ( )1 2 3, , .
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valued. We simply add and multiply their values at each point—the formu-
las read

The phrase “differentiable real-valued function” is unpleasantly long. Hence
we make the convention that unless the context indicates otherwise, “func-
tion” shall mean “real-valued function,” and (unless the issue is explicitly
raised) the functions we deal with will be assumed to be differentiable. We do
not intend to overwork this convention; for the sake of emphasis the words
“differentiable” and “real-valued” will still appear fairly frequently.

Differentiation is always a local operation: To compute the value of the
function ∂f/∂x at a point p of R3, it is sufficient to know the values of f at all
points q of R3 that are sufficiently near p. Thus, Definition 1.3 is unduly
restrictive; the domain of f need not be the whole of R3, but need only be an
open set of R3. By an open set O of R3 we mean a subset of R3 such that if a
point p is in O, then so is every other point of R3 that is sufficiently near p.
(A more precise definition is given in Chapter 2.) For example, the set of all
points p = ( p1, p2, p3) in R3 such that p1 > 0 is an open set, and the function 
yz logx defined on this set is certainly differentiable, even though its domain
is not the whole of R3. Generally speaking, the results in this chapter remain
valid if R3 is replaced by an arbitrary open set O of R3.

We are dealing with three-dimensional Euclidean space only because this is
the dimension we use most often in later work. It would be just as easy to
work with Euclidean n-space Rn, for which the points are n-tuples p = ( p1,
. . . , pn) and which has n natural coordinate functions x1, . . . , xn. All the
results in this chapter are valid for Euclidean spaces of arbitrary dimensions,
although we shall rarely take advantage of this except in the case of
the Euclidean plane R2. In particular, the results are valid for the real line
R1 = R. Many of the concepts introduced are designed to deal with higher
dimensions, however, and are thus apt to be overelaborate when reduced to
dimension 1.

Exercises

1. Let f = x2y and g = y sinz be functions on R3. Express the following
functions in terms of x, y, z:

(a) fg2. (b)

(c) (d)
∂
∂y

fsin .( )∂
∂ ∂

2 fg
y z
( )

.

∂
∂

∂
∂

f
x

g
g
y

f+ .

f g f g fg f g+( )( ) = ( ) + ( ) ( )( ) = ( ) ( )p p p p p p, .
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2. Find the value of the function f = x2y - y2z at each point:
(a) (1, 1, 1). (b) (3, -1, ).
(c) (a, 1, 1 - a). (d) (t, t2, t3).

3. Express ∂f/∂x in terms of x, y, and z if
(a) f = x sin (xy) + ycos (xz).
(b) f = sin g, g = eh, h = x2 + y2 + z2.

4. If g1, g2, g3, and h are real-valued functions on R3, then

is the function such that

Express ∂f /∂x in terms of x, y, and z, if h = x2 - yz and
(a) f = h(x + y, y2, x + z). (b) f = h(ez, ex+y, ex).
(c) f = h(x, -x, x).

1.2 Tangent Vectors

Intuitively, a vector in R3 is an oriented line segment, or “arrow.” Vectors are
used widely in physics and engineering to describe forces, velocities, angular
momenta, and many other concepts. To obtain a definition that is both prac-
tical and precise, we shall describe an “arrow” in R3 by giving its starting
point p and the change, or vector v, necessary to reach its end point p + v.
Strictly speaking, v is just a point of R3.

2.1 Definition‡ A tangent vector vp to R3 consists of two points of R3: its
vector part v and its point of application p.

We shall always picture vp as the arrow from the point p to the point p + v.
For example, if p = (1, 1, 3) and v = (2, 3, 2), then vp runs from (1, 1, 3) to
(3, 4, 5) as in Fig. 1.1.

We emphasize that tangent vectors are equal, vp = wq, if and only if they
have the same vector part, v = w, and the same point of application, p = q.

f h g g gp p p p p( ) = ( ) ( ) ( )( )1 2 3, , for all .†

f h g g g= ( )1 2 3, ,

1
2
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Tangent vectors vp and vq with the same vector part, but different points of
application, are said to be parallel (Fig. 1.2). It is essential to recognize that
vp and vq are different tangent vectors if p π q. In physics the concept of
moment of a force shows this clearly enough: The same force v applied at
different points p and q of a rigid body can produce quite different rotational
effects.

2.2 Definition Let p be a point of R3. The set Tp(R3) consisting of all
tangent vectors that have p as point of application is called the tangent space
of R3 at p (Fig. 1.3).

We emphasize that R3 has a different tangent space at each and every one
of its points.

1.2 Tangent Vectors 7
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Since all the tangent vectors in a given tangent space have the same point
of application, we can borrow the vector addition and scalar multiplication
of R3 to turn Tp(R3) into a vector space. Explicitly, we define vp + wp to be 
(v + w)p. and if c is a number we define c(vp) to be (cv)p. This is just the usual
“parallelogram law” for addition of vectors, and scalar multiplication by 
c merely stretches a tangent vector by the factor c—reversing its direction if
c < 0 (Fig. 1.4).

These operations on the tangent space Tp(R3) make it a vector space iso-
morphic to R3 itself. Indeed, it follows immediately from the definitions above
that for a fixed point p, the function v Æ vp is a linear isomorphism from R3

to Tp(R3)—that is, a linear transformation that is one-to-one and onto.
A standard concept in physics and engineering is that of a force field. The

gravitational force field of the earth, for example, assigns to each point of
space a force (vector) directed at the center of the earth.

2.3 Definition A vector field V on R3 is a function that assigns to each
point p of R3 a tangent vector V (p) to R3 at p.

Roughly speaking, a vector field is just a big collection of arrows, one at
each point of R3.

There is a natural algebra of vector fields. To describe it, we first reexam-
ine the familiar notion of addition of real-valued functions f and g. It is pos-
sible to add f and g because it is possible to add their values at each point.
The same is true of vector fields V and W. At each point p, the values V(p)
and W(p) are in the same vector space—the tangent space Tp(R3)—hence we
can add V(p) and W(p). Consequently, we can add V and W by adding their
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values at each point. The formula for this addition is thus the same as for
addition of functions,

This scheme occurs over and over again. We shall call it the pointwise princi-
ple: If a certain operation can be performed on the values of two functions
at each point, then that operation can be extended to the functions them-
selves; simply apply it to their values at each point.

For example, we invoke the pointwise principle to extend the operation of
scalar multiplication (on the tangent spaces of R3). If f is a real-valued func-
tion on R3 and V is a vector field on R3, then f V is defined to be the vector
field on R3 such that

Our aim now is to determine in a concrete way just what vector fields look
like. For this purpose we introduce three special vector fields that will serve
as a “basis” for all vector fields.

2.4 Definition Let U1, U2, and U3 be the vector fields on R3 such that

for each point p of R3 (Fig. 1.5). We call U1, U2, U3—collectively—the natural
frame field on R3.

Thus, Ui (i = 1, 2, 3) is the unit vector field in the positive xi direction.

2.5 Lemma If V is a vector field on R3, there are three uniquely deter-
mined real-valued functions, v1, v2, v3 on R3 such that

U

U

U

p

p

p

1

2

3

1 0 0

0 1 0

0 0 1

p

p

p

( ) = ( )
( ) = ( )
( ) = ( )

, ,

, ,

, ,

fV f V( )( ) = ( ) ( )p p p p  for all .

V W V W+( )( ) = ( ) + ( )p p p .
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The functions v1, v2, v3 are called the Euclidean coordinate functions of V.

Proof. By definition, the vector field V assigns to each point p a tangent
vector V(p) at p. Thus, the vector part of V(p) depends on p, so we write
it (v1(p), v2(p), v3(p)). (This defines v1, v2, and v3 as real-valued functions on
R3.) Hence

for each point p (Fig. 1.6). By our (pointwise principle) definitions, this
means that the vector fields V and viUi have the same (tangent vector)
value at each point. Hence V = viUi. �

This last sentence uses two of our standard conventions: viUi means sum
over i = 1, 2, 3; the symbol (�) indicates the end of a proof.

The tangent-vector identity (a1, a2, a3)p = aiUi(p) appearing in this proof
will be used very often.

Computations involving vector fields may always be expressed in terms of
their Euclidean coordinate functions. For example, addition and multiplica-
tion by a function, are expressed in terms of coordinates by

vU wU v w U

f vU fv U

i i i i i i i

i i i i

Â Â Â
Â Â

+ = +( )

( ) = ( )
,

.

Â

Â
Â

Â

V v v v

v v v

v U v U v U

p

p p p

p p p p

p p p

p p p p p p

( ) = ( ) ( ) ( )( )
= ( )( ) + ( )( ) + ( )( )
= ( ) ( ) + ( ) ( ) + ( ) ( )

1 2 3

1 2 3

1 1 2 2 3 3

1 0 0 0 1 0 0 0 1

, ,

, , , , , ,

V vU vU vU= + +1 1 2 2 3 3.
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Since this is differential calculus, we shall naturally require that the various
objects we deal with be differentiable. A vector field V is differentiable pro-
vided its Euclidean coordinate functions are differentiable (in the sense of
Definition 1.3). From now on, we shall understand “vector field” to mean
“differentiable vector field.”

Exercises

1. Let v = (-2, 1, -1) and w = (0, 1, 3).
(a) At an arbitrary point p, express the tangent vector 3vp - 2wp as a linear
combination of U1(p), U2(p), U3(p).
(b) For p = (1, 1, 0), make an accurate sketch showing the four tangent
vectors vp, wp, -2vp, and vp + wp.

2. Let V = xU1 + yU2 and W = 2x2U2 - U3. Compute the vector field 
W - xV, and find its value at the point p = (-1, 0, 2).

3. In each case, express the given vector field V in the standard form viUi.
(a) 2z2U1 = 7V + xyU3.
(b) V(p) = ( p1, p3 - p1, 0)p for all p.
(c) V = 2(xU1 + yU2) - x(U1 - y2U3).
(d) At each point p, V(p) is the vector from the point ( p1, p2, p3) to the
point (1 + p1, p2p3, p2).
(e) At each point p, V(p) is the vector from p to the origin.

4. If V = y2U1 - x2U3 and W = x2U1 - zU2, find functions f and g such
that the vector field f V + gW can be expressed in terms of U2 and U3 only.

5. Let V1 = U1 - xU3, V2 = U2, and V3 = xU1 + U3.
(a) Prove that the vectors V1(p), V2(p), V3(p) are linearly independent at
each point of R3.
(b) Express the vector field xU1 + yU2 + zU3 as a linear combination of
V1, V2, V3.

1.3 Directional Derivatives

Associated with each tangent vector vp to R3 is the straight line t Æ p + tv
(see Example 4.2). If f is a differentiable function on R3, then t Æ f(p + tv)
is an ordinary differentiable function on the real line. Evidently the deriva-
tive of this function at t = 0 tells the initial rate of change of f as p moves
in the v direction

Â
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3.1 Definition Let f be a differentiable real-valued function on R3, and
let vp be a tangent vector to R3. Then the number

is called the derivative of f with respect to vp.
This definition appears in elementary calculus with the additional restric-

tion that vp be a unit vector. Even though we do not impose this restriction,
we shall nevertheless refer to vp[ f ] as a directional derivative.

For example, we compute vp[ f ] for the function f = x2yz, with p = (1, 1, 0)
and v = (1, 0, -3). Then

describes the line through p in the v direction. Evaluating f along this line,
we get

Now,

hence at t = 0, we find vp[ f ] = -3. Thus, in particular, the function f is 
initially decreasing as p moves in the v direction.

The following lemma shows how to compute vp[ f ] in general, in terms of
the partial derivatives of f at the point p.

3.2 Lemma If vp = (v1, v2, v3)p is a tangent vector to R3, then

Proof. Let p = ( p1, p2, p3); then

We use the chain rule to compute the derivative at t = 0 of the function

Since

d
dt

p tv vi i i+( ) = ,

f t f p tv p tv p tvp v+( ) = + + +( )1 1 2 2 3 3, , .

p v+ = + + +( )t p tv p tv p tv1 1 2 2 3 3, , .

v pp i
i

f v
f

x
[ ] =

∂
∂

( )Â .

d
dt

f t t tp v+( )( ) = - - -3 12 9 2;

f t t t t t tp v+( ) = +( ) ◊ ◊ -( ) = - - -1 1 3 3 6 32 2 3.

p v+ = ( ) + -( ) = + -( )t t t t1 1 0 1 0 3 1 1 3, , , , , ,

v p vp tf
d
dt

f t[ ] = +( )( ) =0
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we obtain

�

Using this lemma, we recompute vp[ f ] for the example above. Since 
f = x2yz, we have

Thus, at the point p = (1, 1, 0),

Then by the lemma,

as before.
The main properties of this notion of derivative are as follows.

3.3 Theorem Let f and g be functions on R3, vp and wp tangent vectors,
a and b numbers. Then

(1) (avp + bwp)[ f ] = avp[ f ] + bwp[ f ].
(2) vp[af + bg] = avp[ f ] + bvp[g].
(3) vp[ fg] = vp[ f ] .g(p) + f(p) .vp[g].

Proof. All three properties may be deduced easily from the preceding
lemma. For example, we prove (3). By the lemma, if v = (v1, v2, v3), then

But

Hence

�
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The first two properties in the preceding theorem may be summarized by
saying that vp[ f ] is linear in vp and in f. The third property, as its proof makes
clear, is essentially just the usual Leibniz rule for differentiation of a product.
No matter what form differentiation may take, it will always have suitable linear
and Leibnizian properties.

We now use the pointwise principle to define the operation of a vector field
V on a function f. The result is the real-valued function V[ f ] whose value at
each point p is the number V(p)[ f ], that is, the derivative of f with respect to
the tangent vector V(p) at p. This process should be no surprise, since for a
function f on the real line, one begins by defining the derivative of f at a
point—then the derivative function df/dx is the function whose value at each
point is the derivative at that point. Evidently, the definition of V[ f ] is strictly
analogous. In particular, if U1, U2, U3 is the natural frame field on R3, then
Ui [ f ] = ∂f/∂xi. This is an immediate consequence of Lemma 3.2. For
example, U1(p) = (1, 0, 0)p; hence

which is precisely the definition of (∂f/∂x1)(p). This is true for all points 
p = (p1, p2, p3); hence U1[ f ] = ∂f/∂x1.

We shall use this notion of directional derivative more in the case of vector
fields than for individual tangent vectors.

3.4 Corollary If V and W are vector fields on R3 and f, g, h are real-
valued functions, then

(1) ( fV + gW)[h] = fV [h] + gW [h].
(2) V [af + bg] = aV [ f ] + bV [g], for all real numbers a and b.
(3) V [ fg] = V[ f ] .g + f .V [g].

Proof. The pointwise principle guarantees that to derive these properties
from Theorem 3.3 we need only be careful about the placement of paren-
theses. For example, we prove the third formula. By definition, the value
of the function V[ fg] at p is V (p)[ fg]. But by Theorem 3.3 this is

�

If the use of parentheses here seems extravagant, we remind the reader that
a meticulous proof of Leibniz’s formula

V f g f V g V f g f V g

V f g f V g

p p p p p p p p

p

( )[ ]◊ ( ) + ( )◊ ( )[ ] = [ ]( )◊ ( ) + ( )◊ [ ]( )
= [ ]◊ + ◊ [ ]( )( ).

U f
d
dt

f p t p p t1 1 2 3 0p( )[ ] = +( )( ) =, , ,
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must involve the same shifting of parentheses.
Note that the linearity of V[ f ] in V and f is for functions as “scalars” in

the first formula in Corollary 3.4 but only for numbers as “scalars” in the
second. This stems from the fact that fV signifies merely multiplication, but
V[ f ] is differentiation.

The identity Ui [ f ] = ∂f/∂xi makes it a simple matter to carry out explicit
computations. For example, if V = xU1 - y2U3 and f = x2y + z3, then

3.5 Remark Since the subscript notation vp for a tangent vector is some-
what cumbersome, from now on we shall frequently omit the point of appli-
cation p from the notation. This can cause no confusion, since v and w will
always denote tangent vectors, and p and q points of R3. In many situations
(for example, Definition 3.1) the point of application is crucial, and will be
indicated by using either the old notation vp or the phrase “a tangent vector
v to R3 at p.”

Exercises

1. Let vp be the tangent vector to R3 with v = (2, -1, 3) and p = (2, 0, -1).
Working directly from the definition, compute the directional derivative vp[ f ],
where

(a) f = y2z. (b) f = x7.
(c) f = ex cos y.

2. Compute the derivatives in Exercise 1 using Lemma 3.2.

3. Let V = y2U1 - xU3, and let f = xy, g = z3. Compute the functions
(a) V[ f ]. (b) V[g].
(c) V[ fg]. (d) fV[g] - gV[ f ].
(e) V[ f 2 + g2]. (f) V[V[ f ]].

4. Prove the identity V = V [xi ]Ui, where x1, x2, x3 are the natural coor-
dinate functions. (Hint: Evaluate V = viUi on xj.)

5. If V [ f ] = W[ f ] for every function f on R3, prove that V = W.

Â
Â

V f xU x y xU z y U x y y U z

x xy y z x y y z

[ ] = [ ] + [ ] - [ ] - [ ]
= ( ) + - - ( ) = -
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1
3 2

3
2 2

3
3

2 2 2 2 22 0 0 3 2 3 .

d
dx

fg
df
dx

g f
dg
dx

( ) = ◊ + ◊
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1.4 Curves in R3

Let I be an open interval in the real line R. We shall interpret this liberally
to include not only the usual finite open interval a < t < b (a, b real numbers),
but also the infinite types a < t (a half-line to +•), t < b (a half-line to -•),
and also the whole real line.

One can picture a curve in R3 as a trip taken by a moving point a. At each
“time” t in some open interval, a is located at the point

in R3. In rigorous terms then, a is a function from I to R3, and the real-valued
functions a1, a2, a3 are its Euclidean coordinate functions. Thus we write 
a = (a1, a, a3), meaning, of course, that

We define the function a to be differentiable provided its (real-valued) co-
ordinate functions are differentiable in the usual sense.

4.1 Definition A curve in R3 is a differentiable function a : I Æ R3 from
an open interval I into R3.

We shall give several examples of curves, which will be used in Chapter 2
to experiment with results on the geometry of curves.

4.2 Example (1) Straight line. A line is the simplest type of curve in
Euclidean space; its coordinate functions are linear (in the sense t Æ at + b,
not in the homogeneous sense t Æ at). Explicitly, the curve a: R Æ R3 such
that

is the straight line through the point p = a(0) in the q direction.

(2) Helix. (Fig. 1.7). The curve t Æ (acos t,a sin t,0) travels around a circle
of radius a > 0 in the xy plane of R3. If we allow this curve to rise (or fall)
at a constant rate, we obtain a helix a: R Æ R3, given by the formula

where a > 0, b π 0.

a t a t a t bt( ) = ( )cos , sin ,

a t t p tq p tq p tq( ) = + = + + +( ) π( )p q q1 1 2 2 3 3 0, ,

a a a at t t t t I( ) = ( ) ( ) ( )( )1 2 3, ., for all in

a a a at t t t( ) = ( ) ( ) ( )( )1 2 3, ,
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(3) The curve

has a noteworthy property: Let C be the cylinder in R3 over the circle in the
xy plane with center at (1, 0, 0) and radius 1. Then a perpetually travels the
route sliced from C by the sphere with radius 2 and center at the origin.
A segment of this route is shown in Fig. 1.8.

(4) The curve a: R Æ R3 such that

shares with the helix in (2) the property of rising constantly. However, it lies
over the hyperbola xy = 1 in the xy plane instead of over a circle.

(5) The 3-curve a: R Æ R3 is defined by

If the coordinate functions of a curve are simple enough, its shape in R3 can
be found, at least approximately, by plotting a few points. We could get a rea-
sonable picture of curve a for 0 � t � 1 by computing a(t) for t = 0, 1/10, 1/2,
9/10, 1.

If we visualize a curve a in R3 as a moving point, then at every time t there
is a tangent vector at the point a(t) that gives the instantaneous velocity of
a at that time. ◆
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4.3 Definition Let a: I Æ R3 be a curve in R3 with a = (a1, a2, a3). For
each number t in I, the velocity vector of a at t is the tangent vector

at the point a(t) in R3 (Fig. 1.9).

This definition can be interpreted geometrically as follows. The derivative
at t of a real-valued function f on R is given by

This formula still makes sense if f is replaced by a curve a = (a1, a2, a3). In
fact,

This is the vector from a(t) to a(t + Dt), scalar multiplied by 1/Dt (Fig. 1.10).
Now, as Dt gets smaller, a(t + Dt) approaches a(t), and in the limit as 

Dt Æ 0, we get a vector tangent to the curve a at the point a(t), namely,

As the figure suggests, the point of application of this vector must be the
point a(t). Thus the standard limit operation for derivatives gives rise to our
definition of the velocity of a curve.
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An application of the identity

to the velocity vector a ¢(t) at t yields the alternative formula

For example, the velocity of the straight line a(t) = p + tq is

The fact that a is straight is reflected in the fact that all its velocity vectors
are parallel; only the point of application changes as t changes.

For the helix

the velocity is

The fact that the helix rises constantly is shown by the constancy of the z
coordinate of a ¢(t).

Given any curve, it is easy to construct new curves that follow the same
route.

4.4 Definition Let a: I Æ R3 be a curve. If h: J Æ I is a differentiable
function on an open interval J, then the composite function

is a curve called a reparametrization of a by h.

For each s Œ J, the new curve b is at the point b(s) = a(h(s)) reached by
a at h(s) in I (Fig. 1.11). Thus b represents a different trip over at least part
of the route of a.
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To compute the coordinates of b, simply substitute t = h(s) into the co-
ordinates a1(t), a2(t), a3(t) of a. For example, suppose

If h(s) = s2 on J: 0 < s < 2, then the reparametrized curve is

The following lemma relates the velocities of a curve and of a repara-
metrization.

4.5 Lemma If b is the reparametrization of a by h, then

Proof. If a = (a1, a2, a3), then

Using the “prime” notation for derivatives, the chain rule for a composi-
tion of real-valued functions f and g reads (g( f ))¢ = g¢( f ) . f ¢. Thus, in the
case at hand,

By the definition of velocity, this yields

�

According to this lemma, to obtain the velocity of a reparametrization 
of a by h, first reparametrize a ¢ by h, then scalar multiply by the derivative
of h.

Since velocities are tangent vectors, we can take the derivative of a func-
tion with respect to a velocity.

¢( ) = ( )¢( )
= ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( ) ¢ ( )( )◊ ¢( )( )
= ¢( ) ¢ ( )( )

b a

a a a

a

s h s

h s h s h s h s h s h s

h s h s

1 2 3, ,

.

a ai ih s h s h s( )¢( ) = ¢ ( )( )◊ ¢( ).

b a a a as h s h s h s h s( ) = ( )( ) = ( )( ) ( )( ) ( )( )( 1 2 3, , .

¢( ) = ( )( ) ¢ ( )( )b as dh ds s h s .

b a as h s s s s s( ) = ( )( ) = ( ) = -( )2 3 21, , .

a t t t t t on I t( ) = -( ) < <, , 1 0 4: .

20 1. Calculus on Euclidean Space

FIG. 1.11



4.6 Lemma Let a be a curve in R3 and let f be a differentiable function
on R3. Then

Proof. Since

we conclude from Lemma 3.2 that

But the composite function f(a) may be written f(a1, a2, a3), and the
chain rule then gives exactly the same result for the derivative of f(a). �

By definition, a ¢(t)[ f ] is the rate of change of f along the line through a(t)
in the a ¢(t) direction. (If a ¢(t) π 0, this is the tangent line to a at a(t); see
Exercise 9.) The lemma shows that this rate of change is the same as that of
f along the curve a itself.

Since a curve a: I Æ R3 is a function, it makes sense to say that a is one-
to-one; that is, a(t) = a(t1) only if t = t1. Another special property of curves
is periodicity: A curve a: R Æ R3 is periodic if there is a number p > 0 such
that a(t + p) = a(t) for all t—and the smallest such number p is then called
the period of a.

From the viewpoint of calculus, the most important condition on a curve
a is that it be regular, that is, have all velocity vectors different from zero.
Such a curve can have no corners or cusps.

The following remarks about curves (offered without proof ) describe
another familiar way to formulate the concept of “curve.” If f is a differen-
tiable real-valued function on R2, let

be the set of all points p in R2 such that f(p) = a. Now, if the partial deriv-
atives ∂f/∂x and ∂f/∂y are never simultaneously zero at any point of C, then
C consists of one or more separate “components,” which we shall call
Curves.† For example, C: x2 + y2 = r2 is the circle of radius r centered at the
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origin of R2, and the hyperbola C: x2 - y2 = r2 splits into two Curves
(“branches”) C1 and C2 as shown in Fig. 1.12.

Every Curve C is the route of many regular curves, called parametrizations
of C. For example, the curve

is a well-known periodic parametrization of the circle given above, and for 
r > 0 the one-to-one curve

parametrizes the branch x > 0 of the hyperbola.

Exercises

1. Compute the velocity vector of the curve in Example 4.2(3) for arbitrary
t and for t = 0, t = p/2, t = p, visualizing those on Fig. 1.8.

2. Find the unique curve such that a(0) = (1, 0, 5) and a¢(t) = (t2, t, et).

3. Find the coordinate functions of the curve b = a(h), where a is the curve
in Example 4.2(3) and h(s) = cos-1 (s) on J: 0 < s < 1.

4. Reparametrize the curve a in Example 4.2(4) using h(s) = log s on 
J: s > 0. Check the equation in Lemma 4.5 in this case by calculating each
side separately.

5. Find the equation of the straight line through the points (1, -3, -1) 
and (6, 2, 1). Does this line meet the line through the points (-1, 1, 0) and 
(-5, -1, -1)?

6. Deduce from Lemma 4.6 that in the definition of directional derivative
(Def. 3.1) the straight line t Æ p + tv can be replaced by any curve a with
initial velocity vp, that is, such that a(0) = p and a ¢(0) = vp.

b t r t r t( ) = ( )cosh sinh,

a t r t r t( ) = ( )cos sin,
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7. (Continuation.)
(a) Show that the curves with coordinate functions

all have the same initial velocity vp.
(b) If f = x2 - y2 + z2, compute vp[ f ] by calculating d( f(a))/dt at t = 0,
using each of three curves in (a).

8. Sketch the following Curves in R2, and find parametrizations for each.
(a) C: 4x2 + y2 = 1, (b) C: 3x + 4y = 1,
(c) C: y = ex.

9. For a fixed t, the tangent line to a regular curve a at the point a(t) is the
straight line u Æ a(t) + ua ¢(t), where we delete the point of application of
a ¢(t). Find the tangent line to the helix a(t) = (2cos t, 2 sin t, t) at the points
a(0) and a(p/4).

1.5 1-Forms

If f is a real-valued function on R3, then in elementary calculus the differen-
tial of f is usually defined as

It is not always made clear exactly what this formal expression means. In this
section we give a rigorous treatment using the notion of 1-form, and forms
tend to appear at crucial moments in later work.

5.1 Definition A 1-form f on R3 is a real-valued function on the set of
all tangent vectors to R3 such that f is linear at each point, that is,

for any numbers a, b and tangent vectors v, w at the same point of R3.

We emphasize that for every tangent vector v, a 1-form f defines a real
number f(v); and for each point p in R3, the resulting function fp: Tp(R3) Æ R
is linear. Thus at each point p, fp is an element of the dual space of Tp(R3). In
this sense the notion of 1-form is dual to that of vector field.

The sum of 1-forms f and y is defined in the usual pointwise fashion:
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Similarly, if f is a real-valued function on R3 and f is a 1-form, then ff is
the 1-form such that

for all tangent vectors vp.
There is also a natural way to evaluate a 1-form f on a vector field V to

obtain a real-valued function f(V): At each point p the value of f(V) is the
number f(V(p)). Thus a 1-form may also be viewed as a machine that con-
verts vector fields into real-valued functions. If f(V) is differentiable when-
ever V is, we say that f is differentiable. As with vector fields, we shall always
assume that the 1-forms we deal with are differentiable.

A routine check of definitions shows that f(V) is linear in both f and V;
that is,

and

where f and g are functions.
Using the notion of directional derivative, we now define a most impor-

tant way to convert functions into 1-forms.

5.2 Definition If f is a differentiable real-valued function on R3, the dif-
ferential df of f is the 1-form such that

In fact, df is a 1-form, since by definition it is a real-valued function on
tangent vectors, and by (1) of Theorem 3.3 it is linear at each point p. Clearly,
df knows all rates of change of f in all directions on R3, so it is not surpris-
ing that differentials are fundamental to the calculus on R3.

Our task now is to show that these rather abstract definitions lead to famil-
iar results when expressed in terms of coordinates.

5.3 Example 1-Forms on R3. (1) The differentials dx1, dx2, dx3 of the
natural coordinate functions. Using Lemma 3.2 we find

dx x v
x
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where dij is the Kronecker delta (0 if i π j, 1 if i = j). Thus the value of dxi

on an arbitrary tangent vector vp is the ith coordinate vi of its vector part—and
does not depend on the point of application p.

(2) The 1-form y = f1dx1 + f2dx2 + f3dx3. Since dxi is a 1-form, our def-
initions show that y is also a 1-form for any functions f1, f2, f3. The value
of y on an arbitrary tangent vector vp is

The first of these examples shows that the 1-forms dx1, dx2, dx3 are the ana-
logues for tangent vectors of the natural coordinate functions x1, x2, x3 for
points. Alternatively, we can view dx1, dx2, dx3 as the “duals” of the natural
unit vector fields U1, U2, U3. In fact, it follows immediately from (1) above
that the function dxi (Uj ) has the constant value dij.

We now show that every 1-form can be written in the concrete manner
given in (2) above.

5.4 Lemma If f is a 1-form on R3, then f = fidxi , where fi = f (Ui).
These functions f1, f2, f3 are called the Euclidean coordinate functions of f.

Proof. By definition, a 1-form is a function on tangent vectors; thus f
and fidxi are equal if and only if they have the same value on every
tangent vector vp = viUi(p). In (2) of Example 5.3 we saw that

On the other hand,

since fi = f(Ui). Thus f and fidxi do have the same value on every
tangent vector. �

This lemma shows that a 1-form on R3 is nothing more than an expression
f dx + g dy + h dz, and such expressions are now rigorously defined as func-
tions on tangent vectors. Let us now show that the definition of differential
of a function (Definition 5.2) agrees with the informal definition given at the
start of this section.

5.5 Corollary If f is a differentiable function on R3, then
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Proof. The value of (∂f/∂xi)dxi on an arbitrary tangent vector vp is
(∂f/∂xi) (p)vi. By Lemma 3.2, df(vp) = vp[ f ] is the same. Thus the 1-forms

df and (∂f/∂xi) dxi are equal. �

Using either this result or the definition of d, it is immediate that

Finally, we determine the effect of d on products of functions and on com-
positions of functions.

5.6 Lemma Let fg be the product of differentiable functions f and g on
R3. Then

Proof. Using Corollary 5.5, we obtain

�

5.7 Lemma Let f: R3 Æ R and h: R Æ R be differentiable functions, so
the composite function h( f ): R3 Æ R is also differentiable. Then

Proof. (The prime here is just the ordinary derivative, so h¢( f ) is again a
composite function, from R3 to R.) The usual chain rule for a composite
function such as h( f ) reads

Hence

�

To compute df for a given function f it is almost always simpler to use these
properties of d rather than substitute in the formula of Corollary 5.5. Then
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from df we immediately get the partial derivatives of f, and, in fact, all its
directional derivatives. For example, suppose

Then by Lemmas 5.6 and 5.7,

Now use the rules above to evaluate this expression on a tangent vector vp.
The result is

Exercises

1. Let v = (1, 2, -3) and p = (0, -2, 1). Evaluate the following 1-forms
on the tangent vector vp.

(a) y2 dx. (b) z dy - y dz.
(c) (z2 - 1)dx - dy + x2 dz.

2. If f = fidxi and V = viUi, show that the 1-form f evaluated on the
vector field V is the function f(V) = fivi.

3. Evaluate the 1-form f = x2 dx - y2 dz on the vector fields
V = xU1 + yU2 + zU3,
W = xy (U1 - U3) + yz (U1 - U2), and (1/x)V + (1/y)W.

4. Express the following differentials in terms of df:
(a) d( f 5). (b) , where f > 0.
(c) d(log(1 + f 2)).

5. Express the differentials of the following functions in the standard form
fi dxi.
(a) (x2 + y2 + z2)1/2. (b) tan-1(y/x).

6. In each case compute the differential of f and find the directional deriv-
ative vp[ f ], for vp as in Exercise 1.

(a) f = xy2 - yz2. (b) f = xeyz.
(c) f = sin(xy) cos(xz).
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7. Which of the following are 1-forms? In each case f is the function on
tangent vectors such that the value of f on (v1, v2, v3)p is

(a) v1 - v3. (b) p1 - p3.
(c) v1p3 + v2p1. (d) vp[x2 + y2].
(e) 0. (f) (p1)2.

In case f is a 1-form, express it as fi dxi.

8. Prove Lemma 5.6 directly from the definition of d.

9. A 1-form f is zero at a point p provided f(vp) = 0 for all tangent vectors
at p. A point at which its differential df is zero is called a critical point of the
function f. Prove that p is a critical point of f if and only if

Find all critical points of f = (1 - x2)y + (1 - y2)z.

(Hint: Find the partial derivatives of f by computing df.)

10. (Continuation.) Prove that the local maxima and local minima of f are
critical points of f. (f has a local maximum at p if f(q) � f(p) for all q near
p.)

11. It is sometimes asserted that df is the linear approximation of Df.
(a) Explain the sense in which (df )(vp) is a linear approximation of
f (p + v) - f(p).
(b) Compute exact and approximate values of f(0.9, 1.6, 1.2) - f(1, 1.5, 1),
where f = x2y/z.

1.6 Differential Forms

The 1-forms on R3 are part of a larger system called the differential forms on
R3. We shall not give as rigorous an account of differential forms as we did
of 1-forms since our use of the full system on R3 is limited. However, the
properties established here are valid whenever differential forms are used.

Roughly speaking, a differential form on R3 is an expression obtained by
adding and multiplying real-valued functions and the differentials dx1, dx2,
dx3 of the natural coordinate functions of R3. These two operations obey the
usual associative and distributive laws; however, the multiplication is not
commutative. Instead, it obeys the

alternation rule: dx dx dx dx i ji j j i= - £ £( )1 3, .
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This rule appears—although rather inconspicuously—in elementary calculus
(see Exercise 9).

A consequence of the alternation rule is the fact that “repeats are zero,”
that is, dxi dxi = 0, since if i = j the alternation rule reads

If each summand of a differential form contains p dxi’s (p = 0, 1, 2, 3), the
form is called a p-form, and is said to have degree p. Thus, shifting to dx, dy,
dz, we find

A 0-form is just a differentiable function f.
A 1-form is an expression f dx + g dy + h dz, just as in the preceding section.
A 2-form is an expression f dx dy + g dx dz + h dy dz.
A 3-form is an expression f dx dy dz.
We already know how to add 1-forms: simply add corresponding coeffi-

cient functions. Thus, in index notation,

The corresponding rule holds for 2-forms or 3-forms.
On three-dimensional Euclidean space, all p-forms with p > 3 are zero. This

is a consequence of the alternation rule, for a product of more than three
dxi’s must contain some dxi twice, but repeats are zero, as noted above. For
example, dx dy dx dz = -dx dx dy dz = 0, since dx dx = 0. As a reminder
that the alternation rule is to be used, we denote this multiplication of forms
by a wedge Ÿ. (However, we do not bother with the wedge when only prod-
ucts of dx, dy, dz are involved.)

6.1 Example Computation of wedge products.

(1) Let

Then

But dx dx = 0 and dy dx = -dx dy. Thus

In general, the product of two 1-forms is a 2-form.

f yŸ = + -yz dx dy x dx dz xy dy dz2 .

f yŸ = -( ) Ÿ +( )
= + - -

x dx y dy z dx x dz

xz dx dx x dx dz yz dy dx yx dy dz2 .

f y= - = +x dx y dy z dx x dzand .

f dx g dx f g dxi i i i i i iÂ Â Â+ = +( ) .

dx dx dx dxi i i i= - .
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(2) Let f and y be the 1-forms given above and let q = z dy. Then

Since dy dx dy and dy dy dz each contain repeats, both are zero. Thus

(3) Let f be as above, and let h be the 2-form y dx dz + x dy dz. Omitting
forms containing repeats, we find

It should be clear from these examples that the wedge product of a p-form
and a q-form is a ( p + q)-form. Thus such a product is automatically zero
whenever p + q > 3.

6.2 Lemma If f and y are 1-forms, then

Proof. Write

Then by the alternation rule,

�

In the language of differential forms, the operator d of Definition 5.2 con-
verts a 0-form f into a 1-form df. It is easy to generalize to an operator (also
denoted by d ) that converts a p-form h into a ( p + 1)-form dh: One simply
applies d (of Definition 5.2) to the coefficient functions of h. For example,
here is the case p = 1.

6.3 Definition If f = fi dxi is a 1-form on R3, the exterior derivative
of f is the 2-form df = dfi Ÿ dxi.

If we expand the preceding definition using Corollary 5.5, we obtain the
following interesting formula for the exterior derivative of
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There is no need to memorize this formula; it is more reliable simply to apply
the definition in each case. For example, suppose

Then

It is easy to check that the general exterior derivative enjoys the same lin-
earity property as the particular case in Definition 5.2; that is,

where f and y are arbitrary forms and a and b are numbers.
The exterior derivative and the wedge product work together nicely:

6.4 Theorem Let f and g be functions, f and y 1-forms. Then

(1) d( fg) = df g + f dg.
(2) d( ff) = df Ÿ f + f df.
(3) d(f Ÿ y) = df Ÿ y - f Ÿ dy.†

Proof. The first formula is just Lemma 5.6. We include it to show the
family resemblance of all three formulas. The proof of (2) is a simpler
version of that of (3), so we outline a proof of the latter—watching to see
where the minus sign comes from.

It suffices to prove the formula when f = f du, y = g dv, where u and v
are any of the coordinate functions x1, x2, x3. In fact, every 1-form is a sum
of such terms, so the general case will follow by the linearity of d and the
algebra of wedge products.

For example, let us try the typical case f = f dx, y = g dy. Since repeats
kill, there is no use writing down terms that are bound to be eliminated.
Hence

(*)d d fg dx dy
fg
z

dz dx dy f
g
z

g
f
z

dx dy dzf yŸ( ) = ( ) =
∂( )

∂
=

∂
∂

+
∂
∂

Ê
ËÁ

ˆ
¯̃

.

d a b a d b df y f y+( ) = + ,

d d xy dx d x dz

y dx x dy dx x dx dz

x dx dy x dx dz

f = ( ) Ÿ + ( ) Ÿ

= +( ) Ÿ + ( ) Ÿ

= - +

2

2

2 .

f = +xy dx x dz2 .
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Now,

But

since dx dz dy = -dx dy dz. Thus we must subtract this last equation from
its predecessor to get (*). �

One way to remember the minus sign in equation (3) of the theorem is to
treat d as if it were a 1-form. To reach y, d must change places with f, hence
the minus sign is consistent with the alternation rule in Lemma 6.2.

Differential forms, and the associated notions of wedge product and exte-
rior derivative, provide the means of expressing quite complicated relations
among the partial derivatives in a highly efficient way. The wedge product
saves much useless labor by discarding, right at the start, terms that will even-
tually disappear. But the exterior derivative d is the key. Exercise 8 shows, for
example, how it replaces all three of the differentiation operations of classi-
cal vector analysis.

Exercises

1. Let f = yz dx + dz, y = sin z dx + cos z dy, x = dy + z dz. Find the
standard expressions (in terms of dxdy, . . .) for

(a) f Ÿ y, y Ÿ x, x Ÿ f. (b) df, dy, dx.

2. Let f = dx/y and y = z dy. Check the Leibnizian formula (3) of
Theorem 6.4 in this case by computing each term separately.

3. For any function f show that d(df ) = 0. Deduce that d( f dg) = df Ÿ dg.

4. Simplify the following forms:
(a) d( f dg + g df ). (b) d(( f - g) (df + dg)).
(c) d( f dg Ÿ g df ). (d) d(gf df) + d( f dg).

5. For any three 1-forms fi = j fijdxj (1 � i � 3), prove

f f f1 2 3

11 12 13

21 22 23

31 32 33

1 2 3Ÿ Ÿ =
f f f

f f f

f f f

dx dx dx .

Â

f yŸ = Ÿ ( ) = Ÿ
∂
∂

Ÿ = -
∂
∂

d f dx d g dy f dx
g
z

dz dy f
g
z

dx dy dz,

d d f dx g dy
f
z

dz dx g dy g
f
z

dx dy dzf yŸ = ( ) Ÿ =
∂
∂

Ÿ Ÿ =
∂
∂

.
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6. If r, J, z are the cylindrical coordinate functions on R3, then x = rcosJ,
y = r sin J, z = z. Compute the volume element dx dy dz of R3 in cylindrical
coordinates. (That is, express dx dy dz in terms of the functions r, J, z, and
their differentials.)

7. For a 2-form

the exterior derivative dh is defined to be the 3-form obtained by 
replacing f, g, and h by their differentials. Prove that for any 1-form f,
d(df) = 0.

Exercises 3 and 7 show that d 2 = 0, that is, for any form x, d(dx) = 0. (If
x is a 2-form, then d(dx) = 0, since its degree exceeds 3.)

8. Classical vector analysis avoids the use of differential forms on R3 by con-
verting 1-forms and 2-forms into vector fields by means of the following one-
to-one correspondences:

Vector analysis uses three basic operations based on partial differentiation:
Gradient of a function f:

Curl of a vector field V = fiUi:

Divergence of a vector field V = fiUi:

Prove that all three operations may be expressed by exterior derivatives as
follows:

(a)

(b)

(c) If , then divh h´ = ( )
( )1

V d V dx dy dz.

If , then curlf f´ ´
( ) ( )1 2

V d V.

df f´
( )1

grad .

div V
f
x

i

i

=
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Â
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9. Let f and g be real-valued functions on R2. Prove that

This formula appears in elementary calculus; show that it implies the alter-
nation rule.

1.7 Mappings

In this section we discuss functions from Rn to Rm. If n = 3 and m = 1, then
such a function is just a real-valued function on R3. If n = 1 and m = 3, it
is a curve in R3. Although our results will necessarily be stated for arbitrary
m and n, we are primarily interested in only three other cases:

The fundamental observation about a function F: Rn Æ Rm is that it can
be completely described by m real-valued functions on Rn. (We saw this
already in Section 4 for n = 1, m = 3.)

7.1 Definition Given a function F: Rn Æ Rm, let f1, f2, . . . , fm, denote
the real-valued functions on Rn such that

for all points p in Rn. These functions are called the Euclidean coordinate func-
tions of F, and we write F = (f1, f2, . . . , fm).

The function F is differentiable provided its coordinate functions are dif-
ferentiable in the usual sense. A differentiable function F: Rn Æ Rm is called
a mapping from Rn to Rm.

Note that the coordinate functions of F are the composite functions 
fi = xi(F ), where x1, . . . , xm are the coordinate functions of Rm.

Mappings may be described in many different ways. For example, suppose
F: R3 Æ R3 is the mapping F = (x2, yz, xy). Thus

Now, p = (p1, p2, p3), and by definition of the coordinate functions,

F x y z x yp p p p p p p( ) = ( ) ( ) ( ) ( ) ( )( )2, , for all .

F f f fmp p p p( ) = ( ) ( ) ( )( )1 2, , . . . ,

R R R R R R2 2 2 3 3 3Æ Æ Æ, , .

df dg

f
x

f
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g
x

g
y

dx dyŸ =

∂
∂

∂
∂

∂
∂

∂
∂

.
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Hence we obtain the following pointwise formula for F:

Thus, for example,

In principle, one could deduce the theory of curves from the general theory
of mappings. But curves are reasonably simple, while a mapping, even in the
case R2 Æ R2, can be quite complicated. Hence we reverse this process and
use curves, at every stage, to gain an understanding of mappings.

7.2 Definition If a: I Æ Rn is a curve in Rn and F: Rn Æ Rm is a mapping,
then the composite function b = F(a): I Æ Rm is a curve in Rm called the
image of a under F (Fig. 1.13).

7.3 Example Mappings. (1) Consider the mapping F: R3 Æ R3 such 
that

In pointwise terms then,

Only when a mapping is quite simple can one hope to get a good idea of its
behavior by merely computing its values at some finite number of points. But
this function is quite simple —it is a linear transformation from R3 to R3.

F p p p p p p p p p p p1 2 3 1 2 1 2 3 1 2 32, , , , for all , ,( ) = - +( ) .

F x y x y z= - +( ), , 2 .

F F1 2 0 1 0 2 3 1 3 9 3 3, , , , and , ,-( ) = -( ) -( ) = -( ), , .

F p p p p p p p p p p p1 2 3 1
2

2 3 1 2 1 2 3, , , , for all , ,( ) = ( ) .

x p y p z pp p p( ) = ( ) = ( ) =1 2 3, , .
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Thus by a well-known theorem of linear algebra, F is completely determined
by its values at three (linearly independent) points, say the unit points

(2) The mapping F: R2 Æ R2 such that F(u, v) = (u2 - v2, 2uv). (Here u and
v are the coordinate functions of R2.) To analyze this mapping, we examine
its effect on the curve a(t) = (rcos t, r sin t), where 0 � t � 2p. This curve
takes one counterclockwise trip around the circle of radius r with center at
the origin. The image curve is

with 0 � t � 2p. Using the trigonometric identities

we find for b = F(a) the formula

with 0 � t � 2p. This curve takes two counterclockwise trips around the circle
of radius r2 centered at the origin (Fig. 1.14).

Thus the effect of F is to wrap the plane R2 smoothly around itself twice—
leaving the origin fixed, since F(0, 0) = (0, 0). In this process, each circle of
radius r is wrapped twice around the circle of radius r2.

Generally speaking, differential calculus deals with approximation of
smooth objects by linear objects. The best-known case is the approximation
of a differentiable real-valued function f near x by the linear function Dx Æ
f ¢(x) Dx, which gives the tangent line at x to the graph of f. Our goal now is
to define an analogous linear approximation for a mapping F: Rn Æ Rm near
a point p of Rn.

b t r t r t( ) = ( )2 22 2cos sin, ,

cos cos sin sin sin cos2 2 22 2t t t t t t= - =, ,

b at F t

F r t r t

r t r t r t t

( ) = ( )( )
= ( )
= -( )

cos sin

cos sin cos sin

,

,2 2 2 2 22

u u u1 2 31 0 0 0 1 0 0 0 1= ( ) = ( ) = ( ), , , , , , ,, .
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Since Rn is filled by the radial lines a(t) = p + tv starting at p, Rm is filled
by their image curves b(t) = F(p + tv) starting at F(p) (Fig. 1.15). So 
we approximate F near p by the map F* that sends each initial velocity 
a¢(0) = vp to the initial velocity b¢(0).

7.4 Definition Let F: Rn Æ Rm be a mapping. If v is a tangent vector to
Rn at p, let F*(v) be the initial velocity of the curve t Æ F(p + tv). The result-
ing function F* sends tangent vectors to Rn to tangent vectors to Rm, and is
called the tangent map of F.

The tangent map can be described explicitly as follows.

7.5 Proposition Let F = (f1, f2, . . . , fm) be a mapping from Rn to Rm.
If v is a tangent vector to Rn at p, then

Proof. For definiteness, take m = 3. Then

By definition, F*(v) = b¢(0). To get b¢(0), we take the derivatives, at t = 0,
of the coordinate functions of b (Definition 4.3). But

Thus

F f f f*( ) = [ ] [ ] [ ]( ) ( )v v v v1 2 3 0, , ,b

d
dt

f t fi t ip v v+( )( ) = [ ]=0 .

b t F t f t f t f t( ) = +( ) = +( ) +( ) +( )( )p v p v p v p v1 2 3, , .

F f f Fm*( ) = [ ] [ ]( ) ( )v v v p1 , . . . , .at
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and b(0) = F(p). �

Fix a point p of Rn. The definition of tangent map shows that F* sends
tangent vectors at p to tangent vectors at F(p). Thus for each p in Rn, the
function F* gives rise to a function

called the tangent map of F at p. (Compare the analogous situation in 
elementary calculus where a function f: R Æ R has a derivative function 
f ¢: R Æ R that at each point t of R gives the derivative of f at t.)

7.6 Corollary If F: Rn Æ Rm is a mapping, then at each point p of Rn the
tangent map F*p: Tp(Rn) Æ TF(p)(Rm) is a linear transformation.

Proof. We must show that for tangent vectors v and w at p and numbers
a, b,

This follows immediately from the preceding proposition by using the lin-
earity in assertion (1) of Theorem 3.3. �

In fact, the tangent map F*p at p is the linear transformation that best
approximates F near p. This idea is fully developed in advanced calculus,
where it is used to prove Theorem 7.10.

Another consequence of the proposition is that mappings preserve veloci-
ties of curves. Explicitly:

7.7 Corollary Let F: Rn Æ Rm be a mapping. If b = F(a) is the image of
a curve a in Rn, then b¢ = F*(a ¢).

Proof. Again, set m = 3. If F = (f1, f2, f3), then

Hence Theorem 7.5 gives

But by Lemma 4.6,

F f f f* ¢( ) = ¢[ ] ¢[ ] ¢[ ]( )a a a a1 2 3, .,

b a a a a= ( ) = ( ) ( ) ( )( )F f f f1 2 3, , .

F a b aF bF* +( ) = *( ) + *( )v w v w .

F T Tp p
n

F p
m

* ( ) Æ ( )( ): R R
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Hence

�

Let {Uj} (1 £ j £ n) and {Ūi} (1 £ i £ m) be the natural frame fields of Rn

and Rm, respectively (Def. 2.4). Then:

7.8 Corollary If F = (f1, . . . , fm) is a mapping from Rn to Rm, then

Proof. This follows directly from Proposition 7.5, since .

�

The matrix appearing in the preceding formula,

is called the Jacobian matrix of F at p. (When m = n = 1; it reduces to a
single number: the derivative of F at p.)

Just as the derivative of a function is used to gain information about the
function, the tangent map F* can be used in the study of a mapping F.

7.9 Definition A mapping F: Rn Æ Rm is regular provided that at every
point p of Rn the tangent map F*p is one-to-one.

Since tangent maps are linear transformations, standard results of linear
algebra show that the following conditions are equivalent:

(1) F*p is one-to-one.
(2) F*(vp) = 0 implies vp = 0.
(3) The Jacobian matrix of F at p has rank n, the dimension of the domain

Rn of F.

∂
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The following noteworthy property of linear transformations T: V Æ W
will be useful in dealing with tangent maps. If the vector spaces V and W
have the same dimension, then T is one-to-one if and only if it is onto, so
either property is equivalent to T being a linear isomorphism.

A mapping that has a (differentiable) inverse mapping is called a diffeo-
morphism. The results of this section all remain valid when Euclidean spaces
Rn are replaced by open sets of Euclidean spaces, so we can speak of a dif-
feomorphism from one open set to another.

We state without proof one of the fundamental results of advanced cal-
culus.

7.10 Theorem Let F: Rn Æ Rn be a mapping between Euclidean spaces
of the same dimension. If F*p is one-to-one at a point p, there is an open set
U containing p such that F restricted to U is a diffeomorphism of U onto an
open set V.

This is called the inverse function theorem since it asserts that the restricted
mapping U ÆV has a differentiable inverse mapping V Æ U. Exercise 6 gives
a suggestion of its importance.

Exercises

In the first four exercises F denotes the mapping F(u, v) = (u2 - v2, 2uv) in
Example 7.3.

1. Find all points p such that
(a) F(p) = (0, 0). (b) F(p) = (8, 6).
(c) F(p) = p.

2. (a) Sketch the horizontal line v = 1 and its image under F (a parabola).
(b) Do the same for the vertical u = 1.
(c) Describe the image of the unit square 0 � u, v � 1 under F.

3. Let v = (v1, v2) be a tangent vector to R2 at p = (p1, p2). Apply Defini-
tion 7.4 directly to express F*(v) in terms of the coordinates of v and p.

4. Find a formula for the Jacobian matrix of F at all points, and deduce
that F*p is a linear isomorphism at every point of R2 except the origin.

5. If F: Rn Æ Rm is a linear transformation, prove that F*(vp) = F(v)F(p).

6. (a) Give an example to demonstrate that a one-to-one and onto
mapping need not be a diffeomorphism. (Hint: Take m = n = 1.)
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(b) Prove that if a one-to-one and onto mapping F: Rn Æ Rn is regular,
then it is a diffeomorphism.

7. Prove that a mapping F: Rn Æ Rm preserves directional derivatives in this
sense: If vp is a tangent vector to Rn and g is a differentiable function on Rm,
then F*(vp)[g] = vp[g(F )].

8. In the definition of tangent map (Def. 7.4), the straight line t Æ p + tv
can be replaced by any curve a with initial velocity vp.

9. Let F: Rn Æ Rm and G: Rm Æ Rp be mappings. Prove:
(a) Their composition GF: Rn Æ Rp is a (differentiable) mapping. (Take 
m = p = 2 for simplicity.)
(b) (GF )* = G*F*. (Hint: Use the preceding exercise.)
This concise formula is the general chain rule. Unless dimensions are small,
it becomes formidable when expressed in terms of Jacobian matrices.
(c) If F is a diffeomorphism, then so is its inverse mapping F -1.

10. Show (in two ways) that the map F: R2 Æ R2 such that F(u, v) =
(veu, 2u) is a diffeomorphism:

(a) Prove that it is one-to-one, onto, and regular;
(b) Find a formula for its inverse F -1: R2 Æ R2 and observe that F -1 is dif-
ferentiable. Verify the formula by checking that both F F -1 and F -1 F are
identity maps.

1.8 Summary

Starting from the familiar notion of real-valued functions and using linear
algebra at every stage, we have constructed a variety of mathematical objects.
The basic notion of tangent vector led to vector fields, which dualized 
to 1-forms—which in turn led to arbitrary differential forms. The notions 
of curve and differentiable function were generalized to that of a mapping 
F: Rn Æ Rm.

Then, starting from the usual notion of the derivative of a real-valued func-
tion, we proceeded to construct appropriate differentiation operations for
these objects: the directional derivative of a function, the exterior derivative
of a form, the velocity of a curve, the tangent map of a mapping. These oper-
ations all reduced to (ordinary or partial) derivatives of real-valued coordi-
nate functions, but it is noteworthy that in most cases the definitions of these
operations did not involve coordinates. (This could be achieved in all cases.)
Generally speaking, these differentiation operations all exhibited in one form
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or another the characteristic linear and Leibnizian properties of ordinary 
differentiation.

Most of these concepts are probably already familiar to the reader, at 
least in special cases. But we now have careful definitions and a catalogue of
basic properties that will enable us to begin the exploration of differential
geometry.
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