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I give a concise and self-contained presentation of the theory of differential forms and how it
subsumes all of classical vector analysis when applied to a three-dimensional space. The
differential form analog of all vector operators, identities, and theorems are given (many of which

are proved), all in the context of classical electrodynamics.

I. INTRODUCTION

Vector analysis is usually introduced to physicists in the
context of classical electrodynamics. The theorems of
Stokes and Gauss allow one to convert integral equations
involving the E and B fields into differential equations—
the Maxwell equations. The similarity between the two
theorems is striking, in that each of them states that the
integral of some type of derivative of a vector field over a
region of certain dimension is equal to the integral of the
vector field over the boundary of that region. And yet there
does not seem to be a deeper underlying structure connect-
ing the two theorems. Search as one may, classical vector
analysis does not supply any answers.

Though this conceptual coincidence may be the most
compelling one, it is by no means unique. Take, for exam-
ple, the fact that curl-grad = 0 and div-curl = 0. The for-
mer equation applies of course to a scalar field and the
latter to a vector field. Could there possibly exist a more
general type of “derivative” operator that would give us
both these equations? Moreover, could not this new type of
derivative shed light on the connection between Gauss’s
and Stokes’s theorems?

A deeper and unifying structure does indeed exist, and is
provided by the theory of differential forms. Mathemati-
cians invented forms at the beginning of the century and
physicists working in general relativity have been using
them for some twenty years. Forms give one a certain ease
in calculations, elegance of notation and, usually, a more
generalized viewpoint.

The theory of differential forms is partially motivated by
the consideration of how integrands of multiple integrals
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transform under coordinate transformations. Consider the
integral of the scalar function f( x,y) over a two-dimension-
al region R:f.f(x,p)dx dy. Under the transformation to
polar coordinates, x = r cos 8, y = r sin 0, the integral be-
comes fg f(rcos 6, rsin @) rdrdf. That is, the function
flx,p) transforms as a scalar field and the term
dx dy—r dr df (or the Jacobian multiplied by dr d6 ). One
does not calculate dx and dy as functions of dr and d6 and
then multiply them. The point is that the integral and dx dy
exist as a whole and hence must be transformed as such. It
is conceivable though that one could construct an algebra
of quantities like dx and dy that, among other things,
would transform appropriately under coordinate transfor-
mations. The theory of differential forms accomplishes
this.

In the course of studying differential forms, I came
across the Hodge decomposition theorem which states: Ev-
ery p-form can be decomposed into the sum of the (exterior)
derivative of a (p-1)-form, the coderivative of a (p + 1)-form
and a harmonic term, and, moreover, the decomposition is
unique. I realized this to be the differential form analog of
the well-known Helmholtz theorem, used in electrody-
namics, which states: A vector field can be uniquely de-
composed into the gradient of some scalar field, the curl of
some vector field and a vector that satisfies Laplace’s equa-
tion.

It became apparent that one could translate any state-
ment about vectors into a statement about forms. In fact, as
mathematicians well know, the entire classical vector anal-
ysis is subsumed by the theory of differential forms as ap-
plied to a three-dimensional space. One can derive all the
theorems in vector analysis from theorems about forms in
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addition to obtaining all the standard vector identities—
most of them quite effortlessly. I intend to use this latter
fact as a vehicle to introduce the theory of differential
forms, by first outlining the general theory, then by show-
ing the operation on forms that corresponds to each oper-
ation on vectors, and then proving many of the standard
vector identities.

Section II will be an unrigorous but rather intuitive ac-
count of the theory of differential forms. This will then be
- followed by (Sec. III) the application of forms to a three-
dimensional space and the resulting connection to classical
vector analysis will be made. The standard vector identities
will be proved and theorems about vectors will be derived
from theorems about forms (not all of which will be
proved). I will then conclude with a brief section (Sec. IV)
on how Maxwell’s equations can be phrased in the lan-
guage of forms.

II. THEORY OF DIFFERENTIAL FORMS

A. Exterior algebra: The algebra of forms'

I will be working in an n-dimensional Euclidean space
with rectangular coordinates x',x?,...,x", a point being de-
seribed by == ' el 27,

At each point x we consider objects dx’, i = 1,2,...,n,
called our basis one-forms. An arbitrary one-form w, will be
a linear combination of basis one-forms: w = =7_ | a; dx'.
That is, the set of one-forms at a point form a vector space.?
The sum of two one-forms w, = Za; dx' and w, = =b, dx'
is given by @, + w, = Z(a; + b,)dx".

One can construct new objects called 2-forms by defining
a product of basis one-forms, called the exterior or wedge
product. Thus a typical basis 2-form will be dx’ A dx’ with
A denoting the wedge product. Once again, an arbitrary 2-
form will be given by a linear combination of basis 2-forms.
The wedge product is to satisfy the following rules: (a)
dx'Ndx' = — dx/ Ndx', i.e., the product is anticommuta-
tive; (b) (2a; dx') Adx = Za,(dx' \dx)), i.e., the product is
distributive. Note that in particular, (a) says that
dx'Ndx¥’ =0 for i=j. Thus, since dx'Adx
= —dx/ Adx', the number of independent 2-forms at a
point is given by n(n — 1)/2.

One can extend the above product to the multiplication
of an arbitrary number of one-forms to get a basis p-form:

dx" Adx"> A - Ndx". Note, however, that if the dimension-
ality of the space is # and if p > n, then at least one of the
dx"’s is duplicated in this product. By anticommuting the
necessary number of times we will obtain in the product a
term of the form dx’ A dx'— which is zero. Hence a p-form
is zero for p>n, and we need only consider p-forms for
p<n.

Note again that an arbitrary p-form o will be given by
Pt — i iy a,-l___ipd)cll A -+ Adx". By using the same argument

as I did for 2-forms, it is obvious that the number of inde-
pendent basis p-forms is n!/pl(n — p)..

For example, in a three-dimensional space, the basis one-
forms at a point would be dx', dx?, and dx>. The basis 2-
forms would be dx' A dx?, dx' Adx?, and dx> A dx>. There
is only one basis 3-form: dx' Adx* Adx®. Thus arbitrary
one-,two-, and three-forms would be written, respectively,
as
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¢ =a,dx' + a,dx* + a; dx® = 3a, dx’,
o =a,dx" Ndx* + a5 dx' Ndx® + a,, dx* Ndx®

= Ya; dx' Ndx’,
i<j

n=adx' Ndx*Ndx’.

Now all of our considerations were at a point of the un-
derlying space x', x%,....x". I can extend these ideas to a
field of forms by defining forms at each point such that they
are smoothly connected. Thus a field of one-forms would
be given by w = Za,( x)dx’ where a;( x) is a set of differen-
tiable functions rather than a set of numbers. This of course
defines a one-form at any given point x =x, by
@ xo) = Za;(x,)dx" .

This is generalized to a field of p-forms in the obvious
way, and then one has for an arbitrary p-form,

o= Y a, (x)dx" Ndx"\-Adx".

A zero-form is defined as a scalar field.

I now introduce a key idea that turns out to be at the
heart of the possibility of introducing a vector calculus.
This is the Hodge star operator, or dual, which associates
to every p-form @ an (n — p)-form *w (this dual is not to be

confused with the idea of dual vector space).

The dual of a basis p-form dx" A dx" A --- A dx"is defined
to be the (n —p)-forme; ;| ]m,-”dx"” “'A - Adx", where
the set {7,,....0, 40, 1seuly | =1 1nitegers from 1 to 7}, i.ed
the i, . ;,...,0, “complete” the set'i,,...i,.

Taking again a three-dimensional space as an example,

one has

*dx' = dx’ Adx, *dx” = dx® Ndx!, *dx® = dx' Ndi.
Also

*dx' Ndx®) =dx®, ¥dx' Ndx®)= —dx?,

M Al = dx",

*f = fdx' Ndx* Ndx?, *(dx' Ndx* Ndx?) = 1.

The dual of an arbitrary p-form is then defined to be the
sum of the duals of its component elements, i.e., the dual is
a linear operator. Note that in 3-space one has *(*w) = w.

As we will see later, the dual will allow us (in 3-space) to
identify a pseudovector with a vector, thus allowing for
operations such as vector cross product and curl.

Before closing this section I would like to mention an
important identity that forms satisfy: o Ap = ( — Vn Ao,
where w is a p-form and 7 is a g-form. This is obvious for w a
basis p-form and 7 a basis g-form, since each of the g one-
forms of 7 must be commuted through each of the p one-
forms of @ thus introducing a factor of ( — )??. The result for
abitrary forms follows by distributivity.

The following is a summary of the algebraic properties of
forms:

A(1): A general p-form can be written as
0= a; .| x)dx" A - Ndx".

AQ2): fo = Za, ., dx" A+ Ndx"and
7 =3b, , dx"A-Ndx"then
o+n=2a, ; +b; ;)dx" A Adx".

If  is a p-form and 7 a g-form, we have
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AB: oA =3 Y a, b, dx" A Adx"Ndx"
L

A - Ndx™,
i.e., associativity and distributivity, and
Ad): oA\ =(—Vnho.

B. Exterior derivative

The exterior derivative dw of the p-form o is defined to be
the (p + 1)-form,

da; . ;
do= Y —=LdxAdx"\--Ndx".
S, OX

Note that if @ is an n-form then dow = 0

We will see later that the d operator embodies in it (for
n = 3) the gradient, curl, and divergence operators, de-
pending on whether o is a zero-, one-, or two-form.

To get a hint of this, let us examine what dw looks like for
various w. If w is a zero-form, i.e., a scalar function f, then

do=df=Y %dx",

which is reminiscent of the gradient operator. If @ is a one-
form, v = ¢ = 3a; dx' then

dé = E 'a’x’/\dx

and since dx Adx is skew-symmetric,

a da
A= ( i >dxf/\dx
ox’ 8x
-3 (‘9a —ai>d N
j<i c?x ox'
Thus if n = 3,
e (a—“%—ai>d Adx? + (5“3 fay )d Adx?
ox? oxt ax?
(izl = %)dxz Ndx3,
ax*  ox?

which is reminiscent of the curl operator. The precise con-
nections will be made in Sec. III.
The following useful lemmas can easily be proved’:

L(1): d(pAq)=dpAgq+ (— Vp/Adg. Thisapplies to arbi-
trary p-forms and g-forms. In particular, if fand g are func-
tions, and ¢ and ¥ are one-forms, we have

(a)d (fg) =df g + fdg,

(b)d(fé)=df\Né +fdd,

() d(@NY)=dp N —Ndy.
L(2): If

¢, = if,.j dx  1<i<3,

j=1

then
JSu Sfiz S
SNGNDs= |1 foo Sos dx' Ndx?* \Ndx>.
o S S

L(3): *(*w) = w (for n = 3).
L(4): a A*B =B\ *a, where a and f3 are both p-forms.
The definition of the exterior derivative d gives us an
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alternate interpretation of the one-form dx’. By consider-
ing the coordinate x' as a function (on whichever point of
the space it is), we can take its exterior derivative:
ax' =3 2% g ¥ = 3, dx' = d
J ax’

Thus the one-form dx' can be thought of as the exterior
derivative of the coordinate function x’. With this interpre-
tation we can see how forms will transform if we undertake
a coordinate transformation on the underlying space. Par-
ticularly if (x',...,x" }—(x",...,.X"), or X' = f;( x), i.e., we can
think of the new coordinates as functions defined on the
space, then

dx' =Yy i

J ox’/
Applying L(2), we then have dx' A dx* A dx’ = (Jacobian)
dx' N\ dx* Ndx>. This explains the transformation proper-
ties of integrands. I return to the example given in Sec. I of
§ f(x,y)dx dy. When integration is properly formulated in
terms of forms, this would actually read [ f( x,y)dx Ady.
Then under the coordinate transformation

x=rcosf, y=rsin0:
f(xp)dx Ndy = f(rcos 0, rsin @) J (x,y;r,0 )dr NdO,

by L(2). Thus if one wants to treat dx and dy as algebraic
objects one can do so provided the algebra of forms is used.

In addition to the exterior derivative d, one can define
the coderivative 8, by o = *(d *w). The coderivative thus
maps a p-form into a (p — 1)-form. The combination
dS + &d is defined as the generalized Laplacian operator,
since for n = 3 it is precisely that classical operator (see
Appendix A).*

dx’.

C. Important theorems

The three fundamental theorems of differential forms:
T(1): Poincare lemma. If @ is an arbitrary p-form, then
d*w = 0. The proof is essentially trivial:

—_— ’.l “ee i)
= Zail___,»pdx A Ndx?,
s

da; , ; ,
do =Y ——dx'Ndx" NN\ dx",
Jii’s c?xj
A a,
d = z — % gxk Adxd Adx"t A Ndx”
s Ox* Ix
Fa, .
= = ”dxf/\dx Adx" A Adx"
Jk.0s 3X/5x
by interchanging dummy indices j and k, and this is equal
to
&a; " i
- — " gxk Adxd Ndx" A Ndx" = — d?w = 0.
Jok,E’s 8x 3)6’
by the skew-symmetry of dx’ Adx", and the equality of
mixed partial derivatives.
This will prove to be a very powerful theorem.
T(2): Converse of Poincare lemma. If dA = 0, where A is a
p-form, then there exists a (p — 1)-form @ such that
A = dw. This has certain restrictions on the topological na-
ture of the domain of its validitiy, and I will not state its
proof here.
T(3): Hodge decomposition theorem. Any p-form can be
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written asw = da + 3 + y, whereaisa(p — 1)-form,Sa
(p + 1)-form, and ¥ a harmonic p-form, i.e., satisfying
Laplace’s equation Ay = 0. The forms da, 83, and y are
unique.

Finally, one can prove, by defining integration appropri-

ately (which we do not do in this paper—see, however, the
comment on integration in Sec. II B, and also Appendix
D):
T(4): Generalized Stokes theorem. If @ is a p-form and D a
(p + 1)-dimensional domain, then f,,» = f,dw. that is,
the integral of w over the boundary of the region D is equal
to the integral of the exterior derivative over the region D.
In three-space, when o is, respectively, a one- and two-
form, we will see that this theorem encompasses the duo of
theorems, Stokes and Gauss. Moreover, for o a zero-form
we get the fundamental theorem of calculus.

III. VECTOR ANALYSIS

A. Vector-form correspondences

The key idea is that one can associate to every vector a
one-form and to every operation on vectors an operation on
forms.

Since I will be doing vector analysis in a three-dimen-
sional space, I restrict the space on which I have defined
form tobe n = 3.

‘The basic correspondence that one makes is that to every
covariant vector field A = 4, X, + 4,%, + A,%,, one asso-
ciates the one-form ¢, = A4,, dx' + 4, dx* + A, dx>. Sym-
bolically, T write

A=A43X + A%, + A3«

s =A,dx' +A4,dx* + A, dx’.

¢4 will always represent the one-form associated with the
vector A.” The symbol < denotes the association of a vec-
tor to an appropriate form.

To the function f one associates the O-form f.

I now show how to obtain the correspondences between
operations on vectors and operation on forms.

1. AXB = (4,B; — A;B,)%; +
+ (4,8, — 4,B,)%;

I would like to know what operation on ¢, and ¢, will
yield aform ¢, 5, i.e., the form which is associated to the
vector A X B. Note that

ba Ndg
= (4, dx' + A, dx* + A, dx>)
A(B,dx' + B, dx* + B, dx?)
— (4,B, — A,B)dx' Adx® + (A,B; — A,B,)dx> A\ dx’
4 (4;B, — A,B,)dx* Ndx'.

The coefficients of the basis forms look right, but this is a
two-form, so how do I associate a vector to it? Simple, I first
take its dual—which gives me a one-form—and then asso-
ciate a vector to this one-form. So I claim that

AXB=Co*¢, Ndp) = .
Pictorially, I write

(4B, — 4,B;)%,

AXB=C
i
*(¢A /\¢B) B ¢c'

To repeat, I can mimic the cross product between vec-
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tors, by taking the dual of the exterior product of the corre-
sponding forms. Thus to find the vector given by the cross
product of the vectors A and B, I write down the associated
one-forms ¢, and ¢, take the dual of their exterior pro-
duct, which turns out to be a one-form, and then find the
vector associated to this one-form.

2.A-B=A,B, + A,B, + A,B,

Since A-B is a scalar, something must be done with ¢,
and ¢ as to end up with a O-form. It must be an algebraic
operation since there are no derivatives involved. The only®
possibility is *(¢, A *¢ ). Note that ¢, is a one-form, ¢, a
one-form, so *¢, is a 2-form,p, A *¢, a 3-form, and
*@d4 N\ *dp) a O-form. So we guess: A-B*(d, A*dg). It
turns out that by using this type of argument, one can get
all the vector operations. To check our conjecture:

¥4 N*¢p) = *[(4, dx' + 4, dx* + 4, dx7)
A*(B, dx' + B, dx* + B, dx?)]
— *[(4, dx' + 4, dX* + A, dx?)
A(B,dx* Ndx® + B, dx* Ndx' + B, dx" Ndx?)]
— *[(4,B, + 4,B, + 4,B;) dx' Adx> Ndx*]
— A,B, + A,B, + A,B,.

One can check that *(¢; A *¢,) = *(d, A *¢p), as it in-
deed should be since B-A = A-B.

I now demonstrate this procedure for a vector operation
involving differentiation, and then merely list all the other
correspondences.

e (533 0B, ) (ause1 OB, )x
2 — s X =
ox? o ) ox3 ox!
JB 0B, \ .
i ( 6x‘2 8x21 ) e

This clearly looks like d¢z —which is a 2-form (see Sec.
II B)—so we take its dual and guess that V X B«<>*(d¢ ). To
check it:

*(d¢p) = *[d (B, dx' + B, dx* + B, dx’)]

[(aBld Adx +a—dx /\dx)
ox? ax?

JB

2 24X dx3)]

+(‘932d N +%—dx /\dx)
s

3d Adx? +(9
x

~(5

0. dB, ) s
dx”,
i <8x ox? %

which clearly <V X B.
I now give a complete list of the various correspon-
dences.

Cll): A =A%, + A%, + Afyod, dx' + 4, dx*

+A4,dx° =¢,.
C(2): f(as a scalar function)<>f (as a O-form).

o ) (G S
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C(3): AB{p, N*b5)="(ds N*b4).
Cl4): VB<>*[d (*65)].

C(5): V fdf.

C(6): AXB<*(d, Adjp).

C(7): VXB<*(ddy).

The ¢ ’s are all one-forms, allowing one to unambiguous-
ly make the distinction between C(4) and C(7), and C(3) and
C(6).

B. Vector identities

I list the various identities and the corresponding state-
ments in the language of forms.

I(1): V(fg) =/Vg + gVf«>d (R) =fdg + g df.
1(2): V-{fA) = (VfA) +f(V-Ajo*[d *(fd )]
=*dfN*b,) +/*d*b4)-
I(3): V(AXB)
- =B{(VXA)— A(VXB)o*[d* *(d, Ndp)]
= *[¢B /\d¢A ] = *[¢A /\d¢3]-
I(4): VX(fA)=(Vf) XA +f(VXA)-*[d(fd,4)]
= *,(df/\ b4) +/*(dd 4)-
I(5): A(BXC)=C-(AXB)=B-(CXA}>*d, Ndp Noc)
*de Ny Ndp) =*(d5 Nbc NDy)-
1(6): A><(B><C)
= B(A-C) — C(A-Bj>*[ ¢, N*(ds Ndc)]
:¢B*[¢A /\*¢C] _¢C*[¢A /\*¢B]~
1(7): (AXB)(CxD)= (A-C)(B-D) — (A-D)(B-C)«>

*[*(da Nb5) Ndec Nép)]
=¥ Nbc)*(ds N*dp)
— *du N*bp)*(dp N*bc)-
All of these correspondences of identities are obtained by
using C(1)-C(7).

The proofs of the form identities are mostly stralghtfor-
ward.” The first four identities are all contained in L(1),
which states that d (p Agq) = dp Aq + ( — V’p \dg. 1(5) fol-
lows from A(4). The proofs of 1(6) and I(7) are contained in
Appendices B and C (they are the only ones that are not
totally trivial).

I(8): VX(V @) =0<*d?f)=0
19): V-(VXA)=0<*d’d,) =

These two form identities follow simply from the Poin-
care lemma T(1). The only distinction between the two is
that of applying the lemma to a 0-form and to a one-form.

One thus sees that many vector identities follow from the
same form identity, only applied to forms of different or-
ders. This is in fact characteristic of most all vector theo-
rems and identities—the distinction between various vec-
tor statements is one only of degree in terms of forms.

C. Vector theorems
The following two theorems follow from the converse of
the Poincare lemma:

VT(1): VXE =0= 3 scalar ¢ such that E=Vy
—*dw)=dw =0, with o a one-form = 3 a 0-form «
such that o = da.

VT(2): V.B=0=3 a vector A such that B=VXA
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¥d *0) =
o = *dp).

The first is simply the converse as applied to a one-form
and the second as applied to a two-form.

Similarly, using the Hodge decomposition theorem T(3),
I get
VT(3): For any vector field A, 3 £;B, and Q such that arbi-
trary A = Vf+ VX B + Q, where V’Q = 0 <> For any p-
form w, 3 a, B, and ¥ such that o = da + 88 + v ( y har-
monic).

I thus obtain the Helmholtz theorem. The above was
obtained with w being a one-form. If I choose w to be a 2-
form, an identical theorem is obtained.

Finally, making use of the generalized Stokes theorem
T(4):

VT(4): Gauss: J;V-C dv = JSC-d A<—>Ld o) = LD*¢C.

VT(5): Stokes:I(VxB)odA = ff)B-d 19Ld¢,, = L Kz

The first of the above is obtained by choosing in T(4),
@ = *@¢, a 2-form, and the second by choosing w = ¢, a
one-form. See Appendix D for the exact statement as to
how these relationships are obtained.

0= 3 a one-form B such that *» =dfS or

IV. ELECTRODYNAMICS

For completeness, I conclude with a brief description of
how Maxwell’s equations are expressed in the language of
forms.”

Since the appropriate underlying space for electrody-
namics is Minkowski space—which is pseudo-Euclidean
rather than Euclidean—one needs to generalize the pre-
viously developed concept of duality to a space with arbi-
trary metric (the previous sections assumed a metric that
was specifically Euclidean). In addition, one needs to ex-
tend the association between vectors and 1-forms to an as-
sociation between higher-rank tensors and forms.

The more general definition of dual is glven in terms of
the inner product defined on the space.” The definition I
use, however, will be more restrictive, though sufficient for
our purposes.

The dual of a 1-form J = J,, dx* is defined as the 3-form
¥ =6 AXO AR /\de and the dual of the 2-form
F=F, dx*Ndx" is defined as the 2-form
*E— —eamuF“"dx AdxP.

As previously, one associates to the current four-vector
J, the 1-form J, dx*. To the covariant skew-symmetric
electromagnetlc ﬁeld tensor F,,, one associates the 2-form
\F,, dx*Ndx",ie., F,, (tensor) ©1F,, dx" \Ndx" (2-form).

Maxwell’s equations can then be shown to be given by

VB=0

Vx4 LB _o(&F ) =00dF =0,
C
V.E=4mp i
VxB_ L IE _ AT jroF™, ="
c ot c
e Awp
C

where [ 1 v,4 ] denotes skew-symmetry in all the indices,
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and a comma denotes differentiation with respect to the
index following it.

The expressions above are, respectively, Maxwell’s
equations in vector, tensor, and form notation.

The four vector equations thus get reduced to two sim-
ple-looking differential-form equations

dF =0 and d*F = (47r/c)*J.

As usual, the simplicity of notation has been arrived at
by constructing a deeper strata of definitions.

One can similarly express all the relevant electromagnet-
ic quantities, e.g., the Lorentz force, Poynting vector, field
energy, etc., in the language of forms'® It is within this
language that the question of the apparent nonexistence of
magnetic monopoles is most compelling.® ;

V. CONCLUSION

I have shown how classical vector analysis is not only
completely contained in the theory of differential formis,
but also how the latter conceptually unifies many appar-
ently disparate vector ideas.

From the point of view of differential forms, it is the
conjunction of the concept of dual and the particular di-
mension of three that allows for a vector calculus. This can
be seen in the following manner.

It is assumed that a vector is identified with a form of a
given order. The dual of a form, providing an identification
ofan (n — p)-form with a p-form, allows for an introduction
of differentiation which changes the order of the form, by
identifying the higher-order form with a lower one, thus
remaining in the space of forms identified with vectors."'

If the dimension of the space is larger than three the
space will not be closed, in the sense that the operation of
exterior product or differentiation may take one out of the
space of forms that can be identified with vectors. Pictorial-
ly, one has

O-form 1-form 2-form 3-form
l ! 1 !
scalar  vector pseudovector  pseudoscalar .

In any higher-dimensional space this would not be possi-
ble, as there would be forms that cannot be associated with
vectors.
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APPENDIX A
Proofthat dé + &d agrees with classical Laplacian oper-
ator when applied to a function f:
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(d5 + 8d\f =

—wavar—+ao(5 L ax)

i X

(d*d* + *d *d)f

= *(q (Z €k %dxj A dxk>

= *(Z €k a—zf_dx’ Ndx' N dx")
dx' ax'

il
&f
:Eeljkeljka a ;
3
= ox?’

where the second equality arises from the fact that since
*f=fdx' ANdx* Ndx> thend * f=0. g.e.d.

_z llc? 8x

APPENDIX B
Proof that * [¢, A*(ds Ndc)] =5 *(s N*Pc)
— @ *ds N*dp):

A A= l(zB dx”) (ZC,-zdx"Z)]
= *(ZB,.I G, dx, /\dxfz)
A

Then g

G N¥dp Noc) = <ZA,4 dx"‘) A ZB,] 0 €1 ity dx".

iyiy

Since i, cannot equal 75, it must be either 7, or 7,. Thus

b4 N*(dp Nbc) =3 [ (4, dx" + 4, dx")]
AB ey o
= EA,IBHC, € ity dx" Ndx"
+ ZAHB”C Epiir a’xiz/\dxi“.
Then
(64 N*ds Nc)]
= ZA’IB C‘ 61112'1 iyizis dx[z
+ ZAQB'IC 6111211 Iyizly dxil

= — 4, B, C, dx"+ 3A4,B,C, dx"
= —dcMBaN*d5) + bp*(da N*dc)

This immediately translates into the vector theorem
A X (BXC)=B(A-C) — C(A‘B).

g.e.d.

APPENDIX C

Proof of (A X B):(CxX D) = (A-C)(B-D) +
In terms of forms we must prove that

(A-D)(B-C).
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*[*(da A

== *(¢/

From
@
and
(¢ ¢
Then
¥4 NG
=

Clearly
iy =l
(4 N\

itk

+

and

*[*(0a
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BN <[44, A Bs) A Be Aby)]
%, N*) Ba N ¥Bp) — ¥y N¥bp)bs A*dc)

From the previous proof, we have

*(¢A /\¢B 261,121*’4 B dx;
and

(e Ndp) = ZC[3D14 dx"” Ndx".
Then

¥y Ndg) NP Ndp)
E €4, B, C; D, dx' ‘Adx" Ndx"

Clearly i = i,#1i, and i#i; #i,, so we must have either
iy=1, I, =L, ori,=i,i;=1I, Then
¥4 Nés) Nde Ndp)

:ZA,IB C.D, € ., dx Adx" \dx"

+ 34, B, C, D, €, d5 hdx*hdx"

and

*[*oa Nos)Ndc Nbp)] =Y A, B, C, D€, i€,

iyiy

+ZA B,C. D€, €,
=ZA,41B,-2C,AID,42
— > 4,B,C,D,

=*da N*bc)*(ds N*ép)
— ¥4 N*dp)*(dp N*dc)

APPENDIX D

Schematic derivation of Gauss’s and Stokes’s theorem
from the generalized Stokes’s theorem T(4):
(1) Gauss: f VVdV = JV-d A.

V s

We have the following correspondences of vectors to
forms:
av, o av, 3. av,

x4 Ix, 0x5

av, v, . V.
d(* :( LI 2 4 3
(*6v) dx, Ox, Ox,

VeV ay = ( )dx‘ dx? dx

)dx1 ANdx* Ndx?

and

Vid A = V,dx" dx* + V,dx* dx' +V1dx dx?
o*d, =V, dx* Ndx® + V,dx* Ndx' + Vi dx' Ndx>.

Then, by choosing @ = *@,,, a 2-form, we get

Lv-v dv = J;V-d A<—>Ld (*é,) = LD*¢V.

(i1) Stokes:JVXA-d S= §;A-d L
Let )

dS = dx?dx*%, + dx* dx' %, + dx' dx* %,
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-

then

va-dsz(‘M3 )d a5
ox? Ix3
(QAI 3 8A3>dxldx3
ox? Ox!
(8A2 a4, ) R
Ix! ox?
0A 04
dd, = (L - S pax'
(CM 2t )d Adsx'
ox? Ix!
(2 e,
ox! ox?

Similarly, A-d1<>¢,. Then, by choosing w = ¢, a one-
form:

IVXA-dS — 3{)A-d 1HLd¢A = L b

“ Present address: Department of Physics, Seton Hall University, South
Orange, New Jersey 07079.

' A brief comment on notation: For referential convenience I label various
sets of equations with alphabetic letters, e.g., T(3), that have the follow-
ing meanings: A—Algebraic properties of forms, L—Lemmas pertain-
ing to forms, T—Theorems pertaining to forms, C—Correspondences
between vector operations and form operations, I—correspondences
between form Identities and vector identities, and VT—Vector Theorem
correspondences to form theorems. J( x,y;r,0) is the Jacobian of the
transformation from variables 7,0 to variables x,y. The symbols ¢ and ¢
generally represent one-forms, as distinct from @ whose order is arbi-
trary. The letters p and g, though usually denoting the order of a form,
will occasionally represent a form itself of that order. The limits of a
summation will be omitted when it is obvious.

The space dual to the tangent space at the point.

3See, for example, H. Flanders, Differential Forms (Academic, New
York, 1963).

4The relevance of this to fermion creation and annihilation operators will
be presented in a future paper.

5This association is easily seen to be preserved under a coordinate trans-
formation.

SAs well as the symmetric product *(¢; A *@,,). See belows

I would like to mention that the only type of vector identity I have not
been able to prove is, e.g.,

Vx(AXB) = (B-V)A — (A-V)B + (V-B)A — (V-A)B.

I believe that this is because it involves an abuse of vector notation, e.g.,
in a term like (B+V)A. It is conceivable, though, that a corresponding
abuse of the form notation would yield the differential form analog of
this type of vector identity. .

8This topic, as well as the general theory of differential forms in a four-
dimensional Minkowski space, will be discussed in detail in a forthcom-
ing paper. Note that I adopt the Einstein (implied) summation conven-
tion in this section.

°An even more general definition can be given in terms of the “volume n-
form.” See B. Schutz, Geometrical Methods of Mathematical Physics
(Cambridge University, Cambridge, 1980), Chap. 4. This is an excellent
book on mathematical physics that is an elegant compromise between a
physicist’s desire for simplicity and a mathematician’s for rigor.

19See C. Misner, K. Thorne, and J. A. Wheeler, Gravitation (Freeman, San
Francisco, 1973), Chaps. 4 and 5.

""Which, in the language of vectors, is the identification of a pseudovector
and a vector, allowing for the introduction of curl and cross product,
while still remaining in the space of vectors.
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