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The Morse function is invaluable for describing the vibrational motion of diatomic molecules. The
time independent Schrödinger equation can be solved in closed form for this potential only if
molecular rotation is ignored or if the rotation is isolated from the vibrational motion by
approximating it as a rigid rotor. To find the dependence of the energy eigenvalues on the vibrational
and rotational state to a level of approximation that includes vibrational-rotational coupling, a higher
level of approximation than the rigid rotor model is required. We present a method that can be
understood by undergraduates, thus making the Morse potential a more useful example. The method
yields results that are identical to those presented by Morse, but in a more elementary way. © 2007
American Association of Physics Teachers.
�DOI: 10.1119/1.2750377�
I. INTRODUCTION

Despite the success of the Morse potential1 as a potential
energy function that adequately describes the vibrational mo-
tion of many diatomic molecules, it is rarely treated in intro-
ductory quantum mechanics courses as an example of a cen-
tral potential. The reason is that, although the time
independent Schrödinger equation can be solved in closed
form for a rotationless motion, the inclusion of the centrifu-
gal term renders the Schrödinger equation intractable. The
Schrödinger equation for a rotationless molecule is essen-
tially a one-dimensional problem. A first approximation that
included molecular rotation is to treat the molecule as a rigid
rotor, but this approximation is of only minor interest be-
cause it adds a term to the Hamiltonian that is independent of
the vibrational motion. Therefore the energy eigenvalues are
the same as those for the rotationless molecule, but with an
added term that depends on only rotational parameters. Ap-
proximations beyond the rigid rotor model have been made,2

including one by Morse himself,1 but such approximations
have limited pedagogical value.

In this paper we present a treatment of the three-
dimensional problem including rotation that is accessible to
students of introductory quantum mechanics. We obtain the
same expressions for the energy eigenvalues as those ob-
tained by Morse1 using only elementary calculus. The results
demonstrate the coupling between the vibrational and rota-
tional degrees of freedom of the molecule. An approximation
to the wave functions can also be obtained, but appears to be
of limited interest.

II. BACKGROUND

The Morse potential for a diatomic molecule is given by

U�r� = De�e−2��r−re� − 2e−��r−re�� , �1�

where re is the equilibrium internuclear separation and De,
the well depth, is the dissociation energy of the molecule
�ignoring the zero point vibrational energy�; � is an adjust-
able shape parameter. The significance of these parameters is

illustrated in Fig. 1.
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Expanding Eq. �1� in a Taylor series about r=re permits us
to determine � in terms of De and the harmonic oscillator
energy ��0, both of which can be determined experimen-
tally. The determination of � can be done by equating the
coefficient of the quadratic term in the expansion to the
spring constant 1

2��0
2, yielding

De�
2 = 1

2��0
2, �2�

where �0 is the frequency in the harmonic approximation
and � is the reduced mass of the nuclei.

If molecular rotation is �temporarily� ignored, then the
Schrödinger equation with the potential energy given by Eq.
�1� can be solved in closed form. The �vibrational� energy
eigenvalues are1

En = − De + �n +
1

2
���0 − � 1

4De
���n +

1

2
���0�2

, �3�

where n is the vibrational quantum number. The rotational
energy can be added to the vibrational energy assuming that
the rotational motion occurs as a rigid rotor. However, the
energy eigenvalues obtained in this way do not account for
any coupling between rotational and vibrational motion. To
account for this coupling the centrifugal term must be added
to the Morse potential to form the effective potential Ueff
given by

Ueff�r� = De�e−2��r−re� − 2e−��r−re�� +
j�j + 1��2

2�r2 , �4�

where j is the rotational quantum number. Figure 2 shows a
plot of Ueff�r� for j=0 and j�0. As the angular momentum
increases, the well depth decreases and the equilibrium inter-
nuclear separation increases. Clearly, the vibrational spacing
will be different for each value of the rotational quantum
number j. Therefore, the energy eigenvalues obtained by so-
lution of the Schrödinger equation with Ueff�r� will include

coupling between the vibrational and rotational degrees of
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freedom. Making the usual substitution in the radial
Schrödinger equation

u�r� = rR�r� , �5�

where R�r� is the radial part of the wave function, we obtain

−
�2

2m

d2u�r�
dr2 + �De�e−2��r−re� − 2e−��r−re�� +

j�j + 1��2

2mr2 �u�r�

= Eu�r� . �6�

Equation �6� cannot be solved in closed form for j�0 so an
approximation, preferably one that provides physical insight,
must be employed.

Because the deviations of the coordinate r from the inter-
nuclear separation re are small, the substitution

x =
r − re

re
�7�

is made. This substitution converts the effective potential in
Eq. �4� to

Ueff�x� = De�e−2�rex − 2e−�rex� + B
1

�1 + x�2 , �8�

where the rotational energy B is given by

B =
j�j + 1��2

2�re
2 . �9�

Note that �j�j+1��2B� is the rigid rotor energy so that using
the rigid rotor model to describe the rotational motion corre-
sponds to x=0. In this approximation, rotation is accounted
for by adding �j�j+1��2B� to the energy eigenvalues given in
Eq. �3�.

The rotational energy B is much smaller than De, and, for
small values of j, ��0 as well. The relation between these
constants can be obtained by noting that the parameter
�	1/re in Eq. �2�, which we rearrange to obtain

2�2

�re
2 
 ���0

De
���0. �10�

The left-hand side of Eq. �10� is essentially B for small val-

Fig. 1. The Morse potential, Eq. �1�, showing the significance of the param-
eters De and re.
ues of j. The vibrational spacing 	��0 is much smaller than
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the depth of the well De into which the vibrational levels fit.
There are typically 20–30 vibrational levels in a well that
describes a diatomic molecule. Hence, according to Eq. �10�,
B���0. We may solve Eq. �2� for �re

2 using the approxima-
tion that �	1/re and obtain

�re
2 =

2De

�0
2 , �11�

which, when substituted in Eq. �9�, gives

B

De

 � j�j + 1�

4
����0

De
�2

� 1. �12�

Equations �10� and �12� show that B���0�De. Therefore,
for each value of n there is a set of j-states �starting with
j=0� that describe rotation.

The approximations of Morse1 and Pekeris2 were made by
expanding each of the three terms in the effective potential
about x=0 �equivalent to expanding about r=re�. They then
truncated the expansion and retained only the low order
terms such that the form of the resultant expression would be
the same as the expansion for a rotationless Morse function,
but with new parameters De

�j� and re
�j�, both of which depend

on B and thus j. We may write

Ueff�r� 
 De
�j��e−2��r−re

�j�� − 2e−��r−re
�j��� . �13�

The original De is then replaced by De
�j� in the expression for

the energy eigenvalues of the rotationless Morse potential,
Eq. �3�, to give a new set of energy eigenvalues Enj that
include the effects of both vibration and rotation.

III. PROPOSED METHOD

Our approach is simple and to the same level of approxi-
1

Fig. 2. The effective potential for the Morse potential illustrating the in-
crease in the internuclear separation and the decrease in the dissociation
energy.
mation as that employed by Morse. We therefore arrive at
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the same expression for the energy eigenvalues Enj. We first
find the minimum in the effective potential curve for j�0 by
differentiating Ueff�r� and setting the result equal to zero.
This procedure yields the “new” equilibrium internuclear
separation re

�j�, which we then use to find the new De
�j�. We

make the substitution De→De
�j� in Eq. �3� and obtain the

energy eigenvalues Enj.
We set the derivative of the effective potential in Eq. �8�

equal to zero to obtain re
�j� from xe

�j�, which, in accord with
Eq. �7�, is defined to be

xe
�j� =

re
�j� − re

re
. �14�

The result is the transcendental equation

dUeff�x�
dx

= 0

= �− 2�De��e−2�rexe
�j�

− e−�rexe
�j�

� − 2B
1

�1 + xe
�j��3 . �15�

Approximations must be made to solve for xe
�j�. If we expand

the exponentials and the binomial �1+xe
�j��−3 in Eq. �15�, we

obtain

�− 2�reDe��− ��rexe
�j�� + 3

2 ��rexe
�j��2�

− 2B + 6Bxe
�j� − 12B�xe

�j�2� = 0. �16�

We drop terms higher than the first power in xe
�j� and find

xe
�j� � � 1

�re
�2� B

De
� , �17�

so that the new equilibrium internuclear separation is

re
�j� = re�1 +

B

�2re
2De

� , �18�

which, as expected, is greater than re. We find the new dis-
sociation energy De

�j�, Ueff�r=re
�j�� by substituting Eq. �17�

into Eq. �8� and expanding each of the three terms, retaining
terms up to second order in xe

�j� to arrive at

− De
�j� � De�− 1 + ��rexe

�j��2� + B�1 − 2xe
�j� + 3�xe

�j��2� �19�

=− De + B�1 −
1

�2re
2� B

De
�� . �20�

We see that the minimum value of the Morse potential for
j�0 has been raised by B�1−B /�2re

2De�. Because �2re
2
1

and B /De�1, the well is raised by an amount less than B,
the rigid rotor energy.

The effective potential may now be approximated by mak-
ing the substitutions re→re

�j� and De→De
�j� into the rotation-

less Morse function, Eq. �1�. The energy eigenvalues that

include the effects of rotation are obtained by making the
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substitution De→De
�j� from Eq. �20� into Eq. �3�. The result

is

Enj = − De + �n +
1

2
���0�1 −

1

4De
�n +

1

2
���0� �21�

− � j�j + 1��2

4�re
2De

��n +
1

2
���0

−
j�j + 1��2

2�re
2 �1 −

j�j + 1��2

�2re
4�0

2 � . �22�

The coupling between vibration and rotation is represented
by the cross term proportional to � j�j+1��n+ 1

2
��, which con-

tains both the vibrational and rotational quantum numbers.
We may gauge the efficacy of this approximation by com-

paring the exact effective potential for a given value of j with
that obtained from the approximation. Figure 3 shows a plot
of Ueff�r� for the relatively high value j=16, which was cho-
sen to accentuate the difference between the approximated
Ueff�r� and the actual potential. Smaller values of j yielded
nearly indistinguishable curves. The plot for j=0 is included
in Fig. 3 for reference.

We emphasize that the method presented here is equiva-
lent to that given by Morse,1 who obtained the same approxi-
mate expressions for re

�j� and De
�j� as those derived here. The

difference is that Morse expanded the effective potential in a
Taylor series and, after making the small x approximation,
grouped the expansion into a Morse-like potential with ad-
justable constants that depend on j. In contrast, we used el-
ementary calculus to find the approximation to re

�j� by differ-
entiating and setting the derivative of Ueff�x� equal to zero

Fig. 3. The effective Morse potential for j=0 �for reference� and j=12
�heavy lines�. The remaining curve was obtained by letting re→re

�j� and
De→De

�j� as discussed in the text. The high rotational quantum number j
=12 was chosen to emphasize the difference between the exact effective
potential and the approximate one.
after expanding terms in the derivative. We use this value of
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re
�j� to obtain De

�j�, which was then used in a rotationless
Morse function that approximates the effective potential. The
level of approximation is the same in the two cases.

The method presented here should make it feasible to in-
clude the three-dimensional Morse potential with the usual
potentials studied in an introductory quantum mechanics
course. If studied in this way, the Morse potential provides a
clear example of the coupling between two degrees of free-
dom, vibration and rotation.
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