Prova I

Nome:

Informações:

- Duração de 2 horas.
- Pode comer e beber durante a prova.
- Pode fazer a prova à lápis.
- Pode usar calculadora (sem texto).
- A prova tem complexidade progressiva.

Violação de uma das regras anulará a prova.

- Desligue e guarde o celular.
- Não consulte material ou colegas.
- Sente virado/a para frente.
- Vá ao banheiro antes ou depois do exame.
- Rascunho apenas no verso da prova.

1. Assinale a(s) alternativa(s) correta(s). Justifique as incorretas.

A. Suponha que prendemos um mini-CTD no casco de um barquinho à vela de 30cm e soltamos o barquinho em alto mar. As medidas tomadas por esse instrumento podem ser consideradas

Resposta:

Lagrangianas.

Errado. O barquinho não segue o fluxo por causa da vela, que reage ao vento e não às correntes.

B. A dimensão do coeficiente de viscosidade dinâmica μ é [ML $^{-1}$ T $^{-1}$]

Resposta:

Certo

C. A tensão superficial de uma gota esférica pode ser estimada a partir do equilíbrio entre o trabalho de compressão e a variação da densidade.

Resposta:

Errado, é a variação da área.

D. O rotacional do gradiente da salinidade é sempre zero.

Resposta:

Sim, basta fazer a conta para uma componente.

E. O termo advectivo da derivada total é chamado de não-linear, pois podemos usar o teorema de Stokes para colocar alguns termos na forma $\frac{1}{2} \frac{\partial u_i^2}{\partial x_i}$.

Resposta:

Não é o Teorema de Stokes, é a regra da cadeia: errar uma coisa dessas devia dar cadeia.

2. Mostre matematicamente que o tensor deformação contém em si a compressão e o cisalhamento.

5

10

Resposta:

Considere i=j: $e_{ij}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=\vec{\nabla}\cdot\vec{u}$, que representa compressão. Além desses 3 termos, e_{ij} tem outros 6 termos com $i\neq j$, como por exemplo $\frac{\partial v}{\partial x}$ que representam o cisalhamento.

3. Use o que você sabe sobre vorticidade para demonstrar que uma canoa colocada fora do centro de um vórtice irrotacional não gira em torno de si mesma.

5

Resposta:

Só temos $u_{\theta} = \frac{C}{r}$, as demais componentes e/ou derivadas são nulas, portanto

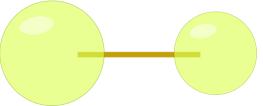
$$\omega_z = \left(\frac{1}{r}\frac{\partial(ru_\theta)}{\partial r} - \frac{1}{r}\frac{\partial u_r}{\partial \theta}\right) =$$

$$= \frac{1}{r}\frac{\partial\left[r\left(\frac{C}{r}\right)\right]}{\partial r} = 0.$$

4. Considere a figura abaixo onde a bolha maior tem r=100mm, a menor tem r=90mm e elas estão unidas por um canudinho fino. A tensão superficial da água em N/m é $\sigma=75.98\times 10^{-3}-1.689\times 10^{-4}\,T$ sendo T a temperatura em °C. A bolha menor está a 25°C. **Qual a temperatura da bolha maior?**

Dica: Para não perder tempo, faça as contas com $\sigma = a - bT$ e só substitua valores numéricos no final.

Resposta:



Resposta:

 $\Delta p = \frac{4\sigma}{r}$ se as duas bolhas estão unidas por um canudinho não há diferença de pressão, portanto:

$$\frac{4\sigma_1}{r_1} = \frac{4\sigma_2}{r_2} \text{ ou } \sigma_2 = \frac{r_2}{r_1} \sigma_1.$$

Onde a bolha 1 é a maior e a bolha 2 é a menor. Substituindo a expressão $\sigma=a-bT$ que relaciona tensão à temperatura, temos:

$$a - bT_1 = \frac{r_1}{r_2}(a - bT_2)$$
, isolando $T_1: T_1 = \frac{\frac{r_1}{r_2}(a - bT_2) - a}{-b}$,

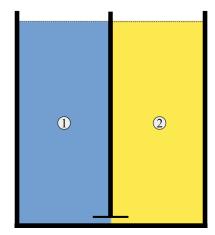
substituindo os valores numéricos $T_1 = -22.21$ °C.

5. Considere uma cuba de base retangular cuja seção transversal é mostrada na figura abaixo.

A água do lado 1 tem salinidade $S_1=35$ e temperatura $T_1=25$ °C; a água do lado 2 tem temperatura $T_2=5$ °C.

Determine a salinidade S_2 sabendo que o coeficiente de expansão térmica é $\alpha=1.8\times 10^{-4}~{\rm °C^{-1}}$, o coeficiente de contração halina é $\beta=7.6\times 10^{-4}{\rm psu^{-1}}$ e o coeficiente de compressibilidade $\kappa=4.5\times 10^{-5}{\rm bar^{-1}}$.

- Note que a cuba é vazada no fundo, e que a água dos dois lados tem a mesma altura.
- Pense na pressão dos dois lados.
- Assuma que os coeficientes α , β e κ são constantes, e que $\frac{\Delta \rho}{\rho} = -\alpha \Delta T + \beta \Delta S + \kappa \Delta p.$



Resposta:

Se a cuba é vazada, a pressão é a mesma dos dois lados do fundo da cuba, $p_2 = p_1 \Rightarrow \rho_2 g z_2 = \rho_1 g z_1$. Como a gravidade e a altura são iguais dos dois lados, $\rho_2 = \rho_1$ e $\Delta r ho = 0$. Portanto $-\alpha \Delta T + \beta \Delta S + \kappa \Delta p = 0$, mas novamente, a pressão é a mesma dos dois lados do fundo da cuba, $\Delta p = 0$. Ficamos

10

10

apenas com $-\alpha \Delta T + \beta \Delta S = 0$ ou seja,

$$-\alpha(T_2 - T_1) + \beta(S_2 - S_1) = 0$$

$$\alpha(T_2 - T_1) = \beta(S_2 - S_1)$$

$$S_2 - S_1 = (T_2 - T_1)\frac{\alpha}{\beta}$$

$$S_2 = S_1 + (T_2 - T_1)\frac{\alpha}{\beta}$$

$$S_2 = 35 + (5 - 25)\frac{1.8}{7.6}$$

$$S_2 = 30.26$$
psu

- 6. Um flutuador Lagrangeano foi capturado por um vórtice desgarrado da Corrente Norte do Brasil. O vórtice é elíptico, tem semi-eixo maior (zonal) $a=3\times 10^5 \mathrm{m}$ e semi-eixo menor (meridional) $b=2\times 10^5 \mathrm{m}$. O semi-eixo zonal está alinhado com o paralelo de 5°N. A velocidade no perímetro do vórtice foi medida pelo flutuador e é descrita por $u=k\,r\,((b\,\cos\theta)^2+(a\,\sin\theta)^2)$ ao longo de uma trajetória fechada. $k=1\times 10^{-16}~\mathrm{m}^{-2}\mathrm{s}^{-1}$.
 - (a) Qual é a vorticidade média na área dentro do vórtice?

Resposta:

Do Teorema de Stokes:

$$\oint_C \vec{u} \cdot \vec{dl} = \int_A (\vec{\nabla} \times \vec{u}) \cdot \vec{dA} = \int_A \vec{\omega} \cdot \vec{dA},$$

Considerando-se a área plana, a vorticidade reduz-se à sua componente vertical, portanto pode ser tratada como escalar. O último termo é o produto entre a área total e a vorticidade média, $\int_A \vec{\omega} \cdot d\vec{A} = \overline{\omega} \int_A d\vec{A} = \overline{\omega} \cdot A$. Para calcularmos a vorticidade média dentro do vórtice basta fazermos

$$\overline{\omega} = \frac{1}{A} \oint_0^{2\pi} \, \vec{u} \cdot \vec{dl}, \, \text{mas } \, \vec{dl} = r \vec{d\theta} \text{ portanto como } u \parallel \theta, \, \, \overline{\omega} = \frac{1}{A} \oint_0^{2\pi} \, u \, r \, d\theta.$$

Substituindo A, u e r:

$$\overline{\omega} = \frac{1}{\pi ab} \oint_0^{2\pi} k \frac{ab}{\sqrt{(a\sin\theta)^2 + (b\cos\theta)^2}} \left((b\cos\theta)^2 + (a\sin\theta)^2 \right) \frac{ab}{\sqrt{(a\sin\theta)^2 + (b\cos\theta)^2}} d\theta$$

A integral medonha se reduz a:

$$\overline{\omega} = \frac{1}{\pi ab} \oint_0^{2\pi} k (ab)^2 d\theta = 2kab.$$

(b) Expresse esse valor como percentual da vorticidade planetária local.

Resposta:

Se as contas estiverem certas, a vorticidade média dá $1,2\times10^{-5}~\rm s^{-1}$ e a planetária local é $1,255\times10^{-5}~\rm s^{-1}$, portanto a vorticidade relativa é 95.62% da planetária.

7. Um acidente com um cargueiro levou ao vazamento de etileno-glicol (anticongelante) perto de Abrolhos, num local onde as correntes são aproximadamente nulas e a profundidade é de 105 m. Amostras de água

5

foram coletadas em z=100, 50, 20, 10 e 1 m. Nelas foram encontradas concentrações de C=0.200, 0.275, 0.296, 0.299 e 0.300 g.m $^{-3}$. Assuma que o quadro é estacionário. Sabendo que o coeficiente de difusão dessa substância é $k=2\times 10^{-6} {\rm m}^2.{\rm s}^{-1}$,

(a) Baseado nos valores de q(z) para $z=75,\,35,\,15$ e 5,5 m, diga se o fluxo aumenta ou diminui com a profundidade.

10

Resposta:

Use a fórmula da difusão de Fick: $\vec{q}=-k\vec{\nabla}C$. O problema é unidimensional, portanto $q=-k\frac{dC}{dz}$. Podemos aproximar esse cálculo pelas diferenças finitas $q=-k\frac{\Delta C}{\Delta z}$ e fazendo as contas obteremos $q(75,35,15,5.5)=(0.30,0.14,0.06,0.02)\times 10^{-11}~{\rm kg.m^{-2}.s^{-1}}$, portanto fluxo aumenta com z.

(b) Obtenha uma fórmula analítica para C(z) para qualquer z assumindo que o gradiente é contínuo e suave. Dica: pense no gradiente em função de z e assuma que $\frac{dC}{dz}=0$ em z=0.

10

Resposta:

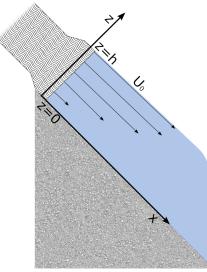
 $\frac{\Delta C}{\Delta z}=$ (-0.0015, -0.0007, -0.0003, -0.0001) para z= (75, 35, 15, 5.5), o gradiente é uma reta que passa pela origem. Vamos chamar o gradiente de G. O coeficiente angular m da reta é $\frac{\Delta G}{\Delta z}$. Usando quaisquer dois pontos obtemos $m=-2\times 10^{-5}$. Para obtermos a concentração basta integrar essa reta em z:

$$C(z) = \int \frac{dC(z)}{dz} dz = C_0 + m \cdot \frac{1}{2} z^2,$$

onde C_0 é uma constante que se pode determinar usando, por exemplo, C(1m)=0.300. Fazendo as contas obtemos $C_0=0.300-10^{-5}\simeq 0.300$, portanto a fórmula é

$$C(z) = 0.300 - 1 \times 10^{-5} z^2.$$

8. Na seção xz ilustrada a seguir, um canal despeja um líquido de densidade ρ e viscosidade dinâmica μ sobre



um barranco na forma um triângulo retângulo isósceles. O ângulo superior do triângulo é θ . Depois de um certo tempo, o sistema fica em equilíbrio, as velocidades u e a altura h não variam mais com o tempo. Esse fluxo laminar e viscoso é forçado apenas pela gravidade g. O fluxo é simétrico em y. Considere uma parcela de fluido longe das bordas, com comprimento L na direção x e W na direção y (furando o papel). Junto ao chão do barranco a velocidade é u=0 e na interface superior é $u=U_0$.

Vamos aplicar o que deduziremos para ver se escorre mais água se aquecermos ou se resfriarmos a água, mantendo U_0 constante. O fluxo é ajustado de forma que temos $U_0=2$ m/s se $g=9.8 {\rm ms}^{-2}$. Sabemos também que tanto a viscosidade como a densidade mudam com a temperatura: $\mu=1.8\times 10^{-3}~{\rm Nsm}^{-2}$ e $\rho=999.9 {\rm kgm}^{-3}$ a $1^{\circ}{\rm C}$ e $\mu=0.3\times 10^{-3}{\rm Nsm}^{-2}$ e $\rho=970.4 {\rm kgm}^{-3}$ a $90^{\circ}{\rm C}$.

Sugestão: Lembre que τ é força por área. Comece obtendo τ em função de z para uma parcela de fluido que desce o *plano inclinado*. Você deve usar a definição de τ para obter uma equação diferencial, resolva-a para obter u, h e uma boa dose de satisfação.

(a) Obtenha o **perfil de velocidades** u(z).

10

Resposta:

$$\tau = \frac{F}{A} = \frac{\rho V g \cos \theta}{LW} = \rho z g \cos \theta$$

$$\tau_{ij} = \mu \frac{du_j}{dx_i} \Rightarrow \frac{\partial u}{\partial z} = \frac{\rho}{\mu} g z \cos \theta \quad \text{integrando em } z \text{ dos 2 lados}$$

$$u=\frac{\rho g}{2\mu}\cos\theta\,z^2+C \quad \text{ , usando as condições de contorno, se } u=0 \text{ em } z=0 \ \Rightarrow \ C=0;$$

Portanto o perfil é
$$u(z) = \frac{\rho g}{2\mu} \cos \theta z^2$$

Resposta:

(b) Obtenha uma fórmula para a **altura de equilíbrio** h em função dos parâmetros conhecidos.

Resposta:

Usando a outra condição, $u=U_0$ em $z=h \ \Rightarrow \ U_0=\frac{\rho g}{2\mu}\cos\theta\,h^2$ portanto $h=\sqrt{\frac{2\mu U_0}{\rho g\cos\theta}}.$

5

10

(c) **Qual o fluxo** em m³/s que passa por W = 10cm se o fluido está a 1°C? e a 90°C?

Resposta:

Para calcular o fluxo Q, podemos calcular a velocidade média \bar{u} e multiplicar pela área Wh.

$$\bar{u} = \frac{\rho g}{2\mu} \cos \theta \, \frac{1}{h} \int_0^h z^2 dz = \frac{\rho g \, h^2}{6\mu} \cos \theta \quad Q = \bar{u}hW = \sqrt{\frac{2\mu U_0^3}{9\rho g \cos \theta}} W$$

Substituindo os valores para 1° C temos $Q=6.8\times10^{-5}$ m³/s e para 90° C temos $Q=2.8\times10^{-5}$ m³/s.

IOF221 - Oceanografia Dinâmica I

Memória não-volátil:

Sistema de Coordenadas Cilíndrico ou Polar												
Gradiente	$\vec{\nabla} E =$	$\left(\frac{\partial E}{\partial r}\right)_{\hat{i}_r}$	+	$\left(\frac{1}{r}\frac{\partial E}{\partial \theta}\right)_{\hat{i}_{\theta}}$	+	$\left(\frac{\partial E}{\partial z}\right)_{\hat{i}_z}$						
Divergente	$\vec{\nabla}\cdot\vec{V} =$	$\frac{1}{r} \frac{\partial (r \ u_r)}{\partial r}$	+	$\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}$	+	$rac{\partial u_z}{\partial z}$						
Rotacional	$\vec{\nabla} \times \vec{V} = ($	$\frac{1}{r}\frac{\partial u_z}{\partial \theta} - \frac{\partial u_\theta}{\partial z}$	$\frac{1}{\hat{i}_r} + \left(\frac{\hat{i}_r}{\hat{i}_r}\right)$	$\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r}$	$\frac{1}{\hat{i}_{\theta}} + \left(\frac{1}{r}\right)$	$\frac{\partial (r u_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial u_r}{\partial \theta} \Big)_{\hat{l}_z}$						

Se o ângulo é pequeno, o comprimento do arco é o raio vezes o ângulo.

$$\Delta p = \frac{2\sigma}{r}$$
 para uma gota esférica.

A vorticidade planetária é $f=2\Omega\sin(\theta)$ onde $\Omega=7.27\times10^{-5}~{\rm s}^{-1}.$ O raio da elipse é

$$r = \frac{ab}{\sqrt{(a\sin\theta)^2 + (b\cos\theta)^2}}$$

e a área da elipse é $A=\pi ab$.

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} = \frac{\partial \phi}{\partial r}$$
 $u_\theta = -\frac{\partial \psi}{\partial r} = \frac{1}{r} \frac{\partial \phi}{\partial \theta}$
 $u = \frac{\partial \psi}{\partial y} = \frac{\partial \phi}{\partial x}$ $v = -\frac{\partial \psi}{\partial x} = \frac{\partial \phi}{\partial y}$

Questão	1	2	3	4	5	6	7	8	Total
Pontos	10	5	5	10	10	15	20	25	100
Nota									