Informações:

- Duração de 2 horas.
- Pode comer e beber durante a prova.
- Pode fazer a prova à lápis.
- Pode usar calculadora (sem texto).
- A prova tem complexidade progressiva.

A tentativa de violação de qualquer uma das regras abaixo anulará a tua prova.

- Não consulte material ou colegas.
- Sente virado/a para frente.
- Vá ao banheiro antes ou depois do exame.
- Rascunho apenas no verso da prova.
- Desligue e guarde o celular.

- 1. Assinale a(s) alternativa(s) correta(s). Justifique as incorretas.
 - A. A dimensão da tensão de cisalhamento é $[ML^{-1}T^{-2}]$

Resposta:

Certo

B. A capacidade térmica dos primeiros \sim 2,5m dos oceanos é equivalente à da troposfera. Isto se deve ao fato que o capacidade térmica específica da água (ρC_v) é \sim 4000 maior que o do ar.

Resposta:

Certo.

C. O operador rotacional eleva a ordem de um tensor.

Resposta:

Errado, ele não modifica a ordem pois $\vec{\nabla} \times (vetor) = (vetor)$.

D. Na derivada total o termo local é chamado de não-linear pois podemos usar a regra de derivadas do produto para colocar alguns termos na forma $\frac{1}{2} \frac{\partial u_i^2}{\partial x_i}$.

Resposta:

Errado, esse é o termo advectivo.

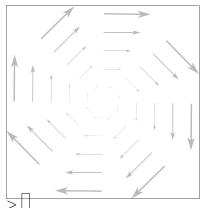
E. Um glider funcionando corretamente é um instrumento Lagrangiano.

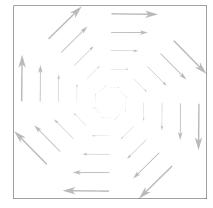
Resposta:

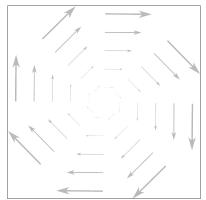
Errado. Ele não segue o fluxo.

2. Observe o fluxo na figura da esquerda. Medite sobre $\vec{\nabla}\psi\cdot\vec{\nabla}\phi=0$. Na figura do meio desenhe isolinhas representando a função de corrente ψ . Na figura da direita desenhe isolinhas representando o potencial de velocidade ϕ . Os valores representados devem ser igualmente espaçados, ou seja, de n em n unidades.

10







Resposta:

É um fluxo em rotação de corpo sólido, portanto não divergente. As isolinhas de ψ existem e são círculos concêntricos, com uma densidade maior de linhas onde a corrente é mais intensa. As 1solinhas de ϕ não existem, o fluxo tem rotacional não-nulo.

3. Considere um vórtice de Rankine onde o raio R separa a região interna da externa. O vento e as correntes são desprezíveis. Flutuadores Lagrangeanos coletaram amostras no vórtice, uma em $r_1=0.75\,R$ e outra em $r_2=1.25\,R$. Eles giraram em torno de si mesmos enquanto faziam as coletas? Responda claramente, provando matematicamente o teu argumento.

10

Resposta:

Na parte interna $(r \leq R)$ a rotação é de corpo sólido, só temos $u_{\theta} = \Omega r$, e na externa o fluxo é irrotacional $(r \geq R)$ só temos $u_{\theta} = \frac{C_2}{r}$, as demais componentes e/ou derivadas são nulas. Os u_{θ} tem de ser iguais na borda $(r_1 = r_2 = R)$, então $C_2 = \Omega R^2$ portanto $u_{\theta} = \frac{\Omega R^2}{r}$ na parte externa. Para saber se uma partícula gira em torno de si ou não temos que calcular a vorticidade relativa:

$$\vec{\omega} = \vec{\nabla} \times \vec{V} = \left(\frac{1}{r} \frac{\partial u_z}{\partial \theta} - \frac{\partial u_\theta}{\partial z}\right)_{\vec{i_r}} + \left(\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r}\right)_{\vec{i_\theta}} + \left(\frac{1}{r} \frac{\partial (r \ u_\theta)}{\partial r} - \frac{1}{r} \frac{\partial u_r}{\partial \theta}\right)_{\vec{i_z}}$$

Para a parte interna:

$$\omega_z = \left(\frac{1}{r}\frac{\partial(ru_\theta)}{\partial r} - \frac{1}{r}\frac{\partial u_r}{\partial \theta}\right) =$$
$$= \frac{1}{r}\frac{\partial\left[r\left(\Omega r\right)\right]}{\partial r} = 2\Omega.$$

Portanto na parte interna o flutuador girou em torno de si com a velocidade angular Ω do vórtice e translou com Ω , resultando em 2Ω .

Para a parte externa:

$$\omega_z = \left(\frac{1}{r}\frac{\partial(ru_\theta)}{\partial r} - \frac{1}{r}\frac{\partial u_r}{\partial \theta}\right) =$$
$$= \frac{1}{r}\frac{\partial\left[r\left(\frac{\Omega R^2}{r}\right)\right]}{\partial r} = 0.$$

Na parte externa o flutuador não girou.

10

4. O aumento do nível dos oceanos tem sido utilizado como indicador de mudanças climáticas. O coeficiente de expansão térmica é dado por: $1.3 \times 10^{-4}~{\rm K}^{-1}$. Considere que na equação acima a pressão e a salinidade são constantes, que o oceano tem bordas verticais, profundidade média de 5000m e que ele tem massa constante. Se a temperatura média do oceano global aumentar 0.3 K por década, em quanto tempo o nível médio do mar aumentará de 3 metros? Explique as aproximações utilizadas. Dica: Pense em termos de colunas d'água e conservação de massa.

Resposta:

Considere uma coluna d'água de área A e altura h que se expande até $h+\eta$ pois a densidade mudou de ρ_1 para $\rho_2<\rho_1$ Por conservação de massa:

$$Ah\rho_1 = A(h+\eta)\rho_2$$
$$\rho_1 h = \rho_2 h + \rho_2 \eta$$
$$\eta = \frac{h(\rho_1 - \rho_2)}{\rho_2} \simeq -h\frac{\Delta\rho}{\rho}$$

Pois a densidade não vai mudar muito, portanto $\rho_2 \simeq \rho$. Defini $\Delta \rho = \rho_2 - \rho_1$ e $\rho = (\rho_2 + \rho_1)/2$.

Aproximando $\alpha=-\frac{1}{\rho}(\frac{\partial\rho}{\partial T})_{pS}$ para diferenças finitas pois queremos valores médios,

$$lpha=-rac{1}{
ho}(rac{\Delta
ho}{\Delta T})$$
 . Isolando $rac{\Delta
ho}{
ho}~$ e substituindo na expressão de $~\eta$, temos $\eta=hlpha\Delta T$

Substituindo os valores numéricos,

$$\eta = 5 \times 10^3 \times 1.3 \times 10^{-4} \times 0.3 = 0.195 \,\text{m/década}$$

Este é o aumento decadal de nível em metros, para chegar a 3 m basta inverter três décimos desse número, o que dá 153.85 anos.

5. Considere que a boca de uma pluma hidrotérmica é circular e que a concentração de sulfeto de sódio $C[\mathrm{Na_2S}]$ é dada por:

 $C = \frac{A}{(z+B)^2} e^{-(R-r)^2}$

R é o raio da boca, B=|z(fundo)|+1 e A é a concentração máxima, tudo em unidades do SI, com z orientado para cima, z=0 na superfície, portanto z<0 abaixo dela. Use difusão de Fick para obter o vetor fluxo de massa (\vec{q}) de Na₂S, dado o coeficiente de difusão k. Com base nas tuas contas dê a direção e o sentido de \vec{q} para r< R e para r> R.

Resposta:

Fick nos diz que $\vec{q} = -k\vec{\nabla}C$. Olhe a definição de gradiente em coordenadas cilíndricas. Como C = C(r,z) a derivada em θ é zero. A componente radial é dada por:

$$\frac{\partial C}{\partial r}\hat{r} = \frac{A}{(z+B)^2} \frac{\partial (e^{-(R-r)^2})}{\partial r} = \frac{2A(R-r)}{(z+B)^2} e^{-(R-r)^2}.$$

A componente vertical é dada por:

$$\frac{\partial C}{\partial z}\hat{z} = \frac{\partial \left(\frac{A}{(z+B)^2}\right)}{\partial z}e^{-(R-r)^2} = -\frac{2A}{(z+B)^3}e^{-(R-r)^2}.$$

Portanto aplicando Fick obterás:

$$\vec{q} = -k \left[\left(\frac{2A(R-r)}{(z+B)^2} e^{-(R-r)^2} \right)_{\hat{r}} - \left(\frac{2A}{(z+B)^3} e^{-(R-r)^2} \right)_{\hat{z}} \right].$$

A constante que multiplica a exponencial em \hat{r} muda de sinal em R, portanto o fluxo radial aponta para dentro se r < R e para fora se r > R. A componente vertical não muda de sinal, o fluxo é para cima em todo o espaço.

6. Num Domingo sem vento e nem atrito, Joãozinho descia uma ladeira plana de skate, fazendo bolhas de sabão com um aro de raio R perpendicular ao seu deslocamento. Seu Edgar, pai de Joãzinho, tirou duas fotos separadas por t segundos. Na primeira, uma bolha tinha começado a se formar por causa da pressão dinâmica devido ao deslocamento de Joãozinho; nessa foto a

20

bolha tinha curvatura r=2R. Na segunda foto a bolha era uma casca hemisférica. Seu Edgar sabia que a relação entre a pressão dinâmica do ar e a velocidade é dada por $u=\sqrt{\frac{2\,p_d}{\rho_{ar}}}$, onde ρ é a densidade **do ar** e u a velocidade projetada na direção perpendicular à área. Ele considerou que a tensão superficial da mistura de água com sabão era σ e calculou a inclinação θ da ladeira. Que cálculo ele fez?

Resposta:

Resposta:

Tem mais de um jeito de resolver o problema. Eis o meu: No plano inclinado a aceleração devido à força normal projetada horizontalmente é $a=g\sin(\theta)$. Essa aceleração é medida indiretamente pelo Seu Edgar, pois as duas fotos estão separadas por t segundos e nelas o Joãozinho tem velocidades u_1 e u_2 diferentes:

$$g \sin(\theta) = \frac{(u_2 - u_1)}{t}$$
 $\theta = \arcsin\left(\frac{(u_2 - u_1)}{t g}\right)$. (1)

Mas

$$(u_2 - u_1) = \sqrt{2p_{d2}/\rho} - \sqrt{2p_{d1}/\rho}$$
, sendo $p_{d2} = 2 \cdot \frac{2\sigma}{R}$ e $p_{d1} = \frac{2\sigma}{R}$.

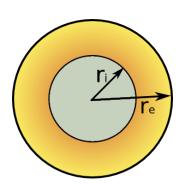
Sendo assim,

$$(u_2 - u_1) = \sqrt{2(2\frac{2\sigma}{\rho R})} - \sqrt{2\frac{2\sigma}{\rho R}} = 2(\sqrt{2} - 1)\sqrt{\frac{\sigma}{\rho R}},$$

Substituindo em 1 temos

$$\theta = \arcsin\left(\frac{2(\sqrt{2}-1)\sqrt{\frac{\sigma}{\rho R}}}{t\,g}\right).$$

7. Considere dois cilindros longos vistos de cima na figura abaixo. O externo, de raio r_e está



parado e o interno, de raio r_i se move com velocidade constante Φ . Considere o fluxo laminar e o coeficiente de viscosidade dinâmica μ constante. Assuma a condição de contorno de não-escorregamento junto às paredes do cilindro. Esta é a versão mais simples desse problema que já foi tratado por:

- Newton,
- Taylor,
- Stokes,
- Couette.
- Chandrasekar e outros notáveis. Agora é a sua vez.

10

(a) Obtenha o perfil de velocidades em função das variáveis conhecidas.

Resposta:

$$\frac{\tau}{\mu} = \frac{du_z}{dr}$$
 integrando dos 2 lados $\frac{\tau}{\mu}r = u_z + C'$ ou $u_z = \frac{\tau}{\mu}r + C$

Usando a condição de contorno externa:

$$u_z = 0 \ \mathrm{em} \ r = r_e \quad \Rightarrow \quad 0 = \frac{\tau}{\mu} r + C \quad \Rightarrow \quad C = -\frac{\tau}{\mu} r_e$$

Usando a condição de contorno interna e substituindo *C*:

$$u_z = \Phi \ \mathrm{em} \ r = r_i \quad \Rightarrow \quad \Phi = \frac{\tau}{\mu} (r_i - r_e) \quad \Rightarrow \quad \tau = \frac{\Phi \mu}{r_i - r_e}.$$
 Portanto $u_z = \frac{\tau}{\mu} r - \frac{\tau}{\mu} r_e = \frac{\tau}{\mu} (r - r_e) = \Phi \frac{r - r_e}{r_i - r_e}.$

(b) Obtenha uma expressão para a força por unidade de comprimento aplicada pelo fluido na parte interior do cilindro externo.

Resposta:

$$F = \int_0^{2\pi} \tau L r d\theta \text{ substituindo } \tau \text{ fazendo L=1 e integrando obt\'em-se } F = \frac{\Phi \mu}{r_i - r_e} 2\pi r_e.$$

Memória não-volátil:

A densidade da água pura é $1000~{\rm kg.m^{-3}}$. A do ar é $1~{\rm kg.m^{-3}}$.

O calor específico a volume constante da água é $4 \text{ J.g}^{-1}\text{K}^{-1}$. O do ar é $1 \text{ J.g}^{-1}\text{K}^{-1}$.

A pressão por causa da tensão superficial é $\Delta p = 2\sigma/R$.

A lei de Fourier é $\vec{q}_t = -k_t \vec{\nabla} T$ onde k_t é o coeficiente positivo de condutividade térmica. $\alpha = -\frac{1}{\rho} (\frac{\partial \rho}{\partial T})_{pS}$.

Sistema de Coordenadas Cilíndrico ou Polar												
Gradiente é vetor!	$\vec{\nabla} E =$	$\left(\frac{\partial E}{\partial r}\right)_{\hat{i}_r}$	+	$\left(\frac{1}{r}\frac{\partial E}{\partial \theta}\right)_{\hat{i}_{\theta}}$	+	$\left(\frac{\partial E}{\partial z}\right)_{\hat{i}_z}$						
Divergente é escalar!	$ec{ abla} \cdot ec{V} =$	$\frac{1}{r} \frac{\partial (r \ u_r)}{\partial r}$	+	$\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}$	+	$rac{\partial u_z}{\partial z}$						
Rotacional é vetor!	$\vec{ abla} imes \vec{V} = ig($	$\left(\frac{1}{r}\frac{\partial u_z}{\partial \theta} - \frac{\partial u_\theta}{\partial z}\right)$	$\frac{1}{\hat{i}_x} + ($	$\frac{\partial u_r}{\partial z} - \frac{\partial u_z}{\partial r}$	$\hat{i}_{\theta} + \left(\frac{1}{r}\right)$	$\frac{\partial (r u_{\theta})}{\partial r} - \frac{1}{r} \frac{\partial u_r}{\partial \theta} \Big)_{\hat{i}_{\sigma}}$						

Linhas de corrente:

$$u = \frac{\partial \psi}{\partial y} \quad v = -\frac{\partial \psi}{\partial x}$$

Potencial de velocidade:

$$u = \frac{\partial \phi}{\partial x}, \quad v = \frac{\partial \phi}{\partial y}.$$

4, 8, 15, 16, 23, 42.

Questão	1	2	3	4	5	6	7	Total
Pontos	10	10	10	10	20	20	20	100
Nota								