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Fluctuating population size, phylogenetic inertia and the r-K
gradient: a model.

Harmonic mean of N and phylogenetic inertia

Consider that population size, N, fluctuates over time. The instantaneous rate of
coalescence between two random gene copies at time t is proportional to 1/N(t), and the average

1 ¢7
coalescence rate during the last T generations is proportional to T JO dt/ N(t). This means that

the expected coalescence time, and therefore the expected neutral heterozygosity ms, are
proportional to the time-harmonic mean of N, which thus corresponds to the long-term effective
population size, N.1.If fluctuations occur at a rate much higher than the median drift rate, N. is
essentially independent of the history of the process and on current N but solely determined by
the stationary distribution of N?, here controlled by the demographic parameters underlying the
evolution of N(¢) (r, K... see below). If these demographic parameters evolved at a relatively slow
rate, so would Ne and ms. Assuming fast enough population size fluctuations, we therefore
predicts (i) a substantial amount of phylogenetic inertia on ns (because of the slowly evolving Ne)
and (ii) a weak relationship between 7s and current population size (because of the strongly
fluctuating N), consistent with our findings.

We elaborate on these basic assumptions by considering two specific scenarios that might
explain why r-strategist species exhibit a higher 1s than K-strategists.

Demographic scenarios

Scenario 1: deterministic environment driven fluctuations

We first consider a simple scenario where environmental variations synchronously affect
population size in a set of species with different demographic strategies - typically, climatic
variations. For simplicity and mathematical tractability we consider a simple toy model, in which
every Tp time unit, an environmental event leads to a population bottleneck reducing the
population size to Ny = N(t)/b, where b > 1 is the intensity of the bottleneck. Each bottleneck
event is followed by a logistic growth with intrinsic growth rate, r, carrying capacity K, and
generation time g. For a demographic cycle starting at N(0) = Ny at t = 0 we have:
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N(1)= ——— (1)
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Under the stationary regime Ny = N(Tp)/b, so that:
K (er%/ £ — b)
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Inserting (2) in (1) and taking the harmonic mean we deduce:
I"Tb/g(errb/g _ b)
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N, = (2)
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Note that if r% < b, the population goes extinct. Assuming r% >> b equation (3) simplifies to:

v ok 'L/g
¢ b—1+rT, / g
Equations (3) and (4) show that, for a given K, N. increases with r simply because r-strategists

recover more quickly after bottleneck events and spend less time at low population size, as
illustrated in Figure S1.
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Figure S1: A) Evolution of population size, N(t), between two bottleneck events of intensity b = 100 and periodicity T, =
1,000; K = 10,000. B) N, as a function of r (log-scale) with the same parameters. Plain line corresponds to equation (3)
and dotted line to the approximation given by equation (4). In A) and B), the generation time, g is fixed to 1.

Note that because we consider periodic environmental events independent of species
biology, species with longer generation time also recover more slowly by time unit (term T5/g in
equations (3) and (4)) and are thus expected to have lower N.. As r-strategists are expected to
have lower generation time, this could reinforce the effect on Ne.

One limitation of this model is that we assume r- and K-strategists share a similar carrying
capacity and experience similar environmental variations. However, r-strategy is supposed to be
favored in case of environmental instability /unpredictability, whereas K-strategists tend to
occupy more stable niches. T, could be thus lower for r- than for K-strategists. Equation (3) and
(4) show that N. actually depends on rT5/g. The net result will thus depend on the balance
between r, T, and g. To take this into account we built another scenario where stochastic
variations are explicitly taken into account and where r-strategists are supposed to fluctuate
more than K-strategists.

Scenario 2: stochastic population size fluctuations

General model

In this second scenario we simulated fluctuations in time of the logarithm of the effective
population size of a panmictic population as a stochastic autoregressive process:

log(N(t+1))=(1- )+ ¢log(N(¢))+ w(0.0)  (5)
where w is a Gaussian random deviate of mean zero and variance o? (white noise).
The process is determined by three parameters:
- i is the arithmetic average logN;
- omeasures the strength of the response to environmental noise;

2 | WWW.NATURE.COM/NATURE



SUPPLEMENTARY INFORMATION gHaVZH,

- ¢ is the auto-correlation, or memory, of the process (0 < ¢ < 1).
Population size fluctuations simulated under various parameter values is shown in figure S2.
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Figure S2: Examples of simulations for different values of i, o and ¢.

Noting X: = log(N(t)) and taking the continuous version of (5), X: satisfies the following stochastic
differential equation:

dX =(1-¢)(u—X,)dt+odW, (6)
where W, is the Wiener process. X; is thus a Ornstein-Uhlenbeck process and admits a stationary
distribution which is a normal distribution with mean u and variance ¢%/(1 - ¢)°. The stationary
distribution of N is thus a log-normal distribution with parameters ¢ and ¢%/(1 - ¢). Noting
flu,0,0,z), the density function of the log-normal distribution, the harmonic mean of N under the
stationary regime can thus be computed as:

Ne = l/jowif(u,a,gb,z)dz = eXp(,u— 4(1(i ¢)j (7)

Equation (7) clearly shows that demographic stochasticity decreases N, all the more so auto-
correlation, ¢, is strong. Considering that the median of N, exp(u), is roughly equivalent to K, for a
given K, species with higher fluctuation rates should have lower Ne. This model would thus
predict that lower N. for r-strategists, which is the opposite prediction of scenario 1.

Conditioning on non extinction

However, only species that have escaped extinction are observable. The risk of extinction
obviously increases as y decreases and o and ¢ increase. A high level of autocorrelation increases
the risk of extinction because the effects of successive drops in N cumulate to some extent,
increasing the variance of the process. When conditioning on non-extinction, increasing oand/or
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¢ should thus result in higher p.

We assume that a species goes extinct when its population size N reaches a value below
some threshold Nuin. First, we can determine the minimal value of ¢ required to avoid extinction,
for a given oand ¢. We assume that extinction is avoided when the probability of N being lower
than Nmin is lower than a threshold . timin is thus solution of:

[ 0 0.0.2) =0 (8)

which is

e Sl 200 +log(N,,) 9)

where erfc1 is the inverse complementary error function*. Inserting (9) in (7), we then have the
minimum N, observable for given o and ¢ conditioning on non-extinction:

Nemmszmexp[ f (pefc "2 05)—4(1 (I))] (10)

Equation (10) shows that N™ (i) increases linearly with Ny, and (ii) increases with - as far as

ﬁ < (4erfc (Za)) For low values of ¢, the threshold is very high (21.64 for o= 0.05 and

43.30 for &= 0.01) and distribution with such high variances are not realistic. For instance the
median of the distribution would be of the order of 10° for &= 0.05 and 108 for = 0.01, but the
mode would be lower than one. Under realistic biological conditions, N:““ is thus expected to
increase with the rate of demographic fluctuations.

We qualitatively verified these predictions by simulations. Here we arbitrarily assumed
that extinction is avoided when the probability of extinction in 10> generations is below 0.05,
Nmin being set to 1 in this first analysis. The minimal sustainable i was obtained by simulations
for various (¢, o) pairs (Figure S3).
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Figure $3: Minimal population size required to avoid extinction in 10° generations as a function of o-and ¢.
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Figure S4 shows that, for any given value of ¢, the minimal sustainable Ne, and therefore
the minimal s conditional on non-extinction, increases with o. According to this model, species
experiencing a high rate of demographic fluctuation can only carry relatively large amounts of
genetic diversity - or quickly reach extinction. When fixing oand ¢ increase, we found that the
minimal sustainable Ne increases more or less linearly with Nmin (not shown), as predicted by
equation (10). This result indicates that, for a given intensity of demographic fluctuation, species
strongly affected by the Allee effect would tend to be genetically more diverse than species
weakly affected by the Allee effect, conditional on non-extinction.
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Figure S4: Minimal harmonic mean, »,, conditional on non extinction as a function of o and ¢.

The r/K effect on genetic diversity

Though making different assumptions, these two models predict higher long-term Ne in r-
strategists than in K-strategists.

According to scenario 1, r-strategists would respond more quickly than K-strategists to
environmental perturbations, which here are assumed to be of common intensity across species
and strategies. This is plausible if we consider that large-scale environmental variations
(typically climatic events) may have stronger demographic consequences at the species level
than local stochastic variations.

According to scenario 2, assuming that the population size tends to fluctuate more widely
in r-strategists than in K-strategists is sufficient to predict a higher average level of genetic
diversity (conditional on non-extinction) in the former than in the latter. Alternatively, a higher
average genetic diversity in r-strategists than in K-strategists could also be explained by a higher
prevalence of the Allee effect in the former. The connection between r-strategy and Allee effect is
not so obvious, but this hypothesis might account for at least some of the highly polymorphic r-
species we identified, such as marine sessile species (mussels, oysters, slipper snails, sea squirts).
These animals, in which immobile adults release gametes in the water column, can only
reproduce at high population density, and therefore presumably suffer from the Allee effect. A
connection between the Allee effect and genetic diversity was recently made in the context of
expanding populations and colonization®.

These potential explanations are non-mutually exclusive and would deserve additional
empirical support.
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