Aula 07

Bibliografia: BKM, cap. 10

Cláudio R. Lucinda

FEA-RP/USP

Objetivos da Aula

- 1 APT Aspectos Práticos
 - Estimando risco em um contexto multifator

Objetivos da Aula

- 1 APT Aspectos Práticos
 - Estimando risco em um contexto multifator

2 Testando o APT

Aspectos Práticos

- O que são modelos multifatoriais e como eles são relacionados ao APT?
- Quais são os passos necessários para se desenvolver um modelo multifator utilizável?
- Quais são as duas principais abordagens empregadas na definição dos fatores de risco?
- Quais são as variáveis macroeconômicas usadas na prática como fatores de risco?

Modelos Multifatores de Risco e Retorno

- Quais são as principais variáveis relacionadas ao mercado de ações usadas na prática como fatores de risco?
- Como os modelos multifatores podem ser usados para identificar as "apostas" de investimento que um gestor ativo de carteiras pode fazer em relação a um benchmark?
- Como os modelos multifatores são usados para estimar o prêmio de risco esperado para um título ou carteira?

Modelos multifatores e estimação de risco

Um um modelo multifator, o investidor escolhe o número exato e a identidade dos fatores:

$$R_{it} = a_i + [b_{i1}F_1 + b_{i2}F_2 + \cdots + b_{ik}F_k] + e_{it}$$

- Em que:
 - \blacksquare R_{it} é o retorno excedente do ativo i no instante t
 - lacksquare F_j é o retorno excedente do portifólio do fator j
 - b_{ij} é a sensibilidade do retorno excedente à variações no portifólio de fator j
 - a_i é o análogo do "alpha": retorno excedente não associado com a exposição a fatores
 - e_{it} parte idiosincrática dos retornos

Modelos multifatores e estimação de risco

- Na prática
 - Modelos baseados em fatores de risco macroeconomico
 - Modelos baseados em fatores microeconômicos
 - Extensões de modelos baseados em características de risco.

Modelos baseados em fatores macroeconômicos

 O retorno do ativo é governado por um conjunto de influências amplas como a seguir:

$$R_{it} = a_i + [b_{i1}R_{Mt} + b_{i2}MP_t + b_{i3}DEI_t + b_{i4}UI_t + b_{i5}UPR_t + b_{i6}UTS_t] + e_i$$

- Em que:
 - Rm o retorno sobre um índice ponderado por valor de ações da NYSE
 - MP taxa de crescimento mensal na produção industrial americana
 - DEI a variação na taxa de inflação, medida pelo CPI
 - UI a diferença entre os níveis atuais e esperados de inflação
 - *UPR* a mudança inesperada no *spread* de crédito dos títulos
 - UTS a mudança inesperada na estrutura a termo (taxa de longo prazo menos a taxa de curto prazo

Modelos baseados em fatores macroeconômicos

- Este modelo assume que os seguintes fatores de risco são importante para a determinação dos retornos e não são diversificáveis
 - Risco de confiança
 - Risco de horizonte temporal
 - Risco de Inflação
 - Risco de ciclo de negócios
 - Risco de Market timing

Modelos baseados em fatores microeconômicos de risco

Especifica o risco em termos econômicos usando algumas características da amostra subjacente de títulos:

$$(r_{it} - r_f) = a_i + b_{i1}(r_{Mt} - r_f) + b_{i2}SMB_t + b_{i3}HML_t + e_{it}$$

- Em que:
 - r_{it} retorno bruto
 - r_f taxa livre de risco
 - r_M retorno do índice de mercado
 - SMB "Small Minus Big" Retorno de um índice composto por ações de baixa capitalização menos o Retorno de outro índice composto por ações de alta capitalização
 - HML "High Minus Low" Retorno de um índice composto por ações com elevado índice Valor Contáil/Valor Patrimonial

Extensões do modelo de fatores micro

Carhart (1997) extense o modelo acima de Fama-French incluindo um quarto fator de risco comum para levar em consideração a tendência de firmas com passado positivo em gerar um retorno positivo no futuro

$$(r_{it}-r_f) = a_i + b_{i1}(r_{Mt}-r_f) + b_{i2}SMB_t + b_{i3}HML_t + b_{i4}PR1YR + e_{it}$$

- PR1YR Fator Momentum (retorno do ano imediatamente anterior)
- Extensões do modelo de características
- O segundo tipo de método baseado nas características dos títulos para definir exposições sistemáticas de risco envolve o uso diferentes carteiras de mercado (e.g. S&P 500, Wilshire 5000) como fatores de mercado

Extensões do modelo de características

- A terceira é o BARRA Characteristic-based risk factors
 - Volatility (VOL)
 - Momentum (MOM)
 - Size (SIZ)
 - Size Nonlinearity (SNL)
 - Trading Activity (TRA)
 - Growth (GRO)
 - Earnings Yield (EYL)
 - Value (VAL)
 - Earnings Variability (EVR)
 - Leverage (LEV)
 - Currency Sensitivity (CUR)
 - Dividend Yield (YLD)
 - Nonestimation Indicator (NEU)

Estimando risco em um contexto multifator

- Estimando retorno esperado para ações individuais
 - Um conjunto específico de K fatores de risco comum precisa ser identificado
 - Pode ser "a olho" ou por meio da decomposição de componentes principais da matriz de covariância dos retornos
 - As sensibilidades da i-ésima ação a cada um destes K fatores precisa ser estimada (pode ser por séries de tempo - calculada na forma de retornos excedentes)
 - O prêmio de risco para estes fatores precisa ser estimado (aqui geralmente é por cross-sections)
- Os retornos esperados podem ser calculados combinando os resultados das etapas anteriores de forma adequada

Estudo de Roll-Ross

- Metodologia usada:
- Estimar os retornos esperados e os coeficientesdos fatores a partir dos dados de série temporal dos ativos individuais
- Usar estas estimativas para testar a conclusão básica de precificação em cross-section implícita pelo APT
- Os autores concluíram que as evidências apoiavam o APT, mas que os seus testes não são conclusivos

Extensões do Estudo de Roll-Ross

- Cho, Elton, e Gruber examinaram o número de fatores precificados no processo gerador de retornos
- Dhrymes, Friend, e Gultekin (DFG) reexaminaram as técnicas e suas limitações, e descobriram que o número de fatores varia com o tamanho da carteira.

O APT e anomalias do mercado acionário

- Efeito da firma pequena
 - Reinganum resultados inconsistentes com o APT
 - Chen apoiava o APT em relação ao CAPM
- Anomalia de Janeiro
 - Gultekin e Gultekin APT não é melhor que o CAPM
 - Burmeister e McElroy efeito não capturado pelo modelo, mas ainda rejeita o CAPM em favor do APT

Desafio do Shanken à testabilidade do APT

- Se os retornos não são explicados pelo modelo, não é considerado rejeição do mesmo; no entanto, se os fatores explicam os retornos, é considerado apoio.
- O APT não possui vantagem porque os fatores não precisam ser observáveis, então conjuntos equivalentes podem significar diferentes estruturas fatoriais
- A formulação empírica do APT pode levar a diferentes implicações com relação aos retornos esperados por um dado conjunto de ativos
- Portanto, a teoria não pode explicar o diferencial de retornos entre ativos, porque ela não pode identificar a estrutura relevante de fatores que explique os retornos diferenciais

