Efficient Reading of Papers in Science and Technology

This brochure provides an approach to help you read scientific papers efficiently and effectively.

Prepared by:
Michael J. Hanson
Updated by:
Dylan J. McNamee

An online version of this document can be found here:
http://www.cse.ogi.edu/~dylan/efficientReading.html
Thanks to Dave Maier for additional suggestions.

Copyright © 1989, 1990 Michael J. Hanson,
revised by Dylan J. McNamee (dylan@cse.ogi.edu)

version of January 6, 2000
Introduction: Why Read?

Before beginning to read a paper, consider why you are doing it. What do you want to get out of it? Your needs control how you read. If you only need an overview, a brief skim may suffice. If you will present the paper to others, you will need to dig deeply, to challenge the paper’s arguments until you understand it fully. If you will use the information later, taking notes will help you remember it. If you don’t know what you hope to gain from the paper, you can not tell whether reading it will be beneficial or a waste of time.

In order to get the most from your reading, you should be properly prepared. Find a quiet place to work where you will not be disturbed or distracted, have a pencil and note pad at hand, and bear in mind exactly what you expect to get from this paper.

The following method for reading a scientific paper offers you ideas about the process of reading a paper, how to decide what to read, how to build a broad framework by skimming, and how to challenge the paper to get depth of understanding. Finally, it will show you how to take notes so that the key points won’t be lost as soon as you set the paper down. Since reading is the process of getting ideas from the author, you must focus on the author’s thoughts, not just read the words on the paper.

Deciding what to read

When you first approach a paper, ask yourself “What did the author do?” Reading the title and the abstract should tell you this. Then decide if the paper is useful to you now. If so, read it. If not, might the paper be useful to you later? If so, file it. If it is not relevant to you, skip it.

Reading for Breadth: Build a framework

If you decide to read the paper, first skim it.
• Read the introduction.
• Read the section headings.
• Look at the tables and graphs to see what they say and read the captions.
• Read the definitions and theorems.
• Read the conclusions.
• Consider the credibility of the article.
 Who wrote it? Are they well-known?
 Where do they work? What biases might they have as a result of their employer?
 Where was the article published? What is the reputation of the journal? Was the journal refereed?
 When was it written? Might it be outdated or superseded?
• Skim the bibliography:
 How extensive is it?
 Are the authors aware of current work?
 Does it reference classic papers in this field?
 Have you read any of the papers that are referred to?
 Do you know relevant research that isn’t cited?

By skimming the paper first you can learn what the authors did, and develop a framework to understand the parts of the paper. Developing a framework adds to your general understanding of the field, and gives you a basis to understand the paper. If you know what conclusions they draw, you can follow their arguments more easily. Knowing where they are going can help you to follow their path and give you a chance to find shortcuts or places where they missed a turn.

Once you have skimmed a paper you have a broad idea of what they did. Then you can decide if you want to know more. If you are interested in how they did it, then read the body of the paper for details. If not, file away what you have learned and congratulate yourself for saving the time of reading the paper in depth.

Reading in Depth: Challenge what you read

There is a lot of junk published, so you should be selective in what you read and what you believe. When you read a paper in detail, approach it with scientific skepticism. You can do this by trying to tear the arguments apart.

Examine the assumptions
• Do their results rely on any assumptions about trends or environments?
• Are these assumptions reasonable?

Examine the methods
• Did they measure what they claim?
• Can they explain what they observed?
• Did they have adequate controls?
• Were tests carried out in a standard way?

Examine the statistics
• Were appropriate statistical tests applied properly?
• Did they do proper error analysis?
• Are the results statistically significant?

Examine the conclusions
• Do the conclusions follow logically from the observations?
• What other explanations are there for the observed effects?
• What other conclusions or correlations are there in the data that they did not point out?

By challenging what you read, you will understand better what the author is saying and why they say it. You will also be able to decide whether the evidence supports their conclusions, and to draw your own conclusions from their data. Once you understand the paper, ask yourself how you can apply their approach to your own work.