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Axial impact on shells: GMSIE
major application is absorption of kinetic energy

* Progressive buckling
— Static (no strain rate effects)

— Dynamic (material flow is affected by
strain rate)

« Dynamic buckling
— Inertia is very important

« Buckling of long tubes

— Transition from global to progressive
IS very important

v
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QUSIE

Progressive buckling of circular shells

(kN)

Assumptions:

Rigid perfectly plastic material
Assymmetric deformation pattern

The external work is equal to the
internal energy dissipated due to

the plastic deformations
P . x2l=D

N. Jones. Structural impact, Cambridge University press, 1989, Paperback edition, 1997.




Internal energy dissipation

D=D,+D,+D,

D, = 2x22RM,7/2, M, =(20,/3)H?/4

w2
dD, = 27(R +1sin )M, (2dg) — D2=j0 472(R +1sin ¢)M,dg
D, =42M,(Rz/2+1)

2;;[(I/2)sin(¢+d2<i)|l—27f[(|/Z)Sin(¢)] — de, =Icosgdg/(2R)

dD, = o, 2H2R — D, =" oy(lcosgdg)iHz

de, =

— 2 sen(a+b)=sena-cosb+senb - cosa
D, =20,"Hx

D= 27Z'CTOH2(7ZR+|)/\/§+27Z'GO|2H
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Axial crushing force

2IP. =D
2IP. =270, H?(aR +1)/~/3 + 2720, | *H
P15y = aH H(R/1+1)/43 +1]

dP,/dl=0 — H(-aR/I?)/3+1=0
| = (RH /43"

outside wrinkles:  P_/M, = 4%\/?\/ R/H +2r
inside wrinkles: P /M,= 4‘{/§\/7z3 NRIH =27
P /M, =443J7*R/H 2oy 1

P, =2(zH )"*R"*c, /3"

m

DH?3
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Dynamic axial (progressive) crushing

é 1/q
o =00{1+(Bj }
P = 2(7Z|‘| 3/2)R1/260{1+(é‘/D)1/q }/31/4
Strainrate (due to bending)

g, =1/(2R), &, =¢g,/T
T=211V,, §,=V,/(4R)

Py =2(7H*? )R o, | 1+(V, /4RD)"*} /3"
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Example GMSIE

An energy-absorbing device, a nest of n circular tubes made of a rigid-plastic
material, is required to arrest a mass M travelling with an impact velocity V,,.

Model this phenomenon and explore the results.
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The mean load for one circular tube is

16 -
14
12

P, =2(zH)"* R¥%c, /3" 1)
and the equation of motion

O N A O ©
I T TR

velocity

an =-M dV/dt leads to 0 o.c;os

0.01

0.015

0.02 0.025
ti

v=—-nP t/M +V,
Crushing of the tubes ends at

MV,
nP

m

v=0 — t=

Integration of the impact velocity gives the crushing distance

2
d=- NPt +V,t
2M
which, for this simple model, is the same as
Pd= % MV,

m
e

M=1000kg
V=50km/h

50 tubes of H=1mm and

R=25mm

flow stress of 300MPa

0.16 -
0.14 A
0.12 A

0.1 4
0.08 -
0.06 A
0.04 -
0.02 -

crushing distance

0.005 0.01 0.015 0.02 0.025
ti

m
e
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Progressive buckling of square tubes

Corner of a square tube
showing the (a) inextensional

and (b) extensional buckling
(a) (b) modes.

344



g

GMSIE

sina — Bb Uu  Pb
Bu Ub Ub
which we use in
tan~y = &
7= Uu
to obtain
tan )
tanvy = — .
sin o
Also,
Tu
BP TU BUsno Tu
tan 8 = = = Bosno = : :
PU BT S i Busin 1 sin a
or )
TU siny 1 tan ¢ tan
tan 3 = = =

TUcosysinysina  sintsina  sineg’



The crushing distance, 4, is related to a according to
0 =2H(1 — cosa).

We also have that
S = Hsina,

so the time differentiation of these equations yield

5 = 2H sin ac and V = S = H cos ad.

346



1. Energy dissipation in horizontal plastic hinge lines, W,

2. Energy dissipation in the toroidal surface, W5

3. Energy dissipation in inclined plastic hinge lines, W3

Corner of a square tube and
the associated main energy

dissipation mechanisms.
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This solution is due to T.
Wierzbicki and W.
Abramowicz, On the crushing
mechanics of thin walled
structures, Journal of Applied
Mechanics, 50, p. 727-734,
1983. For square tubes with
different wall thickness see X.
Zhang and H. Zhang, Crush
resistance of square tubes
with various thickness
configurations, International
Journal of Mechanical
Sciences, Volume 107, 2016,
p 58-68. This section is based
on G. Lu and T. Yu, Energy
Absorption of Structures and
Materials, CRC Press &
Woodhead Publishing, 2003
and on Dai-heng Chen, Crush
Mechanics of Thin-Walled
Tubes, CRC Press, 2016.

In the dissipation mechanism 1, energy is consumed by the
hinge lines AB and BC to an amount of

Wi oc Mocx — Wo = 2Mycdr,

or

348

w/2
Wy =2 [ Mpeda = mMje.
J0



Mechanism 2 deals with the consumed energy in the toroidal
surface. Consider the next figure which shows the toroidal sur-

GMSIE

face. Let us assume a linear relation between coordinate ¢ and
angle 1,

™ — 21y
Y =1+ .
Considering also the limits
Sov<O<T+¢  and  —B<<p

and the relation
r ="bcosb + a.




Now, the hinge BC moves inwardly with a velocity S so the
points in the toroidal surface experiment a velocity of

S
v = :
"7 tan Do
with ey
sin o
S = — H cos ac,
dt

such that the circumferential strain rate reads

_ Visinf@  Hcosa siné
p— p— Y
i r tan1g bcosl + a
As one moves along the ¢ coordinate, there will be a change in
curvature but flow is here ruled by normal forces only, with the

bending energy being zero.
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The plastic dissipation rate in this toroidal surface reads then
Wg = /N(]E@ds = / Noé prdodbd,

which gives

™

Wo = 4NgbH s v
2 m =200 tan g

[cos Uy — cos (wg - " —fﬂ?n ,6')} :

Integration of this equation leads to

16 HbM
Wy = ANobHI1(do) = ————1T1(tho).
with
; ar /2
9 = (7 — 20) tan fn 3 cos a] x

— — %
{sinﬂ;nsin(ﬂ- L’n) + cos g [l—cos (ﬁ)}}da,
T T

which results in Is = 0.58 for a square tube, when noting that 3
and « are related as given before.

GMSIE
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To obtain energy W3, associated with the travelling inclined
hinges, consider the next figure, where a strip of material is
pushed through an anvil or radius p. The energy for unbending
is proportional to the material strength, via Mjy, to the unbent
length and inverse to the bent radius so that

W = My(m — ) = AB%,
P
so that, for the strip in the figure, energy is required for the
segment AB to unbend, BC to bend and unbend it, for segments
CD and DFE for bending, giving

W = (AB +2BC + CD + DE) Mo _ Z&SMD.

p p

Take now As as the cone length, BB; so that the consumed
power to bend and unbend the material is

_ BB,
Wy = 2] MMQ,
0 P
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with V(s) being the velocity of a point s in the surface of radius
p. Since

s s H
Vi) =gp Y% r=gg" BBi=G
it follows that
: AMyH H cos acv
W5 =

siny btantyg ’

which gives

W3 I3(1p),

B AMoH? 1 /’“ﬂ cos ¢ sin o B AMoH?
0

. da
b  tany tan g cos a b

with

1 /2 cos o
I3(v0) = tan ¥y /D sin';rdﬂr’

being I3 = 1,15 for a square tube.
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We now equate the external work, 2P, H, to the internal
dissipation, W7 + Ws + W3, to obtain

b c H
P,=My|A1—+As— + A3— |,
0( 1h+ 2H+ 3b)‘
where A; = 811, As = m/2 and Az = 2I3. The parameters b,
the radius of the knee folding, and H, the height of the fold,
are not known but they can be obtained from dP,,/0H = 0 and

O0PF,,/0b = 0, such that

ch? and H =7 A—%czh
A2 4,4,

which are material independent for our model. We finally obtain,

P,, = 3Mj {%41}12}13%,

with the three basic plastic dissipation mechanisms sharing equal
contributions. The above equation becomes

P,, = 9.5600V hc

for a square tube of thickness h and side ec.
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There has been a large amount of studies in the so called kinetic
energy absorbers, KEA. The next table presents some recent
studies and ingenious ways of handling the kinetic energy.

These KEA are scrutinized in terms of efficiency and some
parameters that are used are as follows:

e Structural effectiveness

= AG‘Q
e Solidity ratio
A
@5 — A_c!

A is the cross section area enclosed by the tube cross sec-
tion. For a thin circular tube, A, = 7R? and A = 27RH,
so ¢ = 2H/R.

e Specific energy

D,
Se = )

m
where D, is the total energy absorbed and m is the mass

of the device. 356



Dynamic plastic buckling of circular shells

Assumptions:

v'Biaxial stress state is considered

v'The axial velocity V, remains constant
throughout the response

v'The shell deforms axisymetrically

gy K b

MSIE
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Kinematics: strain

u
u + 6_ dx

ax

Ju'
u' + —— dx

W

ds
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Kinematics: strains

S? = (w'dx) + (dx+u'dx)’

Taylor series

ds—ds,  _au 1(0\/\/)2 ow' ow

“TTgs, Tk 2l ) T ax ox
O°W

kX:8x2

. - Zn(R—W‘ —W+ z)— Zn(R—W‘ + z)

27c(R —w' z)

wi., w z
89 = _R(1+R_Rj

k, =0
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Equilibrium
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Equilibrium

oM.
Q= OX
ON o°u

S 2=0, p=pH
OX “azt H=P

2 ( i\ i 2
@M2X+6<NX aW+8W >+& 1+ —ya—uzO
OX 6x\ )
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Constitutive equations:

Radial and longitudinal displacements are

decomposed indominant and perturbed components:
w(x,t)=W(t)+w (xt), u(xt)=0(t)+u (xt)

Components of the dominant strainrates:
ou VYA
R —> gx —_
OX L L

VA |
=— (assumingo, =0
=5 go,=0)
e .V
g +e,+e,=0 —> g ==
2L
Total strain rates B :_Vo ZaZ_W, g_(l_ij(v_O__W} &, =—&, — &
" L OX* RA2L R
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Expressions for the equivalent strain rate, strain and stress
as function of the impact velocity GMSIE

.2 T ; Ty
£, = E\/gxz +&, +E 78,
. x 2.* * 2 *
[ 2 (8 oW il (o
L7 2v, (3R? “ox L| T 2v, (3RT T “ox

L 0 20i s : 2n *
i :_00(1+2LW j+20 L(a W Aw _VOJHE{@E}W _2wj

_|_
’ 3V,R) 3V,  &x¥* R® RL x°  3R?
o ALo’W  z2Lo’ [ 0°W 2wV,
69 =—0 + 5 + 2 — )
3V,R v, (ox* R?* RL

V
where o°=0,+E, —Et
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Definitions for the forces:

H/2 H/2
N, = Iax(1+z/R)dz — N,=N_+N; M, = fax(l+z/R)zdz
“H/2 “H/2
0 ; * Ve *
N —-o°H and N::—G 2HLW M, =M, ,+M,
3V R
o _GOHS
hi2 * 12R
N, = [o,dz,  N,=N,+N; . o HAL(&AW 2w} HE, (.oWw 2w
M2 M, =~ 2 T oz |T 3~ 052
- 0 v, | x° R 36 |~ ox° R
where N, =0, N;:—4LG AN
3V,R
H/2 L
M,=- Iagzdz, M,=M,+M, All forces are defined
“H/2 per unit length
i _GOH3 _

0 =

Mr o O HL[ oW 2w
18R " 18v, { &x* R?
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Equations of motion

0 (= « P
(N, +N})—pli+0")=0
O+ N2 i)
i(I\WX+M:)+E{(NX+N:{aw Ll J}+((N‘9+Ng)j(1+ﬂj—ﬂ(\}_\./+w*)=0
OX OX OX  OX R R
ON, . ON. ON )
L — a0 =0, X =0, L—uli =
OX “ OX X “
N, (, w) .
— 1+ —= |- W =0
oO°M.  —([o°w o*w') N, w' .
“+N + +—2114+— |- =0
Ox* X[ ox° 5x2] R[ RJ i

o ’H’L o'W .\ H°E, o'w’ s o"H’L o°w H'E, o°w s
36V, ox* 12 ox' 18V,R* ox® 18R? ox°

2nr" 2 a4l 0 I
GOH(aw +6Wj+4a HL[1+WEJ i =0

ox>  ox* ) 3V,R?
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Equations of motion
GMSIE

V+S {,Bv””+2a BN +48a° (1+v‘)v}+ 7Sy (3v"" —2arv") +36S, (V" + (v')") =0

where

v=w/R, V'=wW/R, a=L/R, B=HI/L, y=p°E/c°, S,=0c"/36pV),

E=xIL, r=Vit/L, ()=08()/dz, () =08()I0¢.

Solution for the perturbed behaviour ZV sin n;zf

Initial imperfections Vi (5) = Z a, sin n”f)

S8, + 8, 480+ B2 (e (1 202 ), + S, () [0y + By(nm)f — 36y, 365, (nm ) a, sin(nme) =0
n-1 o _ D _ . -

S, | 48a” + 5 (n7)’(n7)* ~ 207 |

=So(nz)’| 20% +3y (nz)' -36], S, =368, (nr)’

CRITICAENUMBER

V. +QVv,+Rv =S a

Q,
R
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Solution of the equation of motion for each n

Vn — En (T)a‘n + Fn (T)bn’

Initial conditions: \7(0) =V, = i bn sin (nmi)
where N

Ay AN, AT AANGT
E (r)= i(ﬂ An,e Ane j F (z)= e e
R An, —An, An, —An,

are the displacement and velocity amplification functions,

n

respectively
an, = %Qn +(Q? —4Rn)”2}/2, n, :—{Qn +(Q? —4Rn)“2} 2

An, >0 for R, <0 when the amplificationfunctions increase

with time
Therefore, dynamic plastic buckling occurs for

36— 202y )
n< !
( 3yn’ ]
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ME

E, (1)

Critical mode number

E, = 724 MPa, oy = 307 MPa,
p = 2685 kg/m3,

L=101.6 mm, H=2.54 mm,
R =11.43 mm,
M=1209g,V,=170 m/s

(a)
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Critical mode number n, AL
GMSIE

Assumption : 4R /Q’ <<1

an, =Q, -1+1-2R, /Q%+..}//2=-R /Q,,  An,=-Q,

e_(Rn/Qn )T

S
E ~ n _(Rn/Qn )T, F ~
(0)=- 2 @

For R, < 0 the condition for buckling is satisfied and the largest

value of R, /Q, is assumed to give the fastest growth of the

amplification functions and therefore the critical value for n.

The condition (R, /Q,)/on=0 leads to a quadratic equation for (n_r)’

n

2 2
P (9 — 20 y>(ncn)4 +3y(nn) +a’y-18=0

240.°

, 1/2 N 1/2
if o’y <<45 n, = 20,y {[1+ P zj -1}

np oy
1/2
2a.( B3 3p>
n, = -y when > >>1
Bl o oy -




A thin-walled circular cylindrical shell with a mean radius R =25 mm, H=2.5
mm, L =100 mm, o, = 300 MPa, p = 2700 kg/m3 and E;/c, = 2.5 is impacted MIE
at one end with a mass M = 100 g.

(a) What is the response duration?

(b) Determine the impact velocity, which produces dynamic plastic buckling

(assuming that the critical mode amplifies the initial displacement
imperfections lying in the critical mode).

Example

(a) An estimate for the response duration , t;, is made by equating the initial
kinetic energy and the energy absorbed by plastic deformations in the tube

ts
[o.i.(2RHL), £ =V, /L
0

ts )
MvozzﬂRHLaoj%dt ot =Mt Yo M AV,

; m 2o, L m 20,

112

(b) The displacement amplification function En(r) can be rearranged as

R R 2 _ 20, ne Ric
Ioge{—[S::]Em(rf)}=—(Q:jrf > V== h”ﬂ‘(—gmjloge{—(snjEm(n)}
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Example

1/2

2 \1/2
a’y=0.0125<<45 — ncgza\/;{[l+ BﬂJ —1} =9.8

- a?y?
v, =2"°m(— Q“C(”C)JIoge{—(Rm(”c)]Em(rf )}, n, =10
p M RnC (nC) SnC (nC)

V,=149.8m/s, t, =63.6ps

Exercise: How much is V using the Vaughan equation?

Exercise: Study the article 1JIE, 24(2000) 1083-1115.
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Stress waves and buckling

« Plastic stress waves in rods

» Plastic stress waves in circular shells

« Buckling of circular shells

« Comparison between the buckling modes in circular and square tubes

References:

W. Johnson. Impact strength of materials
W. K. Nowacki. Stress waves in non-elastic solids, Pergamon Press, 1978

D. Karagiozova, M. Alves, N. Jones. Inertia effects in axisymmetrically deformed cylindrical
shells under axial impact, Int. J. Impact Eng, 24 (2000) 1083)1115

D. Karagiozova, N. Jones. On dynamic buckling phenomena in axially loaded elastic—plastic
cylindrical shells, Int. J Non-linear Mech 37 (2002) 1223 — 1238

D. Karagiozova, N. Jones. Dynamic buckling of elastic—plastic square tubes under axial
impact-Il: structural response, Int. J. Impact Eng, 30 (2004) 167-192
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Plastic stress waves In rods

c
° TAN-! " Ll (0—05)
| /|
fe——— | (e—eo) 7—»‘ c>0C
i / | TENSILE STRESS WAVE MOVING INTO BAR
AN E [ oty bl d Go € o
£ / | P P ; T TR

: e LOADED EN
e l
I ep gl €
i* €

Consider a bar of idealised material possessing a nominal stress - engineering strain curve and subject
to atensile stress o >o,. The stress willbe transmitted by two waves, which start at the same instant
from the loaded end of the bar but move at different speeds

¢,=yE/p and c,=.E/p
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General stress-strain relationship

Equation of motion of an element with length dx (unstraine d)
d(Ac)= pAdx.6%u/ot?

do  dxo°u. ou oe o

_— = ,0——2’ e = —, _ = —2

de de ot OX OX OX

0’u _do/de 0%u

ot’ p O

c, =+/(do/de)/ p

Strain distribution in a bar

() Between x=0 and Xx= C,t, the strainis constant ate,;

C, =./(do/de)/ p while o isthe largest stressimposed
(i) Between x=c;t and X=Cyt, thereisa variable distribution

of strains between e, and e,.

(i) For x>c,t, i.e.ahead of the elastic wave the bar is not disturbed

GMSIE

DENSITY g, ACCELERATION 0% 11/ 01

AcET27ZEE AT +d(An)

N | i e
d:—x’ia'x}*x

an~' do/de

oy

. S -

STRAIN ’7«’ T

=Y

| NON-UNIFORM 1
ONSTANT_| _ELASTIC-PLASTIC ,,l

STRAIN
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Particle speed required to attain a given stress level

dt = dx/cp is the time to propagate forceincrement d(Aa) at stresslevel .
dx
(do/de)! p
the increment in speed dvis

dt =

do

[do/de
Yo,
yo

The total speed required by the element at t =0 to attain stresslevel o is

V:.[ep /dG/dede:J‘epCO /dO'/dede
0 p 0 E

For abilinear stress - strain curve the velocity is

v=e0,/E/p+(ep—eOL/Eh/p

or

dv =

V=2g,C, + (ep —eo)cp
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Shock waves

GMSIE

Shock waves can be observed in materials described by a convex curve towards the strain axis
(nickel-chrome steel, polycrystalline magnesium).

Unloading waves

The unloading wave for
this particular loading case
Is always elastic

c, =+(do/de)/ p

When the end of a bar is loaded, the latest, and therefore
largest strains is propagated at the faster rate than the
early or lower strains, so that if a bar is sufficiently long,
the following waves will overtake the early ones.
Therefore, the distance between any last-to-be
propagated (most intense stress wave) and the first (least
intense wave) will be steadily reduced.

TIME, ¢ A C [

LOADING —
PLASTIC WAVE AN E

—

LOADING
ELASTIC WAVE |

G =ﬂ

Yo

DISTANCE, X
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Impact of finite length uniform bar
on a rigid flat anvil (1)
Stress wave speeds : COZM and cp:m

Regionl: Bothelastic and plastic waves

7 <L_
Regionll: Only elastic waves @ 4L | 1<0
. 1 e / sd
Regionlll: Undesturbed i
Sy, S8
. ) o ) ) (b) ~ i 1 TR o<t<l/e,
Minimum velocity to initiate plastic strains: o,/ 0C, = C,&, / 7 5"
The particle speed in region Il is v=V —C.g, ) G G e
. . . Z 1 T UNLOADING
The compressive stress jump (0' — 0'0) is (© 7 I L[ 11 ] elastc t>1/c,
— <!
o—o,=pc,(V-ce,) 7 ¢ o
. . . . . . ) 8, (V_2C0e0)
The compressive stressinregion | (the plastic region) is @ 2 / "
4 —=*0 -— t=1,
0 =0y +10C1(V _Coeo) /‘—}"7"1“‘“’"(1-"‘)’
. . S
The total compressive strainis peie ‘
B c—0, _ V —c,e, g3 S co_
€ =6 + Eh _eO+C—1 (e) Z I[—0 |V I\L:—m] t>T,
. . . ~ V-2cqe
The residual plstic strain is e, =€, —€, M ? e (V-26oe0)
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Impact of finite length uniform bar
with a rigid flat anvil (2)

V-ce | o
C, E

V-ce, (o,+pc(V-ce 1 ¢ Z sl
—e, + 0% | Yo Pcl( oo) :(V_Coeo ___é @ Al l §20
C, E c, G ZN / N
2 2
C, —C
=201 (V—cpe,) / B, So,
C,C, (b) ~ i 1l T o<t<l/e,
. . . . - (6
Unloading of region Il The velocity will decrease to ' o
: G, S (reriecten
(V — 2C0€‘0) (c ? gP:SOTﬁ:DING -
. _ ) Z I T s T
and the reflected elastic wave will approach Z " &
the advancing plastic wave at distance x, attime T, ) S 5 (V-2C480)
X, 2l-X (d) 4 —>0 - t=1,
T1 =—==—, Z X > ([ -x,)™
Cl C0 STRESSED TO S!
LEVEL 0~
so that
Lo | g
ﬁ: 2C1/00 N T:2|_X1 (e) Z I —0 |VI[IV| <11] t>T
T
|  1+c,/c, C, +C 7 o 8 (V-2coe0)
}‘—xi—_’{

Length of plastically deformed regionis : xl(l—ep)
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Impact of finite length uniform
bar with a rigid flat anvil (3)

Attime T, abar of length (I-x, )and having a speed (V-2ce, )
strucks a stationary bar of length X;, which already has been

subjected to a compressive stressionis: o, sl

@ 4L ] 1<0

Za® / N
Region V: ¢ ¢
The tensile wave elastically unloads the region by amount b) ~ i i TR 0<t<l/c,
PGV 1o [Eh (et - eo)+ EC, —pCOV] / K %
7 20 Co_ (REFLECTED
(c) 7 I I ] Il ]gy:g&D'NG t>1/c
: . 7 WAVE) 0

Region IV Z B
Loc,(V —2c,e, + V)] y S (V-2coe0)

(d) 4 — 0 - " i = T,

. . . X —>1<(l-x
The equality between the forcesat the interface S,S,; gives 2 S IRESSED TO S, (=)
LEVEL 0~

E, (et _eo)+ E&, — pCoV = pCq (V — 248 +V) & S, ”

(e) Z 1 — oﬁ_v IV:IIII t>T,
The particles velocity is 7 - e (V-2c420)

F—x
— (Cl _300)(\/ _Coeo)+v |

2¢,
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Impact of finite length uniform
bar with a rigid flat anvil (4)

@ Al ] <0
. . . . 1 Le sl
The resulting elastic strain is : ¢
_ PGy (Cl -3¢, )(V — Coeo) 2V -2 _ (Cl +GCy )(V ~ Coeo) i
e = + Coby [ = (b) ~ i T TR 0<t<l/c,
E 2¢, 2¢, . Py
Y Cy Co
y S, S0 reriecten
The greatest value of the strainin order Region IV to remain (©) 7 1 et t2l/e,
. 0 R WAVE)
elasticis e =¢,, 7 ¢
, Sy (V- (V-2¢480)
2C 7 b 0€o
\Y :c0e0(1+ : j (d) PR ~— 1=T,
Cl + CO A X—— > ([ ‘X‘)"
STRESSED TO 81
LEVEL 05
The compressive straininregion V results fromthe change S % .
. . —_— < > T
of the compressive strain e, +(V —c,g, )/ ¢, by the amount of ©) S .
) . o S (V=" (V-2cyep)
the tensile strain pc,v/E [
e’ = eo+v_coeo _pCoV: eo+v_coeo _,OCO (01—3C0)(V—Coeo)+v —
C, E C, E 2¢,
2 2
—C, +C,C,—2C
— (V —C,8, 1 12 0 0
2C,C,
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Impact of finite length uniform
bar with a rigid flat anvil (5)

If only elastic waves leave the section S;S,, the plastic strains o
inregion | will remain constant. S, &

Thus, forimpact velocities that satisfy

e |

1
2¢, |
Co€o <V <Cye [1"' bLastiC |

CoCy | ELASTIC

the interface S,S, isknown asa stationary second order —

'y

x
|
%Y

discontinuity in strain.
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Dynamic compression of a short cylinder |
between a constant speed rigid die and a GMSIE
stationary die

VelocityV remains constant for a period of time nl,/c,, ¢, = m

The material engulfed by the plastic wave will move at speed V (the speed of the die)

but the material in the elastic region will move at speed u =cC,g,.

The reflected wave must be a plastic wave and the material isunder stress

o -0, = pC.AV

O =0,+pC.CL, = 0'0(1+ C,Co B] = a{l+ &]
E Co

The incident and reflected plastic wave meet at distance X fromthe bottomdie.

From the meeting, two incident plastic waves are produced. W

NANSRRRRRRR

x PLASTIC
c ‘1 ]*C, 1 iV
ELASTIC
Col ICO C1+ ‘CO eO *C\

v | UNSTRESSED | ¥

Attimet =1,/c,, the stresslevelin zone [2] is

S~

oo +(V —co8p e, = 50(1_2_1j+,001\/

0

STATIONARY
LOWER DIE




GMSIE

The particle speedin zone [ll] isw and considering zones[1] and [ll], the stressin zone[ll] is

o-o(l—g—lj + pC,W

0
But, considering zones[2] and [ll], the stressinzone[ll] is

00(1—2—1]+pc1v + pc, (V —w).

0
However,

o-o(l—g—l]qtpclw: 00£1—§—1J+pclv +pc,(V —w)

0 0
so that

W=V —C,e,.
Thus, the stressin zone [ll] is
Cl
o =0, 1+C— +pc,(V —ce,) =, + pcV
0

Assume V =18.3m/s, o,=172MPa, c,/c,=1/10, and c,=5000 m/s.
pcNV =75MPa, o,(l+c,/c,)=190MPa, o,(1-c,/c,)=155MPa
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Exercise

Calculate the stress levels in different zones if

V =18.3 m/s remains constant for a period of time X
6l,/c,, ¢, =E,/p, o,=172MPa, ¢, /c,=1/10, Zhs i | [Veepev
. . . . 6l Cre
C, =5000 m/s. The location diagram is given below. F(1-8)vspe, V A e ]
. . . 0 Vi ~ 4
(Note that in this diagram Y = o, e, =€, and p; = p) o W ere, m]\ y(‘*ééi/*s/%)cvl’
y(HcTo)+4l%c‘V Cy |19] y(‘—%)+5{g)c1l’
- % oy
)’+4‘%c,l/ éclo
y _C_'i 40¢ V (8] ¢1
( CO())+ h I iy Y Y(1+g—;)+3‘%c‘l/
_ V-cqe, © v
%{g Y+3‘%c,|/
= 3] e
V(14 )a2per O e3pel
0
3] CO ey V
y+2%c,l/ 2_10
4| €1
Yo-g)apel A V(4 E)eperl
YepeV o V
10 V— Co e), 2 I
— e N c
) /f,l*[”' . V-g)+pe v
0 502 V=0 Coby V
- g=0  eastiC
C/ »
X 10

384



Plastic stress waves In circular shells GMSIE

Consider a thin-walled tube made of an elastic-plastic material with isotropic linear strain hardening subject
to an axial loading. The biaxial stress state o, #0,0, #0 is assumed to obey the von Mises yield condition

. . L.__ g .IF] . . -
Total strain rates: Eij = & | &y b J 1.2
) & ) g
Flow rules: £ = ,}" (26, —ag), & = ,}" (20 — a,)
L0, L0,
i~ 2 s apre 2 ey 12 2 2
& =2/V3((P) + (&) + &by g = (a, + a; — 6,.69)
1-1
gep = uo-e, ﬂ.« = Eh/E
AE
_ N R P ﬁ
Total strain rates: Ey = =0y — vag) (20, — adg),
20,
N : er
g = = (0g — va,) (2045 — a,)
Il 20,
. T .
. . . . .. Oyx = .“r-.l.' _—— .'l”" .
Equations of motion for a medium in biaxial stress state: r
where v, = Cu /0t and v, = dw/t,
: : L .
Kinematic equations: &, = v, & = v,/R.
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Constitutive equations:

The Prandtl-Reuss equations for an isotropic
plastic material

2 L 2 L .
o, = (?-e (26, +¢,), o, = ?-e (2¢,+¢,) foraplane stresswith o, =0

3&, 3&,

Equivalentstress O, = Oy + Ehge

. . - 2 (2 .2 .2\2
Equivalent strain rate &, :E €, Tt&5t+E,
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Governing equations for elastic-plastic stress waves

Aw,+ 4w, +b=0,

where w = [it, 0, W, ﬂ'rJ]T
and P 0 0 0 -1 0 0 0
0« 0 f . -1 0 0 0 0
P X o _
A= 0 0 prR 0 A" = o 0 0 0 b= 00
0 p 0 0 0 00 ¥
(%0 — o)
a::]— ]+] ,AEJ—" :ﬂ}]E
E_ A (2a,)”
- —"'r]j.—j fZJ — iy
f;‘:]— —r—|—] 1 /20, rjn}ﬁ :'r} "'.t}]E
E A (2a.)°
et
E_ A (2a,)”
A=E,IE
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Stress wave speeds

| — {___,‘41‘ + ‘4Ji| — U!

— ”{:’I — ] [] []

—1 =z () —pe
0 0 —pRe 0
() — fic 0 -

~
|

1/2
| —— |
(p{aﬂ‘ - ﬁ‘})

E=70GPa, E,=500MPa

Coniaxial =+ En/P = Co\/z =430m/s,

initial
yield locus

.....

GQMSIE

cfic®, SRS
........... .and elastic

c=H(E/p(1 = V)Y

true stress, MPa

.-’jl
PIc®, SR
T I
0 1
oo,

Approximation A1
- - - Approximation A2
Approximation A3

=490m/s

T |
0.4 0.6

true strain
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Stress wave propagation and buckling shapes

Go= 175 MPa, E, = 600 MPa, c, =535 m/s

strains
0.1 —
0.0 ¢
-0.1
-0.2
I [ [ |
0.000 0.035 0.070 0.105 0.140
(a) X, m
_I:_]_
|
-
| | & | i i | |
() (b (<) (dy (c) (fy [£4] (h)

GMSIE

Gy =175 MPa, E, = 200 MPa, c, =312 m/s

strains

0.1

0.0 e —2

-0.1+

-0.2

(b) 0.000 0.035 0.070 0.105 0.140
X, m

—

2

i b

(a) (b) (c) (d) (e) (] ()

D=35mm, h=15mm, L=140mm; G =0.71kg, Vo =75 m/s
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Discussion

D=35mm, h=1.5mm, L=140 mm; G =0.71kg, Vo = 75 m/s, 6, = 175 MPa

P, N _ B
o E, = 600 MPa, ¢, =535 m/s En =200 MPa, ¢, =312 m/s
40000 40000 —
20000 20000 —
1] [ T 1 0 | : |
0.000 0.001 0.002 0.003 (b)  0.000 0.001 0.002 0.003
L sec t sec

ia)

Dynamic plastic buckling can develop only within a sustained axial plastic flow when

no unloading across the shell thickness occurs. Impact velocity causing stresses above
the elastic limit of the material is the necessary condition for the development of

small wrinkles along the entire shell. The sufficient condition can be formulated as a
sufficient time for the axial plastic wave to traverse the entire shell length. This particular
time depends on the wave speed (material strain hardening, respectively) and the inertia
characteristics of the shell, including the shell geometry and the material density.
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Comparison between the buckling modes
In circular and square tubes

2 . 2
\‘.
194 y 1 -
7 p H
=) { C" mi =
S . ;S
% 07/ / 07
e} i ! =] !
| |
-1 1 4 -1 1\\
‘\ /,
. ~2-"  Elasfic
2 - =3 ==~ {longitudinal) 2 -
| | T T | | | T T |
-2 -1 0 1 2 -2 -1 0 1 2
(a) Oyxx /00 (b} Gxx /O
3000 30004
@ 2000 5 2000
t ~
% 3
1000 — 1000 —
A =0.003
6 0 — T T T
0.00 0.05 010 015 0.20 0.25 0.30 0.00 001 002 003 004 005
Oyy /Op : y
Xy Hardening paramerer, A
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A = E,/E = 0.003,V, =60 m/s

*X

| |
t=0.146ms t=022ms t=0.32ms

SECTION POINT 1
m®11 vaLuE
-1.888-01
-1.748-01
- -1.608-01
—-1.468-01
- -1.312-01
~ -1.178-01
-1.038-01
- -6.838-02
~7.408-02
~5.978-02
-4.548-02
-3.118-02
-1.688-02
-2.508-03

(©)

~ +5.838-04
- 47.298-04
~ +8.758-04
+1.028-03
+1.178-03
+1.318-03
+1.468-03
+1.608-03
+1.758-03
+1.908-03

()

#% Distance travelled
by a uniaxial
plastic wave

SECTION POINT 1
1E12 vALUR
-1.238-02
~7.456-03
-2.56E-03
- 42.338-03
- 47.226-03
+1.218-02
- +1.708-02
42.198-02
+2.68E-02
43.178-02
+3.668-02
44.148-02
4663802
45.126-02

(d)

Axial and shear plastic strains

t=0.146 ms

VALUE
~1.50E-04
~1.326-04
~1.14E-04
-9.628-05
— ~7.836-05
~6.04E-05
- -4.258-05
~ ~2.46E-05
~6.726-06
41.126-05
42.918-05
+4.708-05
+6.498-05
48.288-05

(f)

-

B

Lateral expansion and buckling




Buckling of square tubes @&t

(@) (b) (©) (d) (e) @ (b € @ (e

Infuence of the impact velocity - experimentally and numerically obtained buckling shapes. (a) Initial;
(b) tube NO4: V, = 15,91 m/s, G = 0.95 kg; (c) tube N81: V, = 35.35 m/s, G = 0.44 kg; (d) tube N86:
Vo =64.62 m/s, G = 0,103 kg, and (e) tube N82: Vo, =91.53 m/s, G = 0:103 kg.
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Comparison between the buckling shapes
of circular and square tubes

Vo =64.62 m/s, G =0,103 kg

0.10
0.00 o= N ==
< 0.00 |
£ ;
-35-_' -0.10 g
K g
w
-0.20
0.028 msec -0.10
---- 0.049 msec
-0.30 0.081 msec
I T | l | |
0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15
(b) X, m © < m
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