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Axial impact on shells

MARCILIO NOV 2017
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Axial impact on shells:

major application is absorption of kinetic energy

• Progressive buckling

– Static (no strain rate effects)

– Dynamic (material flow is affected by 
strain rate)

• Dynamic buckling

– Inertia is very important

• Buckling of long tubes

– Transition from global to progressive 
is very important
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Progressive buckling of circular shells

N. Jones. Structural impact,  Cambridge University press, 1989, Paperback edition, 1997.

Assumptions:

✓ Rigid perfectly plastic material

✓ Assymmetric deformation pattern

✓ The external work is equal to the 

internal energy dissipated due to

DlPm  2

nsdeformatioplastic  the
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Axial crushing force
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Dynamic axial (progressive) crushing 
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Example
An energy-absorbing device, a nest of n circular tubes made of a rigid-plastic      

material, is required to arrest a mass M travelling with an impact velocity V0.  

Model this phenomenon and explore the results.
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Progressive buckling of square tubes
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Dynamic plastic buckling of circular shells

Assumptions:

✓Biaxial stress state is considered

✓The axial velocity V0 remains constant

throughout the response

✓The shell deforms axisymetrically 
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Kinematics: strain
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Kinematics: strains
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Equilibrium
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Constitutive equations:
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Radial  and  longitudinal  displacements  are

decomposed in dominant and perturbed components :

Components of the dominant strain rates :
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Expressions for the equivalent strain rate, strain and stress 

as function of the impact velocity
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Definitions for the forces:

 

RV

wHL
NHN

NNNdzRzN

xx

xxx

H

H

xx

0

*0
*0

*

2/

2/

3

2

/1








 


and

*

0

0
*

2/

2/

*

3

4
,0

,

w
RV

HL
NN

NNNdzN

h

H












 


where

 

*

2/

2/

/1

xxx

H

H

xx

MMM

zdzRzM



 



































2

*

2

*23

2

*

2

*2

0

3

0*

30

2
3

36

2

36

12

R

w

x

wEH

R

w

x

w

V

LH
M

R

H
M

h
x

x




















 


2

*

2

*2

0

30
*

30

*

2/

2/

2

18
,

18

,

R

w

x

w

V

LH
M

R

H
M

MMMzdzM

H

H







 All forces are defined

per unit length



365

   

        01

0

*
**

**

**

















 











































ww
R

w

R

NN

x

w

x

w
NN

x
MM

x

uuNN
x

ii

xxxx

xx











01

01

0,0,0

*
*

2

2

2

*2

2

*2

*
*


























































w
R

w

R

N

x

w

x

w
N

x

M

w
R

w

R

N

u
x

N

x

N
u

x

N

ii

x
x

i

xxx

















Equations of motion

3 30 3 4 * 4 * 0 3 2 * 2 *

4 4 2 2 2 2

0 0

2 * 2 0
0 * *

2 2 2

0

36 12 18 18

4
1 0

3

h h

i i

H E H EH L w w H L w w

V x x V R x R x

w w HL w
H w w

x x V R R

 


 

   
   

   

    
       

    



366

      nvv
n

n sin, 




      2 2 2 2

0 0 0

* 2 0 0 2

0 0

0

2 48 1 3 2 36 ( ) 0

/ , / , / , / , , 36 ,

/ , / , ( ) ( ) / , ( ) ( ) / .

i i

i i

h

v S v v v v S v v S v v

v w R v w R L R H L E S V

x L V t L

     

      

   

             

     

       

where

    nav
n

ni sin




Equations of motion

                0sin363632248
1

2

0

222

0

22222

0 


n

nnnn nanSvnnSvnnSv 

nnnnnnn aSvRvQv  

    

     

2 22 2 2

0

2 2 22

0 0

CRITICAL NUMBER

48 2

2 3 36 , 36

n

n n

Q S n n

R S n n S S n

    

     

   
 

    
 

Solution for the perturbed behaviour

Initial imperfections
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Solution of the equation of motion for each n
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Critical mode number

Eh = 724 MPa, 0 = 307 MPa, 

 = 2685 kg/m3, 

L = 101.6 mm, H = 2.54 mm, 

R = 11.43 mm,

M = 120 g, V0 = 170 m/s

nc
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Critical mode number nc
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For Rn < 0 the  condition for buckling is satisfied and the largest 

value of Rn /Qn is assumed to give the fastest growth of the 

amplification functions and therefore the critical value for n.  
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A thin-walled circular cylindrical shell with a mean radius R = 25 mm, H = 2.5 

mm, L = 100 mm, 0 = 300 MPa,  = 2700 kg/m3 and Eh/0 = 2.5 is impacted 

at one end with a mass M = 100 g. 

(a) What is the response duration?

(b) Determine the impact velocity, which produces dynamic plastic buckling 

(assuming that the critical mode amplifies the initial displacement 

imperfections lying in the critical mode).

E
x
am

pl
e

 

0

2

00

0

0

0

0
0

0

0

0

2
,

2
2

2

/,2













V

m

M

L

V
t

LV

m

M
tdt

L

V
RHL

MV

LVdtRHL

ff

t

f

e

t

ee

f

f







 

   




























































 fnc

nc

nc
e

nc

nc
f

nc

nc
fnc

nc

nc
e E

S

R

R

Q

M

m
V

Q

R
E

S

R





 log

2
log 02

0

(a) An estimate for the response duration , tf, is made by equating the initial 

kinetic energy and the energy absorbed by plastic deformations in the tube 
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Example
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Exercise: How much is V using the Vaughan equation?

Exercise: Study the article IJIE, 24(2000) 1083-1115.
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Stress waves and buckling

• Plastic stress waves in rods

• Plastic stress waves in circular shells

• Buckling of circular shells

• Comparison between the buckling modes in circular and square tubes

References:

W. Johnson. Impact strength of materials

W. K. Nowacki. Stress waves in non-elastic solids, Pergamon Press, 1978 

D. Karagiozova, M. Alves, N. Jones. Inertia effects in axisymmetrically deformed cylindrical 
shells under axial impact, Int. J. Impact Eng, 24 (2000) 1083)1115

D. Karagiozova, N. Jones. On dynamic buckling phenomena in axially loaded elastic–plastic 
cylindrical shells, Int. J Non-linear Mech 37 (2002) 1223 – 1238

D. Karagiozova, N. Jones. Dynamic buckling of elastic–plastic square tubes under axial 
impact-II: structural response, Int. J. Impact Eng, 30 (2004) 167–192
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Plastic stress waves in rods

0  . 

Consider a bar of idealised material  possessing  a nominal stress - engineering strain curve  and  subject

to a tensile stress The stress will be transmitted  by two waves, which start at the same

0

                                             

                                           / /p hc E c E  

 instant
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Shock waves 

Shock waves can be observed in materials described by a convex curve towards the strain axis

(nickel-chrome steel, polycrystalline magnesium).

   /dedcp 
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When the end of a bar is loaded, the latest, and therefore 

largest strains is propagated at the faster rate than the 

early or lower strains, so that if a bar is sufficiently long, 

the following waves will overtake the early ones. 

Therefore, the distance between any last-to-be 

propagated (most intense stress wave) and the first (least 

intense wave) will be steadily reduced.

Unloading waves 

The unloading wave for
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is always elastic





Eh

Eh/



377

Impact of finite length uniform bar 

on a rigid flat anvil (1)

  dUndesturbe  :III Region

veselastic waOnly   :II Region

vesplastic wa andelastic  Both   :I Region

 //0 hp EcEc  and   :speeds  waveStress

 

 

 

etP

h

t

eee

c

ecV
e

E
ee

ecVc

ecVc

ecVv

ecc



















   is  strainplstic   residual The

is strain ecompressiv total The

 is  region)plastic  (the  I  region in stress  ecompressiv The

is    jump stress ecompressiv The

  is  II  region  in  speed  particle  The

   :strainsplastic  initiate tovelocity  Minimum

1

00
0

0
0

0010

0010

0

00

0000











(V-2c0e0)

(V-2c0e0)



378

Impact of finite length uniform bar 

with a rigid flat anvil (2)
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Impact of finite length uniform 

bar with a rigid flat anvil (3)
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Impact of finite length uniform 

bar with a rigid flat anvil (4)
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Impact of finite length uniform 

bar with a rigid flat anvil (5)
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Dynamic compression of a short cylinder 

between a constant speed rigid die and a 

stationary die
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Exercise

)and  diagram this in that (Note

below.  given  is  diagram location The

time of period a for constant remainsm/s 18.3
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Plastic stress waves in circular shells

Consider a thin-walled tube made of an elastic-plastic material with isotropic linear strain hardening subject 

to an axial loading.  The biaxial stress state                          is assumed to obey the von Mises yield condition0,0   x

Total strain rates:

Flow rules:

Total strain rates:

Equations of motion for a medium in biaxial stress state:

Kinematic equations:
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Constitutive equations:
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Governing equations for elastic-plastic stress waves

where

and

EEh /
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Stress wave speeds
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Stress wave propagation and buckling shapes

0 = 175 MPa, Eh = 600 MPa,  cp = 535 m/s 

D = 35 mm,  h = 1.5 mm,  L = 140 mm; G = 0.71 kg, V0 = 75 m/s

0 = 175 MPa, Eh = 200 MPa,  cp = 312 m/s 
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Discussion

D = 35 mm,  h = 1.5 mm,  L = 140 mm; G = 0.71 kg, V0 = 75 m/s, 0 = 175 MPa

Eh = 600 MPa,  cp = 535 m/s 
Eh = 200 MPa,  cp = 312 m/s 

Dynamic plastic buckling can develop only within a sustained axial plastic flow when 

no unloading across the shell thickness occurs. Impact velocity causing stresses above

the elastic limit of the material is the necessary condition for the development of 

small wrinkles along the entire shell. The sufficient condition can be formulated as a 

sufficient time for the axial plastic wave to traverse the entire shell length. This particular 

time depends on the wave speed (material strain hardening, respectively) and the inertia 

characteristics of the shell, including the shell geometry and the material density.
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Comparison between the buckling modes 

in circular and square tubes

 = 0.003 xy = 0.15 0

xy /0
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Stress waves in rectangular plates

Axial and shear plastic strains

Lateral expansion and buckling

  Eh/E  0.003, V0 = 60 m/s

t = 0.146 ms
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Buckling of square tubes

Infuence of the impact velocity - experimentally and numerically obtained buckling shapes. (a) Initial; 

(b) tube N04: V0 = 15,91 m/s, G = 0.95 kg; (c) tube N81: V0 = 35.35 m/s, G = 0.44 kg; (d) tube N86: 

V0 = 64.62 m/s, G = 0,103 kg, and (e) tube N82: V0 = 91.53 m/s, G = 0:103 kg.

(a)            (b)           (c)           (d)           (e) (a)        (b)         (c)        (d)        (e)
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Comparison between the buckling shapes 

of circular and square tubes

V0 = 64.62 m/s, G = 0,103 kg


