
Industrial Adoption of Model-Driven

Engineering: Are the Tools Really the Problem?

Jon Whittle1, John Hutchinson1, Mark Rouncefield1,
H̊akan Burden2, and Rogardt Heldal2

1 School of Computing and Communications, Lancaster University, Lancaster, UK
2 Computer Science and Engineering,

Chalmers University of Technology and University of Gothenburg,
Gothenburg, Sweden

Abstract. An oft-cited reason for lack of adoption of model-driven en-
gineering (MDE) is poor tool support. However, studies have shown that
adoption problems are as much to do with social and organizational fac-
tors as with tooling issues. This paper discusses the impact of tools on
MDE adoption and places tooling within a broader organizational con-
text. The paper revisits previous data on MDE adoption (19 in-depth
interviews with MDE practitioners) and re-analyzes the data through the
specific lens of MDE tools. In addition, the paper presents new data (20
new interviews in two specific companies) and analyzes it through the
same lens. The key contribution of the paper is a taxonomy of tool-related
considerations, based on industry data, which can be used to reflect on
the tooling landscape as well as inform future research on MDE tools.

Keywords: model-driven engineering, modeling tools, organizational
change.

1 Introduction

When describing barriers to adoption of model-driven engineering (MDE), many
authors point to inadequate MDE tools. Den Haan [1] highlights “insufficient
tools” as one of the eight reasons why MDE may fail. Kuhn et al. [2] identify
five points of friction in MDE that introduce complexity; all relate to MDE tools.
Staron [3] found that “technology maturity [may] not provide enough support
for cost efficient adoption of MDE.” Tomassetti et al.’s survey reveals that 30%
of respondents see MDE tools as a barrier to adoption [4].
Clearly, then, MDE tools play a major part in the adoption (or not) of MDE.

On the other hand, as shown by Hutchinson et al. [5,6], barriers are as likely
to be social or organizational rather than purely technical or tool-related. The
question remains, then, to what extent poor tools hold back adoption of MDE
and, in particular, what aspects – both organizational and technical – should be
considered in the next generation of MDE tools.
The key contribution of this paper is a taxonomy of factors which capture how

MDE tools impact MDE adoption. The focus is on relating tools and their tech-
nical features to the broader social and organizational context in which they are

A. Moreira et al. (Eds.): MODELS 2013, LNCS 8107, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Whittle et al.

used. The taxonomy was developed by analyzing data from two separate studies
of industrial MDE use. In the first, we interviewed 19 MDE practitioners from
different companies. In the second, we interviewed a further 20 MDE practition-
ers in two different companies (10 per company). The two studies complement
each other: the first is a broad but shallow study of MDE adoption across a
wide range of industries; the second is a narrower but deeper study within two
specific companies with different experiences of applying MDE. Neither study
was limited to tooling issues; rather, they were both designed to capture a broad
range of experiences related to MDE use and adoption and, in both, we used
qualitative methods to allow key themes to emerge from the data. We focus in
this paper only on emergent themes related to MDE tools.
The literature has relatively little to say about non-technical factors of MDE

tooling. There have been a number of surveys of MDE tools (e.g., [7,8,9]) but they
focus on classifying tools based on what technical functionalities they provide.
More recently, Paige and Varró report on lessons learned from developing two
significant (academic) MDE tools [10]. Again, however, very little is said about
understanding users’ needs and the users’ organizational context: the authors
simply state “Try to have real end-users; they keep you honest” and “Rapid
response to feedback can help you keep your users.”

Indeed, there is a distinct lack of knowledge about how MDE tools are actually
adopted in industry and what social and organizational, as well as technical,
considerations need to be in place for a tool to succeed. This paper makes a
first attempt to redress the balance. Section 2 discusses existing literature on
tools, with a focus on understanding users’ needs and organizational context.
Section 3 describes the methodological details of our studies. Section 4 presents
our taxonomy, based on emerging themes from our first study of MDE adoption.
Section 5 discusses our second study and relates its findings to the taxonomy.
Finally, the paper discusses how the taxonomy can be used to advance research
and development of MDE tools (Section 6).

2 Context and Related Work

Tools have long been of interest to those considering the use of technology in in-
dustrial settings. In research on computer supported cooperative work (CSCW),
there have been two distinctive approaches. On the one hand there are those in-
terested in how individuals use tools and, in particular, how to design tools that
are intuitive and seamless to use. This reflects a Heideggerian difference between
tools that are ‘ready to hand’ (they fade into the background) and ‘present at
hand’ (focus is on the tool to the detriment of the ‘real’ issue) [11] [12, p. 109].
In contrast, another approach, exemplified by Grudin [13] and Brown [14], con-
siders how organizations use tools and argues that failure can be attributed to:
a disparity of benefit between tool users and those who are required to do un-
recognized additional work to support tools; lack of management understanding;
and a failure by designers and managers to recognize their limits. In a comment
that might cause some reflection for MDE tool developers, Brown [14] suggests



Industrial Adoption of Model-Driven Engineering 3

that (groupware) tools are generally useful in supporting existing everyday or-
ganizational processes, rather than radical organizational change.

The issue of how software development should be organized and supported has
long been discussed and remedies have often, though not always, included par-
ticular tools, techniques, and practices. For example, whilst Merisalo-Rantanen
et al. [15] found that tools facilitated fast delivery and easy modification of
prototypes, amongst the core values of the ‘agile manifesto’ was a focus on “in-
dividuals and interactions over processes and tools” and a number of studies [16]
emphasized the importance of organizational rather than technical factors.

However, when considering MDE tools there is little in the way of systematic
evaluation. Cabot and Teniente [9] acknowledge MDE tools but suggest that
they have several limitations regarding code generation. Selic [17] talks about the
important characteristics of tools for the success of MDE, suggesting that some
MDE tools “have now reached a degree of maturity where this is practical even
in large-scale industrial applications”. Recently, Stahl et al. [18] have claimed
that MDE does not make sense without tool support. Two studies [19,2] identify
the impact of tools on processes and organizations, and vice versa, but the main
focus is on introducing MDE in large-scale software development.

There have been two recent, and very different, studies about the experience
of developing and deploying MDE tools. Paige and Varró [10] conclude that:
“using MDD tools – in anger, on real projects, with reported real results, is now
both feasible and necessary.” However, it is significant that this study is about
academic MDE tools. In contrast, Clark and Muller [20] use their own commer-
cial experiences to identify lessons learned about tool development, in cases that
might be considered technical successes but were ultimately business or organi-
zational failures: “The last decade has seen a number of high profile commercial
MDD tools fail . . . these tools were expensive to produce and maintain . . . there
are number of open-source successes but it is not clear that these systems can
support a business model”. In terms of specific lessons with regard to tools, this
one stands out: “ObjeXion and Xactium made comparable mistakes. They were
developing elegant tools for researchers, not pragmatic tools for engineers”.

3 Study Method

The key contribution of the paper is a taxonomy of MDE tool-related issues.
The taxonomy has been developed based on two sets of interviews: a set of
19 interviews from 18 different companies carried out between Nov 2009 and
Jul 2010, and a set of 20 interviews carried out in two companies between Jan
and Feb 2013. Our method was to use the first set to develop the taxonomy;
the second to validate the taxonomy. The two sets are complementary: the first
provides broad, shallow coverage of 10 different industrial sectors; the second
provides narrow, deep coverage of two companies.

Our first set of interviews is the same set used in earlier publications [5,6].
However, prior publications gave a holistic view of the findings and did not in-
clude data on tools. The procedure for selecting and carrying out the interviews



4 J. Whittle et al.

has been described elsewhere [6]. All interviewees came from industry and had
significant experience of applying MDE in practice. The interviews were semi-
structured, taking around 60 minutes each, and all began with general questions
about the participant’s background and experience with MDE. All interviews
were recorded and transcribed. In total, we collected around 20 hours of conver-
sation, amounting to over 150,000 words of transcribed data.

The second set consists of 10 interviews at Ericsson AB and 10 interviews
at Volvo Cars Corporation. The interviewees at Ericsson came from the Radio
Base Station unit, which has been involved in MDE since the late 1980s while
the interviewees at Volvo represent a new unit that has just started to use MDE
for in-house software development for electrical propulsion. The interviews cover
more than 20 hours of recorded conversation and were conducted in the same
semi-structured fashion as the first set.

Analysis of the interview transcripts was slightly different in each case. The
first set was used to develop the taxonomy. Each transcript was coded by two
researchers. The initial task was to simply go through the transcripts looking
for where the respondents said anything about tools; these fragments were then
coded by reference to particular ideas or phrases mentioned in the text – such
as ‘cost’ or ‘processes’. The average reference to tool issues per transcript was
11 with 3 being the lowest and 18 being the highest. Inter-coder reliability was
computed using Holsti’s formula [21], dividing the number of agreements by the
number of text fragments. For this research, the average inter-coder agreement
was 0.86 (161/187). The researchers then grouped the initial coding into broad
themes relating to ‘technical’, ‘organizational’ and ‘social’ issues.

The second set was used to validate the taxonomy. Researchers read the tran-
scripts looking for tool-related issues and then mapped those to the proposed
taxonomy. Any deviations from the taxonomy were noted.

4 A Taxonomy of MDE Tool Considerations

This section presents the taxonomy, developed from the first set of interviews.
Our analysis process resulted in four broad themes, each broken into categories at
two levels of detail: (i) Technical Factors – where interviewees discussed specific
technical aspects of MDE tools, such as a missing feature or technical consid-
erations of applying tools in practice; (ii) Internal Organizational Factors – the
relationship between tools and the way a company organizes itself; (iii) External
Organizational Factors – influences from outside the company which may affect
tool use and application; (iv) Social Factors – issues related to the way people
perceive MDE tools or tool stakeholders.

Tables 1-4 form the taxonomy. Each category is briefly defined in the tables,
and an example of each sub-category is given. Numbers in brackets are the
number of interviewees who commented on a particular sub-category (max. 19).
Care should be taken when interpreting these numbers – they merely reflect
what proportion of our participants happened to talk about a particular issue.
They do not necessarily indicate relative importance of sub-categories because



Industrial Adoption of Model-Driven Engineering 5

one interviewee may have talked in depth about a sub-category whereas another
may have mentioned it only briefly. A deeper analysis would be required to
produce sub-category weightings. The reader should also avoid the temptation
to make comparisons between factors based on the table.

The following subsections present highlights from each theme: we have picked
out particularly insightful or relevant experiences from the interview transcripts.
We quote from the transcripts frequently; these are given italicized and in quo-
tation marks. Quotes are taken from the transcripts verbatim. Square brackets
are used to include contextual information.

The taxonomy is a data-driven, evidence-based description of issues that in-
dustrial MDE practitioners have encountered in practice when applying or de-
veloping MDE tools. We make no claim that the taxonomy covers all possible
tool-related issues; clearly, further evidence from other practitioners may lead
to an extension of the taxonomy. We also do not claim that the sub-categories
are orthogonal. As will be seen later, some examples of tool use can be classified
into multiple sub-categories. Finally, we do not claim that this is the ‘perfect’
taxonomy. It is simply one way of structuring the emerging themes from our
data, and the reader is welcome to re-structure the themes into an alternative
taxonomy which better fits his/her purposes.

The taxonomy can be used in a variety of ways. It can be used as a check-
list of issues to consider when developing tools. It can be used as a framework
to evaluate existing tools. Principally, however, we hope that it simply points
to a range of technical, social and organizational factors that may be under-
represented in the MDE research community.

4.1 Technical Factors

Table 1 presents the set of categories and sub-categories that relate to technical
challenges and opportunities when applying MDE tools. There are six categories.

Category Descriptions. The first, Tool Features, details specific tool func-
tionalities which interviewees felt impacted on project success. These include
support for modeling system behavior, architectures, domain-specific modeling,
and flexibility in code generation. Code Generation Templates, for example,
refers to the ability to define one’s own code generation rules, whereas Scoped
Code Generation refers to an incremental form of code generation where only
model changes are re-generated. The second category, Practical Applicability,
contains issues related to how tools can be made to work in practice. The issues
range from tool support for very large models (scaleability), to the impact of
using multiple tools or multiple versions of tools together, to the general matu-
rity level of tools and how flexibly they can be adapted into existing tool chains.
The third category concerns Complexity, which includes Accidental Complexity,
where the tools introduce complexity unnecessarily. The fourth category is Hu-
man Factors and includes both classical usability issues but also bigger issues
such as whether the way tools are designed (and, in particular, the kinds of ab-
stractions they use) match the way that people think. The final two categories



6 J. Whittle et al.

Table 1. Technical Categories

Category Sub-Category

Tool Features
Specific functionalities offered

in tools

- Modeling Behavior (1)
- Action Languages (1)
- Support for Domain-Specific Languages (6)
- Support for Architecture (3)
- Code Generation Templates (6)
- UML Profiles (1)
- Scoped Code Generation (2)
- Model Analysis (5)
- Reverse Engineering Models (3)
- Sketching Models (1)
- Refactoring Models (1)

Practical Applicability
Challenges of applying tools in

practice

- Tool Scaleability (1)
- Tool Versioning (1)
- Chaining Tools Together (2)
- Industrial Quality of Generated Code (8)
- Flexibility of Tools (3)
- Maturity of Tools (1)
- Dealing with Legacy (2)

Complexity
Challenges brought on by exces-

sive complexity in tools

- Tool Complexity (4)
- Language Complexity (5)
- Accidental Complexity Introduced by Tools (1)

Human Factors
Consideration of tool users

- Whether Tools Match Human Abstractions (4)
- Usability (4)

Theory
Theory underpinning tools

- Theoretical Foundations of Tools (1)
- Formal Semantics (2)

Impact on Development
Impact of tools on technical suc-

cess criteria

- Impact on Quality (2)
- Impact on Productivity (4)
- Impact on Maintainability (3)

concern the way that the lack of formal foundations leads to sub-optimal tools
and the reported perceptions about how tools impact quality, productivity and
maintainability.

Observations. One very clear finding that comes out of our analysis is that
MDE can be very effective, but it takes effort to make it work. The majority of
our interviewees were very successful with MDE but all of them either built their
own modeling tools, made heavy adaptations of off-the-shelf tools, or spent a lot
of time finding ways to work around tools. The only accounts of easy-to-use,
intuitive tools came from those who had developed tools themselves for bespoke
purposes. Indeed, this suggests that current tools are a barrier to success rather
than an enabler and “the fact that people are struggling with the tools. . . and
succeed nonetheless requires a certain level of enthusiasm and competence.”



Industrial Adoption of Model-Driven Engineering 7

Our interviewees emphasized tool immaturity, complexity and lack of usability
as major barriers. Usability issues can be blamed, at least in part, on an over-
emphasis on graphical interfaces: “. . . I did an analysis of one of the IBM tools
and I counted 250 menu items.” More generally, tools are often very powerful,
but it is too difficult for users to access that power; or, in some cases, they do
not really need that power and require something much simpler: “I was really
impressed with the power of it and on the other hand I saw windows popping up
everywhere. . . at the end I thought I still really have no idea how to use this tool
and I have only seen a glimpse of the power that it has.”
These examples hint at a more fundamental problem, which appears to be true

of textual modeling tools as well: a lack of consideration for how people work and
think: “basically it’s still the mindset that the human adapts to the computer,
not vice-versa.” In addition, current tools have focused on automating solutions
once a problem has been solved. In contrast, scant attention has been paid to
supporting the problem solving process itself: “so once the analyst has figured
out what maps to what it’s relatively easy. . .However, what the tools don’t do is
help the analyst figure out what maps to what.”
Complexity problems are typically associatedwith off-the-shelf tools. Of partic-

ular note is accidental complexity –which can be introduced due to poor considera-
tion of other categories, such as lack of flexibility to adapt the tools to a company’s
own context. One interviewee described how the company’s processes had to be
significantly changed to allow them to use the tool: a lack of control over the code
generation templates led to the need to modify the generated code directly, which
in turn led to a process to control these manual edits. Complexity also arises when
fitting an MDE tool into an existing tool chain: “And the integration with all of
the other products that you have in your environment. . . ” Despite significant in-
vestment in providing suites of tools that can work together, this is clearly an area
where it is easy to introduce accidental complexity.
It is ironic that MDE was introduced to help deal with the essential com-

plexity of systems, but in many cases, adds accidental complexity. Although this
should not be surprising (cf. Brooks [22]), it is interesting to describe this phe-
nomenon in the context of MDE. For the technical categories, in almost every
case, interviewees gave examples where the category helped to tackle essential
complexity, but also other examples where the category led to the introduction of
accidental complexity. So, interviewees talked about the benefits of code genera-
tion, but, at the same time, lamented the fact that “we have some problems with
the complexity of the code generated. . . we are permanently optimizing this tool.”
Interviewees discussed how domain-specific languages (DSLs) should be targeted
at complex parts of the system, such as where multiple disciplines intersect (“if
you have multiple disciplines like mechanical electronics and software, you can
really use those techniques”) whilst, at the same time realizing that the use of
DSLs introduces new complexities when maintaining a standard DSL across a
whole industry: “their own kind of textual DSL [for pension rules]. . .And they
went to a second company and the second company said no our pension rules are
totally different.” Clearly, as well known from Brooks, there is no silver bullet.



8 J. Whittle et al.

Table 2. Internal Organizational Categories

Category Sub-Category

Processes
Adapting tools to processes

or vice-versa

- Tailoring to a Company’s Existing Processes (5)
- Sustainability of Tools over the Long Term (3)
- Appropriating Tools for Purposes

They Were Not Designed For (3)
- Issues of Integrating Multiple Tools (6)
- Migrating to different tool versions (3)
- Offsetting Gains: Tools bring gains

in one aspect but losses in another (2)
- Whether Maintenance is carried out

at the Code or Model Level (3)

Organizational Culture
Impact of cultural attitudes

on tool application

- Tailoring to a Company’s Culture (4)
- Inertia: Reluctance to Try New Things (1)
- Over-Ambition: Asking Too Much of Tools (1)
- Low Hanging Fruit: Using Tools

on Easy Problems First (6)

Skills
Skills needed to apply tools

- Training Workforce (11)
- Availability of MDE Skills in Workforce (4)

4.2 Internal Organizational Factors

Category Descriptions. Table 2 gives the set of internal organizational cat-
egories. The first, Processes, relates to how tools must be adapted to fit into
existing processes or how existing processes must be adapted in order to use
tools. Tailoring to Existing Processes concerns the former of these; the remaining
sub-categories the latter. Sustainability of tools concerns processes for ensuring
long term effectiveness of tools, taking into account changes needed to the tools
as their use grows within the organization. Appropriation is about how tool use
changes over time, often in a way not originally intended. Integration Issues are
where new processes are needed to integrate MDE tools with existing tools. Mi-
gration Issues are about migrating from one tool to another or from one tool
version to another. Offsetting Gains is where a tool brings benefits in one part of
the organization but disadvantages in another part of the organization. Mainte-
nance Level is about processes that either mandate model-level changes only, or
allow code-level changes under certain constraints. The Organizational Culture
category relates to the culture of an institution: to what extent tools need to be
adapted to fit culture (Tailoring to Existing Culture), cultural resistance to use
new tools (Inertia), a lack of realistic expectations about tool capabilities (Over
Ambition), and attitudes that look for quick wins for new tools to prove them-
selves (Low Hanging Fruit). The third category concerns Skills — both training
needs (Training) and how existing skills affect adoption (Availability of Skills).



Industrial Adoption of Model-Driven Engineering 9

Observations. Our interviews point to a strong need for tailoring of some sort:
either tailor the tool to the process, tailor the process to the tool, or build your
own tool that naturally fits your own process. Based on our data, it seems that,
on balance, it is currently much easier to do the latter. Some tool vendors actively
prohibit tailoring to the process, but rather a process is imposed by the tool for
business reasons: “. . . the transformation engines are used as services. . . we don’t
want to give our customers the source code of the transformation engines and
have them change them freely. That’s a business question.”
When introducing MDE tools, one should think carefully where to introduce

them. One company reported, “We needed to find a way to let them incrementally
adopt the technology.” The solution was to first introduce reverse engineering of
code into models, as the first part of a process of change management. Another
company introduced MDE tools by first using them only in testing. The ‘perfect’
MDE tool may not always be necessary. For example, one company used MDE
where the user interface was not so critical: “cases which are internal applications
. . . where the user interface is not such an issue . . . that’s where you get the
maximum productivity from a tool like ours.”

There is a danger, though, in believing that one “killer application” of an MDE
tool leads to another: “prior to that they had used the technology successfully in a
different project and it worked and they were very happy, so they thought, ok, this
could be applied to virtually any kind of application.” It is not easy to identify
which applications are appropriate for MDE tools and which are not. Apart from
obvious industries where MDE has been applied more widely than others (cf.
the automotive industry), we do not have a fine-grained way of knowing which
MDE tools are appropriate for which jobs.

A curious paradox of MDE is that it was developed as a way to improve
portability [23]. However, time and again issues of migration and versioning
came up in our interviews: “[XX] have burned a lot of money to build their
own tool which they stopped doing because they lost their models when the [YY]
version changed.”

This migration challenge manifests itself slightly differently as ‘sustainabil-
ity’ when considering strategies for long-term tool effectiveness. It was often
remarked by our interviewees that an MDE effort started small, and was well
supported by tools, but that processes and tools broke down when trying to
roll out MDE across a wider part of the organization: “the complexity of these
little [DSL] languages started to grow and grow and grow. . . we were trying to
share the [code generation] templates across teams and versioning and releasing
of these templates was not under any kind of control at all.” One of our inter-
viewees makes this point more generally: “One of the things people forget about
domain specific languages is that you may be able to develop a language that
really is very well suited to you; however, the cost of sustaining just grows and
it becomes eventually unacceptable because a language requires maintenance, it
requires tooling, it requires education.”



10 J. Whittle et al.

Table 3. External Organizational Categories

Category Sub-Category

External Influences
Factors which an organiza-

tion has no direct control

over

- Impact of Marketing Issues (1)
- Impact of Government/Industry Standards (4)

Commercial Aspects
Business considerations im-

pacting on tool use and ap-

plication

- Business Models for Applying MDE (3)
- Cost of Tools (5)
- How to Select Tools (2)

4.3 External Organizational Factors

Category Descriptions. External organizational factors (Table 3) are those
which are outside the direct control of organizations. External Influences include
the impact of government or industry-wide standards on the way tools are devel-
oped or applied, as well as ways in which marketing strategies of the organization
or tool vendors impact on the use and application of tools. Commercial Aspects
include how the cost of tools affects tool uptake, how selection of tools can be
made based on commercial rather than technical priorities, and how the use of
tools relates to a company’s business model.

Observations. External influences clearly have an impact on whether tools –
any kind of tool, not just MDE – are adopted in an organization. Our interviews
show that the tool market is focused only on supporting models at an abstraction
level very close to code, where the mapping to code is straightforward. This is
clearly somewhat removed from the MDE vision. Unfortunately, there is also a
clear gap in the way that vendors market their tools and their real capabilities
in terms of this low-level approach. As a result, many MDE applications fail due
to expectations that have not been managed properly.
Data on the impact of the cost of tools seems to be inconclusive. Some inter-

viewees clearly found cost of tools to be a prohibitive factor. In one case, the
high cost of licenses led a company to hack the tool’s license server! For the most
part, however, companies do not seem to point to tool costs as a major factor:
the cost of tools tends to be dwarfed by more indirect costs of training, process
change, and cultural shift: “. . . it takes a lot of upfront investment for someone
to learn how to use the tools and the only reason I learnt how to use them was
because I was on a mission.”

Government or industry standards can both positively and negatively affect
whether tools are used or not. MDE tools can help with certification processes:
“they looked at the development method using the modeling tools and said, well,

it’s a very clear and a very comprehensive way to go and they accepted that.” In
other cases, interviewees reported that MDE tools can make certification more
difficult as current government certification processes are not set up to deal with



Industrial Adoption of Model-Driven Engineering 11

Table 4. Social Categories

Category Sub-Category

Control
Impact of tools on whether stake-

holders feel in control of their

project

Ways of Interacting with Tool Vendors (2)
Subverting Tools: Workarounds

Needed to Apply Them (1)

Trust
Impact of trust on tool use and

adoption

Trust of Vendors (4)
Engineers’ Trust of Tools (6)
Impact of Personal Career Needs (1)

auto-generated code. Sometimes, external legal demands were a main driver for
the use of MDE tools in the first place: “with the European legal demands, it’s
more and more important to have traceability.”

4.4 Social Factors

Category Descriptions. When it comes to MDE tools, social factors
(Table 4) revolve around issues of trust and control. Tool vendors, for exam-
ple, have different business models when it comes to controlling or opening up
their tools (Interacting with Tool Vendors). Subverting Tools is when a com-
pany looks for creative solutions to bring a tool under its control. The data has
a lot to say about Vendor Trust, or how perceptions of vendors influence tool
uptake. Engineers’ Trust also affects tool success: typical examples are when
programmers are reluctant to use modeling tools because they do not trust code
generated. Career Needs refers to how the culture of the software industry may
disadvantage MDE: an example is the ubiquitous use of consultants who are not
necessarily inclined to take the kind of long term view that MDE needs.

Observations. At a very general level, our data points to ways in which different
roles in a development project react to MDE tools. One cannot generalize, of
course, but roughly speaking, software architects tend to embrace MDE tools
because they can encode their architectural rules and easily mandate that others
follow them. Code ‘gurus’, or those highly expert programmers in a project,
tend to avoid MDE tools as they can take away some of their control. Similarly,
‘hobbyist programmers’, those nine-to-fivers who nevertheless like to go home
and read about new programming techniques, also tend to avoid MDE because
it risks taking away their creativity. Managers respond very differently to MDE
tools depending on their background and the current context. For example, one
manager was presented with a good abstract model of the architecture but took
this as a sign that the architects were not working hard enough!
One much-trumpeted advantage of MDE is that it allows stakeholders to

better appreciate the big picture. Whilst this is undoubtedly true, there are also
cases where MDE tools can cloud understanding, especially of junior developers:



12 J. Whittle et al.

“we’d been using C and we were very clear about the memory map and each
engineer had a clear view. . .But in this case, we cannot do something with the
generated code so we simply ask the hardware guys to have more hard disc.”
Similar implications can arise when companies become dependent on vendors.

Vendors often spend a lot of time with clients customizing tools to a particular
environment. But this can often cause delays and cost overruns and takes control
away from the client: “And suddenly the tool doesn’t do something expected and
it’s a nightmare for them. So they try to contact the vendor but they do not really
know what’s going on, they are mostly sales guys.”
MDE asks for a fundamental shift in the way that people approach their

work. This may not always be embraced. One example is where MDE tools
support engineers in thinking more abstractly, and, in particular, tackling the
harder business problems. But engineers may not feel confident enough to do
this: “when you come to work and you say, well, I could work on a technical
problem or I could work on this business problem that seems not solvable to me,
it’s really tempting to go work on the technical stuff.” MDE tools require up-
front investment to succeed and the return on this investment may not come
until the tool has been applied to multiple projects. There is a tension here
with the consultancy model which is often the norm in MDE: “So they felt
that, let me do my best in this one project. Afterwards, I am moving into some
other project. . . [in a] consultancy organization, you measure yourself and you
associate yourself with things in a limited time.”

5 A Study of MDE Practice in Two Companies

This section presents insights from our second set of data: 20 additional inter-
views in Ericsson AB and Volvo Cars. Interviewees at Ericsson were users of
Rational Software Architect RealTime Edition (RSA/RTE). At Volvo Cars, in-
terviewees used Simulink. This set of interviews was carried out independently of
the development of the taxonomy. The taxonomy was used in coding the second
set of transcripts but any deviations from the taxonomy were noted.

5.1 Technical Factors

The second study clearly shows that MDE tools can both reduce and increase
complexity. Ericsson employees found benefits of using RSA/RTE because of
the complex aspects of the radio base station domain, such as synchronous/
asynchronous message passing: “It takes care of these things for you so you can

focus on the behavior you want to have within a base station.” Interestingly, this
interviewee has now moved to a new project where all development is done using
C++ and a lot of time is spent on issues that were dealt with by the tool before.

And it is a constant source of error. On the other hand, “I don’t think you gain

advantage in solving all kinds of problems in modeling.” There is a danger of

over-engineering the solution: “You would try to do some smart modeling, or

stuff and you would fail. After a while you would end up in a worse place than

if you had done this in C++”.



Industrial Adoption of Model-Driven Engineering 13

5.2 External Organizational Factors

Both companies illustrate how external organizational factors impact on MDE
success. The functionality of Ericsson’s radio base stations is accessed by Tele-
coms companies such as AT&T through an API. The API is developed using
RSA/RTE by 7-8 software engineers. The changes to the API are managed by a
forum which is responsible for ensuring that the accepted changes are consistent
and that they make sense for the customers: “We do have a process for how to
change it and we review the changes very carefully. For new functions, we want
it to look similar, we want to follow certain design rules and have it so it fits
in with the rest.” This example illustrates how MDE can be effectively used to
manage external influences: in this case, Ericsson models the API as a UML
profile and manages it through MDE.
At Volvo, the automotive standard AUTOSAR1 has made the choice of de-

velopment tool a non-issue; Simulink is the standard tool: “. . . a language which
makes it possible to communicate across the disciplinary borders. That the system
architect, the engineer and the tester actually understand what they see.”

5.3 Internal Organizational Factors

One Ericsson employee notes the importance of internal organizational support
for MDE tools: “Tool-wise I was better off five years ago than I am today. . . then
we had tool support within the organization. And they knew everything. Today,
if I get stuck there is no support to help me.” The quote comes from a sys-
tem architect at Ericsson who concludes that the tools are difficult to use since
they are so unintuitive. The threshold for learning how to produce and consume
models can be overcome but it requires an organization where developers are
not exposed to different tools between projects.
According to another employee at Ericsson, it is necessary to change the

existing processes and culture in order to make the most out of MDE tools:
”I think actually that the technology for doing this [MDE] and the tools, as
the enablers, they are more advanced than the organizations that can use them
. . .Because the organizations are not mature to do it there are few users of those
tools and then the usability is poor.”
At Volvo a substantial effort has been made in order to enable the transition

from Simulink as a specification and prototype tool into a code generation tool;
due to the properties of the code generator different design rules are suitable
for readability versus code generation. Migrating from one tool to another also
requires that old processes are updated: “When it comes to TargetLink – a
competitor to Simulink – we have the knowledge of good and bad design patterns.
For Simulink, that is something we are currently obtaining, what to do and not,
in Simulink models.”

1 AUTomotive Open System ARchitecture; www.autosar.org/



14 J. Whittle et al.

5.4 Social Factors

It seems that the effort put into tailoring the tools to the existing organization
has paid off at Volvo since the domain experts trust the tools to deliver: “I do like
it. In quite a lot of ways. Especially for the kind of software we are developing.
It’s not like rocket science, really. It’s like systems where you have a few signals

in, you should make a few decisions, make some kind of output. It is not that

difficult applications. There are no complex algorithms. . .And for that I think

Simulink is very sufficient. . . I like it.”

At Ericsson, interviewees commented that the main difference between work-
ing with RSA/RTE and code is that the latter is well-documented on the web:
“You can find examples and case studies and what not in millions.” But when
searching for tool-specific help on UML, “you basically come up empty-handed.”

5.5 Taxonomy Validation

The study at Ericsson and Volvo is in itself revealing about MDE practice. How-
ever, for the purposes of this paper, it serves primarily to validate our taxonomy.
In only one case did we find that an extension to the taxonomy was necessary.
This was on the role that an open community can play in supporting MDE. As
discussed in Section 5.4, the lack of online support forums for MDE can lead to
feelings of isolation and, in turn, lack of engagement with MDE. We therefore
extend our taxonomy to reflect this – by adding a new category, Open Commu-
nity, with sub-category, Developer Forums, in Table 4. The other issue is that it
can be difficult to pick a single sub-category to which a statement applies. Of-
ten, a single statement overlaps multiple sub-categories. This, however, was not
unexpected. Issues of MDE adoption and tool use are complex and involve many
dependencies, so it would be unrealistic to expect a taxonomy with completely
orthogonal sub-categories.

6 Discussion and Conclusions

Through two separate studies of MDE practitioners, comprising a total of 39
interviews, we have developed a taxonomy of technical, social and organizational
issues related to MDE tool use in practice. This taxonomy serves as a checklist
for companies developing and using tools, and also points to a number of open
challenges for those working on MDE tool development. We now discuss some
of these challenges, which have emerged from the data.

Match tools to people, not the other way around. Most MDE tools are de-
veloped by those with a technical background but without in-depth experience
of human-computer interaction or business issues. This can lead to a situation
where good tools force people to think in a certain way. We recommend that the
MDE community pay more attention to tried-and-tested HCI methods, which
can help to produce more useful and usable tools. There is empirical work on
studying MDE languages and tools, but this is rarely taken into account.



Industrial Adoption of Model-Driven Engineering 15

Research should avoid competing with the market. The research community
should focus on issues not already tackled by commercial vendors. Our study
found that the majority of tools support the transition from low level design to
code. However, many bigger issues of modeling – such as support for early design
stages and support for creativity in modeling – are relatively unexplored.

Finding the right problem is crucial. Our studies suggest that finding the right
place for applying MDE is a crucial success factor. However, there is very little
data about which parts of projects are good for MDE and which are not. Nor
is there data about which tools are right for which jobs. In general, even the
research community has not clearly articulated how to decide what to model
and what not to model, and what tools to use or not to use.

More focus on processes, less on tools. The modeling research community
focuses a lot on developing new tools and much less on understanding and im-
proving processes. A particular case is the importance of tailoring. Very little
research has been carried out on how best to tailor: what kinds of tailoring go
on, how tools can or cannot support this, and how to develop simpler tools that
can fit into existing processes with minimal tailoring.

Open MDE Communities. There is a distinct lack of open MDE developer
forums. Those who do take the plunge with MDE are left feeling isolated, with
nowhere to go to get technical questions answered or to discuss best practice.
There are few examples of ‘good’ models online which people can consult, and ef-
forts towards repositories of such models (cf. [24]) have achieved limited success.
There is a chicken-and-egg dilemma here: if MDE is widely adopted, developer
communities will self-organize; if it is not, they will not.
The big conclusion of our studies is that MDE can work, but it is a struggle.

MDE tools do not seem to support those who try. We need simpler tools and
more focus on the underlying processes. MDE tools also need to be more resilient:
as with any new method, MDE is highly dependent on a range of technical, social
and organizational factors. Rather than assuming a perfect configuration of such
factors, MDE methods and tools should be resilient to imperfections.
For themost part, our sub-categories are already known and have been noted ei-

ther in the literature or anecdotally. France andRumpe [25], for example, point out
that “Current work on MDE technologies tends to focus on producing implemen-
tation. . . from detailed design models”. Aranda et al. [19] found that tailoring of
processes is critical for MDE. Similarly, Staron found that organizational context
has a huge impact on the cost effectiveness of MDE [3]. Indeed, many of our obser-
vations about organizational aspects of MDE adoption are not necessarily specific
to MDE but are true of technology adoption generally. However, the contribution
of the taxonomy is that it brings all of the factors – both technical andnon-technical
– together in one place to act as a reference point.
This paper began with the question: “Are tools really the problem?” The

answer appears to be both yes and no. MDE tools could definitely be better.
But good tools alone would not solve the problem. A proper consideration of
people and organizations is needed in parallel. As one of our interviewees noted:
“Wait a second, the tools are really interesting, I agree, but to me it’s much more

about what is the process and the technique and the pattern and the practice.”



16 J. Whittle et al.

Acknowledgments. The authors would like to thank all those who took part in
the interviews, including those who facilitated the study at Ericsson and Volvo.

References

1. Den Haan, J.: 8 reasons why model-driven approaches (will) fail (2008),
http://www.infoq.com/articles/8-reasons-why-MDE-fails

2. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study of forces and
frictions affecting large-scale model-driven development. In: [26], pp. 352–367

3. Staron, M.: Adopting model driven software development in industry – a case study
at two companies. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 57–72. Springer, Heidelberg (2006)

4. Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., Reggio, G.: Maturity of soft-
ware modelling and model driven engineering: A survey in the Italian industry. In:
Baldassarre, M.T., Genero, M., Mendes, E., Piattini, M. (eds.) 16th International
Conference on Evaluation & Assessment in Software Engineering, EASE 2012, Ciu-
dad Real, Spain, May 14-15, pp. 91–100. IET - The Institute of Engineering and
Technology (2012)

5. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: [27], pp. 633–642

6. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: [27], pp. 471–480

7. Pérez-Medina, J.L., Dupuy-Chessa, S., Front, A.: A survey of model driven en-
gineering tools for user interface design. In: Winckler, M., Johnson, H. (eds.)
TAMODIA 2007. LNCS, vol. 4849, pp. 84–97. Springer, Heidelberg (2007)

8. de Sousa Saraiva, J., da Silva, A.R.: Evaluation of MDE tools from a metamodeling
perspective. In: Principal Advancements in Database Management Technologies,
pp. 105–131. IGI Global (2010)

9. Cabot, J., Teniente, E.: Constraint support in MDA tools: A survey. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 256–267. Springer,
Heidelberg (2006)

10. Paige, R.F., Varró, D.: Lessons learned from building model-driven development
tools. Software and System Modeling 11(4), 527–539 (2012)

11. Chalmers, M.: A historical view of context. Computer Supported Cooperative
Work 13(3), 223–247 (2004)

12. Dourish, P.: Where the action is: the foundations of embodied interaction. MIT
Press, Cambridge (2001)

13. Grudin, J.: Why CSCW applications fail: Problems in the design and evaluation
of organization of organizational interfaces. In: Greif, I. (ed.) CSCW, pp. 65–84.
ACM (1988)

14. Brown, B.: The artful use of groupware: An ethnographic study of how Lotus Notes
is used in practice. Behavior and Information Technology 19(4), 263–273 (1990)

15. Merisalo-Rantanen, H., Tuunanen, T., Rossi, M.: Is extreme programming just old
wine in new bottles: A comparison of two cases. J. Database Manag. 16(4), 41–61
(2005)

16. Robinson, H., Sharp, H.: The social side of technical practices. In: Baumeister,
H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS, vol. 3556, pp. 100–108.
Springer, Heidelberg (2005)



Industrial Adoption of Model-Driven Engineering 17

17. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

18. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development - technology, engineering, management. Pitman (2006)

19. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engineering - what
is revolutionary, what remains the same? In: [26], pp. 692–708

20. Clark, T., Muller, P.-A.: Exploiting model driven technology: a tale of two startups.
Software and System Modeling 11(4), 481–493 (2012)

21. Holsti, O.R.: Content Analysis for the Social Sciences and Humanities. Addison-
Wesley Publishing Company, Reading (1969)

22. Brooks Jr., F.P.: The mythical man-month – essays on software engineering, 2nd
edn. Addison-Wesley (1995)

23. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

24. France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.C., Jensen, A.C.:
Repository for model driven development (ReMoDD). In: Glinz, M., Murphy, G.C.,
Pezzè, M. (eds.) 34th International Conference on Software Engineering, ICSE
2012, Zurich, Switzerland, June 2-9, pp. 1471–1472. IEEE (2012)

25. France, R.B., Rumpe, B.: Model-driven development of complex software: A re-
search roadmap. In: Briand, L.C., Wolf, A.L. (eds.) International Conference on
Software Engineering, ICSE 2007, Track on the Future of Software Engineering,
FOSE 2007, Minneapolis, MN, USA, May 23-25, pp. 37–54 (2007)

26. France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.): MODELS 2012. LNCS,
vol. 7590. Springer, Heidelberg (2012)

27. Taylor, R.N., Gall, H., Medvidovic, N. (eds.): Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May
21-28. ACM (2011)


