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The spatial patterns of population distribution are very important information for most regional planning
and management decisions. But the socioeconomic data are usually published in areal aggregated format due
to privacy concerns. Although choropleth maps are used extensively to display spatial distributions of these
areal aggregated data, patterns may be distorted due to assumptions of homogeneous distributions and the
modifiable areal unit problem. Most human activity, including population distribution, is spatially
heterogeneous due to variations in topography and regional development. A multi-layer multi-class
dasymetric (MLMCD) framework was proposed in this study to better redistribute the regionally aggregated
population statistics into smaller areal units and reveal more realistic spatial population distribution pattern.
The Taipei metropolitan area in Taiwan was used as a case study area to demonstrate the disaggregation
ability of the proposed framework and the improvements to the traditional binary or multi-class dasymetric
method. Assorted data, including remote sensing images, land use zoning, topography, transportation and
accessibility to facilities were introduced in different layers to improve the redistribution of aggregated
regional population data. The concept of multi-layer multi-class dasymetric modeling is both useful and
flexible. Different levels of accuracy in this population redistribution process can be achieved depending on
data and budget availabilities and the needs for different data usage purposes.
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1. Introduction

Estimates of population size and distribution are vital for
socioeconomic planning and management decisions such as the
allocation of food and medical supplies, transportation, land use and
regional development. A better understanding of the population
distribution will lead to more effective management policies.
Censuses are commonly used as the major source for population
distribution information. Although detailed data may be recorded for
each person in a census, privacy concerns prevent these data from
being released. The census results are usually published in aggregate
form. Data are aggregated by some spatial unit such as block group,
census tract, grid square statistic and zip code area, or by
administration unit such as township, county or even state (Direc-
torate General of Budget, Accounting & Statistics, 2000; Peters and
MacDonalds, 2004; Statistics Bureau of Japan, 2005; US Census
Bureau, 2005).

Spatial heterogeneity in population distribution exists between
natural environments and regional developments. These spatial
patterns play important roles in regional decisions, resource alloca-
tion, infrastructure planning and disaster mitigation. Because homo-
geneity is assumed for data released in spatially aggregated forms, the
spatial patterns of population distribution within the aggregated units
may be lost or distorted (Fisher and Langford, 1996; Weichselbaum et
al., 2005).

Gridded Population of the World, version 3(GPW3) (Center for
International Earth Science Information Network, 2005) is a dataset
for human population in the common geo-referenced framework
displaying the human population distribution at a global scale. GPW3
was constructed from population data aggregated by assorted
geopolitical spatial units worldwide. These aggregated data were
disaggregated into geo-referenced grids at a resolution of 2.5′ (about
4.5 km) for use in social, economic, earth science fields. Global Rural–
UrbanMapping Project (GRUMP)was built on GPW3 by incorporating
more detailed population distribution information in urban and rural
settlements. The GRUMP dataset has a much higher resolution at 30″
(about 1 km). LandScan dataset (Dobson et al., 2000) is another
worldwide population database compiled on a latitude/longitude grid
system with a resolution of 30″. The census data were redistributed
into each grid cell based on a likelihood coefficient ascertained from
related information such as proximity of roads, slope, land cover and
nighttime light emission. The LandScan dataset provides an estimate
of the worldwide ambient population at risk. This ambient population
information is valuable for the purpose of emergency response, as it
integrates diurnal movements and traveling habits into the popula-
tion distribution estimates. Although GPW3, GRUMP and LandScan
datasets provide valuable global human population information that
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improves decisions about global/international resource planning and
risk management, more detailed population distributions are neces-
sary for regional management issues such as diffusion control during a
disease outbreak or hazardous waste release analysis. This study
aimed to establish a multi-layer multi-class dasymetric (MLMCD)
model to disaggregate the aggregated population data into smaller
spatial units and reconstruct the spatial distribution patterns of
regional populations.

2. Pattern distortion in aggregated data

Point data are the most realistic representations of population
distributions and are capable of revealing the near-true spatial
patterns of regional populations, but these individual data are usually
confidential. Choropleth maps are commonly employed to display
spatial distribution patterns using aggregated population data. Spatial
patterns may be lost or distorted during these spatial aggregations for
different zones or scales. The modifiable areal unit problem (MAUP) is
a potential source of error that affects spatial studies using aggregated
data (Unwin, 1996). This problemwas first addressed by Openshaw in
1984. When data with spatial variability are aggregated, the original
underlying spatial patterns may be distorted by the choice of district
boundaries. This problem is especially crucial in choropleth mapping.
Applications such as spatial planning, demography, crime and disease
mapping are prone to such errors. The MAUP is also closely related to
ecological fallacy with the false assumption of homogeneity in
aggregated data.

The areal units are modifiable and can be aggregated into different
partition sizes (such as census tracts, counties, or postal code zone).
Although these spatial partitions are comparable in size, they can be
very different from each other. For example, the epidemic situation in
an area with very high disease incidence may be overlooked if
adjacent districts with lower case incidence are aggregated together.
Although the use of smaller spatial aggregation units may alleviate the
MAUP, this problem is not completely circumvented by decreasing the
aggregation area. This study attempted to mitigate MAUP by
reconstructing more accurate spatial distribution of the aggregated
data with the aid of ancillary data such as satellite images, terrain,
land use and infrastructure, as well as public works such as traffic
networks.

3. Population redistribution models

Although the MAUP is a well known phenomenon, widely
available aggregated data are often used inappropriately and can
yield misleading information. This is commonly observed in chor-
opleth mapping practices, which are convenient due to the ease of
mapping using Geographic Information Systems (GIS).

Some methods have been developed for redistributing these
aggregated data into smaller spatial units. Areal interpolation is
commonly used for disaggregating population. Areal interpolation is
the process of estimating the population in a set of target polygons
based on known populations that exist in a set of source polygons. The
need for areal interpolation arises when data from different sources
are collected in different areal units (Flowerdew and Green, 1992).

Binary dasymetric method is more or less the same as the areal
weighting method but adding an extra step of filtering the data using
an ancillary data set (Flowerdew and Green, 1989; Holt et al., 2004).
The binary dasymetric approach defines the target area as either
occupied (or populated) or unoccupied (or unpopulated) with the
help of related information such as areal photographs, remote sensing
images, or road buffer zones. A weighting factor of 1 is used for the
populated areas and 0 for the unpopulated areas. The aggregated
population is then uniformly distributed into the populated areas.
Since the unpopulated areas (such as lakes, rivers or paddy fields) are
excluded from the population redistribution, the results demonstrate
a more accurate spatial distribution pattern of the population (Holt et
al., 2004; Keping et al., 2004; Langford and Higgs, 2006; Langford and
Unwin, 1994).

The multi-class weighted dasymetric model is an improved
version of the binary dasymetric model. Populated areas are sub-
divided into additional subcategories that reflect different population
densities based on information such as land use, zoning, land value,
accessibility, infrastructure density, home living style, etc. Different
weighting factors are applied to each category to produce a more
realistic population distribution. For example, multiple family and
single family zones in a residential areamay have different population
densities. A stronger weight is applied for multiple families because of
its higher population density (Flowerdew and Green, 1992; Reibel and
Bufalino, 2005; Wu et al., 2005; Wu, 2006). Contrary to the weighting
factors of 0 and 1 in the binary dasymetric model, scaled weighting
factors (between 0 and 1) are applied for different sub-classes in this
multi-class weighted algorithm as shown in Eq. (1).(Goodchild et al.,
1993; Holt et al., 2004; Langford, 2006; Relbel and Agrawal, 2005)

Dij =
Pi × ðAijWjÞ

∑
m

j=1
AijWj

ð1Þ

where i and j are subscripts for areal units and sub-classes
respectively, m is the number of the sub-classes, Dij is the population
density, Pi is the population in areal unit i, Wj is the weighting factor
for subclass j and Aij is the area of subclass j in unit i.

This method assumes that each class has a characteristic
population density. Theweighting factorsWj represent the population
distribution characteristic of each class and may vary depending on
the location of the area of interest and the assignment may be
subjective. The calibration of these Wj parameters becomes a major
problem in the application of the multi-class dasymetric model. This
was not an issue for binary dasymetric model as 0 and 1 can be
assigned without doubt. Although there are some alternatives
proposed such as subjective choice based on local or prior knowledge
(Eicher and Brewer, 2001), empirical estimation derived by sampling
a subset from the study region (Mennis and Hultgren, 2006; Langford,
2006), or through the use of geo-statistical modeling (Lo, 2008), this is
still a controversial issue waiting for more researches and case studies
to resolve.

Another weakness of the multi-class dasymetric method is that
although the differences between classes are recognized, the
differences within a specific class are ignored (Eicher and Brewer,
2001). For example, the population density of the single family class
may not be uniform and may vary from one part of the town to the
other. This spatial non-stationary characteristic of population may be
examined in more details with regional regression approach like
Geographically Weighted Regression (GWR, Fotheringham et al.,
1998, 2000) for better population estimations. (Lo, 2008)

Rather than using categorical land use as a proxy for population
density, very high spatial resolution satellite images were used to
estimate population based on image texture. Spatial units called
“Homogeneous Urban Patches” (HUP) are obtained through texture-
based image segmentation (Liu et al., 2006). The correlation between
census population density and image texture was established, but it
was not good enough to provide reliable estimates of population
distribution.

Surface-generating methods are also used to model a population
surface by kernel density estimation (Bracken and Martin, 1989;
Martin et al., 2000; Martin, 2006). They created a population density
surface by interpolating based on the population-weighted centroid.
The early version of this method had problemmaintaining the correct
population counts in the original spatial units (Bracken and Martin,
1989), but was later revised to preserve the pycnophylactic (volume-
preserving) property (Martin, 2006; Rase, 2001).
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Some planning or management issues at the local level may
require very detailed population distribution to yield meaningful
results. Most of the methods described above mainly relied on land
use/land cover data and may not be as fine-grained as necessary for
many urban analysis purposes.

Some researcher used the street network data (Reibel and
Bufalino, 2005), urbanization index (Mennis, 2003; Mennis and
Hultgren, 2006) or cadastral data (Maantay et al., 2007) to derive
weights for population interpolation. Using street network as a proxy
for population distribution was reported effective “where the lack of
population is reflected in the lack of roads and least in those areas
(such as industrial areas) with a more developed, but non-residential
transportation infrastructure” (Reibel and Bufalino, 2005).

As described above, most of the population redistribution algo-
rithms require ancillary information. The availability and quality of
this ancillary information have critical effects on the redistribution
calculations. Most of the methods are either too simple like the areal
interpolation or binary dasymetric, or require too much detailed data
that may not be available in most of the places such as the kernel
density estimation based on population-weighted centroid. A multi-
layer andmulti-class dasymetric algorithm for population distribution
was established in this study in order to couple the availability of data
from different sources.
4. Methodology

Although the true population distribution is best represented by
individual points as shown in Fig. 1(b), these data are generally
confidential and unavailable. The population data are usually
provided as the total for a region (Fig. 1(a)) or as sums of different
zoning units (Fig. 1(c)). An example of improved population
distribution reconstruction of an aggregated regional population by
the dasymetric model is shown in Fig. 1. The total regional population
of 100 in Fig. 1(a) was used as the starting point for this example. The
true populations in each spatial unit are shown in Fig. 1(c).
Fig. 1. Description of d
To reconstruct the population distribution patterns, disaggrega-
tion algorithms must be used to reallocate the total population into
different subunits. A 20 m by 20 m grid system was constructed for
this population distribution process. The aggregated population was
distributed into each cell to reveal the spatial population distribution.
For simple areal weighting, homogeneity was assumedwith a uniform
population density applied to the whole region, and each cell received
same population amount. The results are shown in Fig. 1(d) with
uniform population density in all cells. The population in each of the
four subunits is equal to population sum of all the cells within that
subunit. The numbers in the parentheses are the errors or deviations
of the assigned population from the true values as shown in Fig. 1(c).

Dasymetric mapping is thought to better capture the true spatial
distribution pattern by identifying the different spatial characteristics
in the region. For example, the whole region can be classified as either
populated or unpopulated as shown in Fig. 1(e). This binary
classification can be accomplished with the aid of remote sensing
images or areal photographs that are easily accessible. The total
population was then redistributed to the populated area by the same
areal weighting method and the results are shown in Fig. 1(e). Some
errors in Fig. 1(e) may be worse than those shown in Fig. 1(d). These
deviations are most clearly observed in the northwest and southeast
regions. These are the more rural and urban regions according to the
true point population pattern shown in Fig. 1(b).

Redistributed populations in each spatial unit are usually over-
estimated in the rural (more sparse) regions and underestimated in
the urban (more dense) regions. Urban regions usually have higher
population densities because there are more socioeconomic activities,
public infrastructure, employment opportunities and higher land
asset values.

If more relevant information is available for the region, then the
populated areas can be further divided into zones with different
population densities. This classification can be determined based on
data of land cover and land use, topography, land value, or the density
of public infrastructures such as traffic networks. As shown in Fig. 1(f),
the populated area can be classified into urban, suburban and rural.
asymetric models.

image of Fig.�1
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The total population is then distributed to each grid cell using Eq. (1)
with different weighting factors, e.g., 0.5, 0.3 and 0.2 for urban,
suburban and rural, respectively. The effectiveness in capturing the
population distribution pattern can be evaluated through the errors in
each zone. The results in Fig. 1(f) show less error and better represent
the initial population distribution pattern than those in Fig. 1(d) and
(e).

A multi-layer multi-class dasymetric framework, as shown in
Fig. 2, was proposed in this study in order to better disaggregate the
aggregated population data and elucidate true population distribution
patterns according to several available parameters correlated with
population density. Each layer in this model is composed of several
classes of different population densities. Weighting factors are
assigned to each class based on relative population density. Layer 0
in Fig. 2 assumes that the population is uniformly distributed over the
region. Layer 1 is formed by classifying the regions into subclasses of
populated and unpopulated, with weighting factors of 1 and 0,
respectively. This layer represents the traditional binary dasymetric
model. If more information is available and one of these classes can be
further divided into more subclasses, another layer is formed. In the
example shown in Fig. 2, the populated class of layer 1 can be further
classified into 3 subclasses of urban, suburban and rural in layer 2. The
population density within the suburban area can be differentiated by
land use zoning data such as single/multiple family zones. The urban
area can also be further classified as either commercial or high density
residential zones. Each category in layer 3 can be further divided in
higher layer according to more detailed information such as
transportation network density, employment accessibility and land
asset values.

This reversed tree type multi-layer framework represents a
hierarchical relationship. Although more data are required to create
additional layers for this framework, the population disaggregation at
higher layers is more comprehensive and exhaustive and is expected
to reveal more detailed spatial distribution patterns.

5. Study area

The Taipei metropolitan of Taiwan, shown in Fig. 3(a), was used as
the study area to demonstrate the proposed multi-layer multi-class
dasymetric framework. One third of the total national population,
more than 6 million people, is concentrated in an area of about
2700 km2. The Digital Terrain Modeling (DTM) in Fig. 3(b) reveals
that the central part of the region is flatter and surrounded by a
mountainous area. The region consists of 41 cities and townships and
is subdivided into more than 1400 administration units called “Li”
(Fig. 3(c)). The average Li population density is about 3000 persons/
km2, but ranges between 3 persons/km2 and 230,000 persons/km2

(Department of Civil Affairs, Taipei City Government, 2007; Depart-
ment of Urban Development, Taipei City Government, 2007).

Socioeconomic data related to the population distribution were
collected for the study area including population and agricultural
Fig. 2. Framework of multi-layer and multi-class dasymetric model.
censuses, population registration, remote sensing images, land use
zoning, land use surveys, land value and transportation networks.
These datawere used to identify the populated and unpopulated areas
and to estimate the weighting factors as described in Eq. (1), thus
properly redistributing the aggregated population data into sub-
regions.

The types of land use in the study area were roughly classified into
eight categories: agricultural/forest, transportation, water conservan-
cy, building, industrial, recreational, mining, and others (Ministry of
the Interior, Taiwan, 1995). Currently, more than 80% of land is used
for agricultural/forest. And the building areas represent less than 10%
of the study area. While the major portion of the population is
concentrated in the flat central area, a small portion of the population
is scattered in the peripheral mountain-slope region. The concentra-
tion of traffic networks in the central part of the region, as shown in
Fig. 3(d), also confirms this general distribution trend.

“Li” is the lowest administration level in Taiwan with an average
area of about 4.6 km2. The Li areas tend to be larger in the rural region
than in the urban and suburban regions, as shown in Fig. 3(c). Most of
the registered or census population data are published at this
administration level. Since the true point population data are
unavailable due to confidentiality reasons, the total populations at
each of the smallest available areal units (Li) were collected as the
true values and used as the basis for comparisons among different
population redistribution results determined in this study.

These published aggregated Li population data were first aggre-
gated for the entire study area as the initial condition for population
disaggregation. The aggregated population was then redistributed
into 20 m by 20 m grids to reconstruct the regional population
distribution pattern using the proposed framework. The grid
resolution of 20 m was chosen to match the resolution of SPOT
images used in this study to identify populated areas.

6. Results and discussions

To begin disaggregation, layer 0 of the proposedmulti-layer multi-
class dasymetric framework was set as the uniformly distributed
aggregated population across the entire study area. This population
distribution, shown as the choropleth map in Fig. 4(a), is of little use
for region planning and management decisions. The population
density was 1.08 persons per cell.

Remote sensing images were used in layer 1 to classify the study
area into populated and non-populated areas. SPOT images with a
spatial resolution of 20 meters were used for this purpose. Since the
population data used in this study represents the registered
population who inhabit buildings, the building areas were treated as
populated zones. A maximum likelihood classification method was
used to identify the building areas using training samples chosen from
a combination of multi-spectral images and colored ortho-images. The
overall accuracy was higher than 95%. The results are shown in Fig. 4
(b).

Although the population distribution pattern shown in Fig. 4(b) is
more realistic than that of layer 0, this distribution did not
discriminate based on the population densities of different land use
types within the populated areas. There may be major differences in
population density among different land uses. For example, the
population density in a residential zone is expected to be higher than
that in agricultural or industrial zones. These differences in population
densities can be better captured if the land use data are incorporated
into the population distribution model.

The land use zoning map was overlaid with the building area in
layer 2 to better capture the population pattern varying with
socioeconomic activities. The overlaying results are summarized in
Table 1. Some building areas were located in traffic and water
conservancy zones. Thesemay have beenmistakenly identified during
satellite image processing or may represent illegal residential
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Fig. 3. Study area.
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buildings where zoning regulation were not enforced. Buildings such
as parking terraces, highway toll stations, pumping houses, or
pavilions in the riverside parks may also be erroneously categorized
as populated areas. These cells were reassigned as unpopulated areas
to better capture the true population distribution.

The land use zones were aggregated into two categories of
agricultural (including agriculture and forest) and non-agricultural
(including residential, commercial and industrial) for this study. The
population redistribution weighting factors for agricultural and non-
agricultural zoneswere set as 0.01 and 0.99, respectively, based on the
statistics from the 2005 agricultural census and the 2000 population
census (DGBAS, 2007). The population distribution differences
between agricultural and non-agricultural zones are captured in
layer 2 of the disaggregation model, as shown in Fig. 4(c).

Population densities may not only be dissimilar in different land
use zones but may also vary within a specific land use type. For
example, the population density in an urban single family zone may
be higher than that in the same zone in a suburb area. This variance
can be captured by various socioeconomic factors such as land values,
or by the density of utilities such as transportation networks. These
discrepancies were not adequately represented in the disaggregation
pattern of layer 2; therefore, the non-agricultural areas (including
commercial, industrial and residential) were further classified into
levels of utility accessibility. As shown in Fig. 3(d), the traffic network
is denser in the central flat urban areas than in the surrounding
suburban or mountain slope areas. The densities of transportation
networks in each cell were used as weighting factors for layer 3. The
areas with denser road networks were assumed to have higher
population densities. This characteristic was introduced to formulate
layer 3 of the population disaggregation model, shown in Fig. 4(d). As
layers are added to the proposed framework, it is possible to better
discriminate spatial variations of population distribution and better
reveal the true population distribution pattern.

Since individual point data are confidential, disaggregation results
of different levels of themodel cannot be compared to the actual study
grid. In order to evaluate the ability of the different layers of themodel
to capture the spatial population distribution pattern, the published
population data at the “Li” level were assumed to be the true values.
The grid cell population densities in each layer were used to compute
the population in each Li. The Li level population density determined
in each layer of the model is summarized in Fig. 5. This figure reveals
that the population distribution patterns aggregated by Li are more
similar to the published values (Fig. 5(a)) as layers are added to the
model.

image of Fig.�3


Fig. 4. Cell population densities in each layer.
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The deviations of the estimated Li populations from the published
values were calculated for each layer of the model. Mean Absolute
deviation (MAD) and root mean square error (RMSE) were used as
indices to compare error. The MAD and RMSE were calculated using
Eqs. (2) and (3).

MAD =
∑
n

i=1
jxi−x̂ij
n

ð2Þ
Table 1
The percentage of building cells in each land use type.

Land Use Percent (%)

Agricultural* 79.1
Transportation 1.8
Water conservancy 3.0
Residential/Commercial 7.5
Industrial 1.2
Others 7.4

Note: * including farming and forest.
RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
ðxi−x̂iÞ2

n

vuuut
ð3Þ

where xi and x̂i are true and estimated values respectively, i is the
subscript for Li, and n is the total number of Li in the study region.

The related error statistics for each layer are summarized in
Table 2. It clearly shows that the range of errors decreases as layers are
added. The error indices shown in Table 2 also diminish with
increasing layers. The RMSE are also significantly improved from
layer 0 to layer 3. It can be concluded that the multi-layer multi-class
dasymetric approach can better display the actual population
distribution pattern by including more ancillary information.
Improvements in population redistribution are more significant as
layers increase from 0 to 1 and 1 to 2 than from layers 2 to 3.

Fig. 6 shows the spatial distribution of the errors. The lighter color
represents underestimated regions and darker color represents
overestimated regions. Generally, the populations of central urban-
ized areas were underestimated and those of the surrounding
mountain-slope regions were overestimated, as shown in Fig. 6. This
figure also indicates that errors are attenuated in higher layers as
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Fig. 5. Population aggregation by villages.
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Table 2
Error statistics for each layer.

Error statistic Layer 0 Layer 1 Layer 2 Layer 3

Mean −0.1 0.0 0.0 0.0
Standard Error 488.1 253.0 114.1 110.9
Median −3388.7 −2051.9 −1073.1 −733.4
Standard deviation 18542.6 9610.9 4333.1 4212.5
Range 502921.9 196698.1 44200.8 59743.3
Min −23066.0 −13671.0 −10436.8 −11294.3
Max 479855.9 183027.2 33764.1 48448.9
MAD 6639.1 4210.2 2793.3 2520.4
RMSE 18536.2 9607.5 4331.6 4211.0
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more ancillary data are incorporated in the population redistribution
model.

Population distributions in the study area from GPW3 (Center for
International Earth Science Information Network, 2005), LandScan
(Dobson et al., 2000) and the proposed multi-layer multi-class
dasymetric (MLMCD) model are shown in Fig. 7 for comparison.
MLMCD has better result in reconstructing population distribution as
Fig. 6. Spatial distribution
shown in Table 3. The algorithm used to build GPW3 dataset was very
similar to the traditional dasymetric model. The assimilation of the
LandScan dataset, which used multiple land use classifications to
estimate the at-risk population, resembles the multi-class dasymetric
model. As shown in the figure, GPW3 and LandScan show different
population patterns as compared to MLMCD. LandScan captures
population distribution more accurately than GPW3, but it shows
erroneous low population density in the downtown center of Taipei
(shown in the circle of Fig. 7(b)).

One controversial aspect of this proposed framework, other than
its demand for comprehensive data, is the assignment of weighting
factors used in the disaggregationmodel for the different layers. These
weighting factors may vary among different regions of interest and
are subject to perceived local conditions and arbitrariness of the
analyst (Maantay et al., 2007). Other than local knowledge and
experiences, some algorithm may be required to establish these vital
parameters before implementing the model. In this study, these
weighting factors were determined using the census statistics in the
study region. The population living in the agricultural zone is about 1%
in the study region according to the 2005 agricultural census and the
of errors in each layer.
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Fig. 7. Population distribution pattern from GPW3, LandScan and the MLMCD model.
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2000 population census (DGBAS, 2000, 2007), and so the population
redistribution weighting factors for agricultural and non-agricultural
zones were set as 0.01 and 0.99 accordingly. The percentage of
population living in the agricultural zone was found to be related to
the regional mean population density as shown in Fig. 8. This
relationship may be used to determine the weighting factors for other
region in Taiwan, but similar algorithm may still need to be
established for other locations.
Table 3
Error comparisons among GPW, LandScan and MLMCD.

Item GPW LandScan MLMCD

Average error −192.3 −3253.6 0.01
MAD 5799.4 4360.4 2520.4
RMSE 11020.7 7057.3 4211.0

Fig. 8. Relationship between population density and the agricultural population rate.
7. Summary and conclusion

Population redistribution models are frequently needed, as most
population data are published as aggregated statistics based on some
spatial areal units. A multi-layer multi-class dasymetric framework
was proposed in this study to better redistribute the regionally
aggregated population into smaller areal units and reveal the actual
spatial population distribution pattern.

As the traditional binary or multi-class dasymetric methods,
ancillary data were used to better capture the population distribution

image of Fig.�7
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patter. But the ancillary data used in the proposed MLMCD were
applied in a progressive order according to their relationship or
correlation to the population distribution characteristics. For example,
Populated/Unpopulated information is applied before the land use.
And the infrastructure density/accessibility will be applied after land
use layer because the former can more discriminate the population
distribution than the later.

Some benefits may be recognized as ancillary data are applied
layer by layer in the proposed MLMCD model. For example, if detail
information such as the street network density is used as a single
surrogate to the population distribution, it may encounter problem in
areas (e.g. commercial or industrial) with more developed but non-
residential transportation infrastructure (Reibel and Bufalino, 2005).
This problem can be solved by first eliminate the non-populated area
(Layer 0 in MLMCD) and separate the industrial land use from the
residential one (Layer 1 in MLMCD) before the street-weighting is
applied in layer 2.

Metropolitan Taipei in Taiwan was used as the study area to
demonstrate the efficacy of the proposed framework and the improve-
ments of this model as compared to the traditional binary dasymetric
method. Assorted data, including remote sensing images, land use zoning,
topography, transportation and accessibility to facilities were incorporat-
ed in different layers of the model to improve the redistribution of the
aggregated regional population. The concept of multi-layer multi-class
dasymetric modeling was both useful and flexible in this case study, but
cautionsmust be exercised in generalizing the result since it is only based
on a single empirical study. More tests may be needed using data from
other locations to make more firm conclusion.

This paper demonstrates that population redistribution errors can
be reduced by introducing more ancillary information for population
disaggregation. Different levels of accuracy in this population
redistribution process can be achieved and depend on the availability
and cost of data through the proposed multi-layer multi-class
dasymetric framework.

The dasymetric model, whether binary, multi-class, or the proposed
MLMCD, is effective and useful in capturing the spatial heterogeneity of
population distribution when only aggregated population is available.
The multi-class dasymetric and MLMCD improve the redistribution
performance by adding more spatial discrimination into the model
using further ancillary data. But the improvement may diminish if the
population is originally aggregated or available at a finer spatial scale
and the binary dasymetric model is applied accordingly. Practical
applications of the dasymetric model should be constructed using the
finest level of census data available to maximize its precision when
interpolating onto other non-census areas of interest.
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