
The role of individual species of microbes in infectious disease has 
been known since the work of microbiologists Robert Koch and 
Louis Pasteur in the nineteenth century. Yet the part played by com-

plex communities of microbes (known as microbiotas) in providing fer-
tile ground for infections and in setting the stage for non-communicable 
diseases has been appreciated only in the past decade. The gut microbiota, 
for example, has been linked to a variety of conditions, some of which are 
predictable (irritable bowel syndrome1 and inflammatory bowel disease 
(IBD) in adults2 and children3), whereas others are intriguing (obesity4,5, 
cardiovascular disease6, colon cancer7 and rheumatoid arthritis8) or truly 
surprising (major depression9, Parkinson’s disease10 and autism spectrum 
disorder11).

Many ways in which the microbiota might drive disease have been 
identified, but their relative importance is yet to be determined. For 
instance, the taxonomic composition of the microbiota might be most 
important, and this could be influenced by the overall diversity of spe-
cies or by the presence of particular taxa, either of which can distinguish 
healthy individuals from those with disease states. If the collective genes of 
the microbiota (the microbiome) are more important, the overall genetic 
diversity or genetic composition, or even specific genetic lineages or 
metabolic pathways, might play a crucial part in shaping a disease. How 
such genes are expressed as transcripts and proteins could also have an 
effect. If the metabolome — the set of chemicals produced by the micro-
biota and host — is of overriding concern, whether different communi-
ties of microbes could lead to the same metabolic and immunological 
consequences should be considered. Overall, the molecular states of the 
microbiome probably interact through myriad feedback mechanisms 
that constantly respond and react to one another to produce the observed 
disease outcomes.

This Review describes the ways in which the microbiota and the micro-
biome, as well as specific functions of both, have been linked to various 
diseases. It also looks at some of the technical and conceptual pitfalls that 
must be avoided when designing studies that investigate these links. Such 
issues become compounded when studies are scaled up to cover tens of 
thousands of people over time and when they are designed to understand 
subtle and systems-level effects that result from the interactions of many 

factors. Microbiome-wide association studies (MWAS)12, which capture 
this scale and the multidimensional interactions, and provide a means 
of capturing complex interactions to predict practicable links between 
microbial systems and disease states. MWAS can link whole microbiomes 
or their features to phenotypes such as disease, with appropriate controls 
for composition of the microbiota and unusual statistical characteristics 
of microbiome data sets. Although MWAS are somewhat analogous to 
genome-wide association studies (GWAS), the microbiome contains 
many more genes than does the host genome, and its composition changes 
over time within a person (Box 1). MWAS are useful for untangling the 
mechanisms that link communities of microbes and their functions to 
disease, although most clinical applications are yet to be fully realized. 
To achieve this, model systems should be devised and implemented that 
allow the testing of hypotheses on isolated and combinatorial functions 
of microbes and interventions for capturing mechanisms of action. Such 
systems should also enable these ideas to be applied more generally to the 
complex communities of microbes that inhabit the body.

Microbial biomarkers
The human microbiota is the collection of microscopic organisms that 
live in the body, and it contains representatives from all domains of life: 
the archaea, the bacteria and the eukarya. Viruses, including bacterio-
phages, are not always encompassed by the definition of the microbiota. 
They probably should be, however, because they can shape the structure 
of the community through top-down ecological control and they have 
their own effects on the immune system of the host13. Most approaches to 
identifying microbial changes have applied biomarker discovery to test for 
differences between people with the conditions of interest and controls. 
Changes in the structure of the microbiota that are associated with disease 
states can occur at any taxonomic rank and along any relevant branch of 
the phylogenetic tree. For example, changes at the phylum level have been 
reported in human obesity5 and IBD2, and strain-level associations have 
been made with the metabolism of drugs in humans14. For instance, the 
risk of colon cancer in mice increases in the presence of particular strains 
of Escherichia coli that express a gene cluster that produces a genotoxic 
secondary metabolite called colibactin15. Between these extremes, changes 
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Rapid advances in DNA sequencing, metabolomics, proteomics and computational tools are dramatically increasing access 
to the microbiome and identification of its links with disease. In particular, time-series studies and multiple molecular 
perspectives are facilitating microbiome-wide association studies, which are analogous to genome-wide association 
studies. Early findings point to actionable outcomes of microbiome-wide association studies, although their clinical 
application has yet to be approved. An appreciation of the complexity of interactions among the microbiome and the host’s 
diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate 
this dynamic interface, is paramount for developing precision diagnostics and therapies that are based on the microbiome.
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at the genus level are useful for many applications, including microbial 
source tracking16 and, more controversially, defining enterotypes, which 
are classifications of types of microbial communities in the gut17.

Taxonomic biomarkers
Most studies have focused on identifying single organisms as biomarkers, 
but separating collections of samples on the basis of similarity between 
communities has also been useful for a wide range of diseases, including 
IBD18. However, the extent to which the choice of metric for pairwise 
comparisons of communities can influence the result is not widely appre-
ciated. The fit between the data and a statistical model is often used to 
assess the validity of the technique. But when a collection of samples is 
highly heterogeneous, which includes situations as simple as the collec-
tion of skin samples from different people, models that better fit the data 
in the original data set might provide no clear biological interpretation. 

Importantly, this problem cannot be overcome by collecting more data 
because using the incorrect statistical model can obscure results that 
can be clearly determined, even with limited numbers of DNA or RNA 
sequences19. The choice of distance metric, level of taxonomic resolution 
or a particular taxon to focus on can involve dozens of further, implicit, 
comparisons that also must be accounted for statistically.

The identification of interactions between microbes is essential for 
microbial ecology. Correlation networks have proved useful for distilling 
relevant links from a morass of potential interactions. However, inter-
pretation is still complex for two reasons. First, the abundance of specific 
microorganisms in each microbiota is sampled through a multinomial 
distribution, which leads to large numbers of negative correlations and 
induces a substantial bias in network topology. Second, taxonomic data 
are extremely sparse: most samples have zero abundance of a particular 
organism. Because of these correlation problems, network analyses can 

Microbiome-wide association studies (MWAS) are similar in concept 
to GWAS: the goal of both is to link a complex collection of features 
(for example, species or genes) to phenotype. However, there are 
important differences between the two. First, there are many more 
microbial genes than human ones, with some studies estimating 
that there are more than 100 microbial genes for every human 
gene24,111–113. Consequently, the issue of multiple comparisons is of 
greater importance to MWAS. Second, all individuals share almost the 
same collection of human genes but their dissimilarity in microbial 
species and microbial genes is much greater24,112. Third, genes in the 
human genome can be counted easily but most microbiome data 
comes in the form of relative abundance. Compositional statistics 
therefore apply and the data cannot be represented in familiar 
Euclidean spaces. As a result, microbiome analyses are very prone 
to misinterpretation. For instance, it is impossible to infer the growth 
or decay of microbes purely on the basis of relative abundance data 
because the growth of one species could also be explained by the 
decline of all other species. Last, whereas the human genome is 
essentially fixed within an individual (except in special cases such 
as the immune system and cancer), the microbiome of each person 
changes profoundly throughout his or her lifetime. Several designs for 
MWAS link the overall microbiome to specific phenotypes. A number of 
important questions must therefore be asked when designing MWAS.

●● At what level will the microbiome or microbiota be assessed? 
MWAS can be carried out using species, genes, functional categories 
of genes or, less frequently, transcripts and proteins as features. 
Metabolome-wide association studies are also possible, and they 
can be carried out at the level of individual spectra, groups of related 
spectra or pathways. These analyses often give different results; for 
example, in the Human Microbiome Project, pathway-level analysis of 
the shotgun metagenomic data suggested that much less variability 
existed between people than did taxon-level analysis.

●● Will the microbiome be examined in terms of overall variation 
or as a collection of individual features? Techniques for reducing 
the dimensionality of the microbiome include: clustering, principal 
coordinates analysis (PCoA) with a variety of distance metrics, 
principal component analysis, correspondence analysis, factor analysis 
and discriminant analysis. In clustering analyses, which include 
enterotyping, samples are grouped into clusters. The resulting clusters 
are then tested for association with a phenotype (for example, whether 
the resting levels of blood glucose are identical in each cluster). During 
dimensionality reduction, one or more axes are discovered through 
a supervised or an unsupervised approach, and the dependence of 

phenotype on locations along these axes is tested, for example, by 
correlation approaches. Supervised approaches such as discriminant 
analysis make use of phenotype labels and provide the projection 
of the data that best separates these class labels. Statistical tests of 
location on the resulting axes must therefore be used with caution 
because even small departures from the random model can lead to 
apparent separation when there is none. Unsupervised approaches 
such as PCoA use only the intrinsic similarities and differences in the 
samples; however, they may not reveal separation by phenotypic state 
even when it exists (because it could come only in later principal axes).

Techniques for associating individual features of the microbiome 
with phenotype, including appropriate statistics for repeated 
measures, are Metastats114, DESeq2 (ref. 115) and ANCOM (analysis of 
composition of microbiomes)116, as well as various machine-learning 
approaches such as Random Forests117. Unfortunately, it is also 
challenging to infer differentially significant species in compositional 
data sets. Many state-of-the-art tools make assumptions about the 
underlying data to identify significantly different species. Analysts need 
to gauge the assumptions given by each tool before applying them 
to their data sets because these assumptions are typically not true of 
real-world data.

●● What corrections will be performed for multiple statistical 
comparisons, sparsity and compositionality of the data, and other 
features of microbiome and related data sets? Often, associations 
will be sought between the microbiome (as a whole or as a collection 
of features) and measures of phenotype. In many of these studies, 
the differences between phenotypes can be described by a select 
few features. Conventional statistical tests can be confounded by the 
underlying ecology. For instance, multiple microbes can share the 
same functional roles. As a result, differences in microbial abundances 
might yield the same phenotype. Analyses should be separated 
into planned analyses (those chosen before the analysis) and 
ad hoc analyses (those performed after); ad hoc analyses should be 
considered to be exploratory rather than formal statistical tests.

●● How will causality be established? Causality can be approached 
in a number of ways: through prospective longitudinal studies that 
demonstrate that a microbial or metabolic change precedes the 
disease phenotype; the demonstration that a clinical manipulation 
of the microbiome affects the disease process; preclinical work in 
mice or other animal models that demonstrates the plausibility of a 
mechanism; or establishment of the activity of chemical products of 
the microbiome that are linked to specific microbes or the genes that 
produce them. Studies that combine animal models with proof-of-
relevance in people are especially effective, although they are rare.

BOX 1

Principles of microbiome-wide association studies
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be inherently flawed20,21. Despite such limitations, taxonomic correlation 
networks have identified microbial interactions that are linked to disease, 
including beneficial and harmful networks of microbes that are associated 
with Crohn’s disease18.

These examples of successful biomarker discovery have yet to provide 
standard guidelines; however, they have produced interesting findings. 
For example, a higher level of taxonomic resolution is not always better. 
16S ribosomal RNA operational taxonomic units (OTUs), which are clus-
ters of sequences that are defined by sequence identity, at the species level 
are best for matching samples, yet this taxonomic level actually decreases 
the accuracy of classifying individuals as lean or obese22. The level of reso-
lution is therefore dependent on the context.

Functional biomarkers
Shotgun metagenomics, the sequencing of fragments from total DNA 
rather than of specific genes, provides more-complete information about 
the microbial community and enables many powerful analyses, although 

the choice can be bewildering, even to experienced researchers in the field. 
As well as identifying taxa down to the level of strains or genomic single-
nucleotide polymorphisms (SNPs), DNA sequences can be grouped into 
many functional classifications using databases such as KEGG (Kyoto 
Encyclopedia of Genes and Genomes), COG (Clusters of Orthologous 
Groups of Proteins), GO (Gene Ontology) and EggNOG (Evolutionary 
Genealogy of Genes: Non-supervised Orthologous Groups). Metagenom-
ics studies23,24 commonly show a surprising consistency in functional pro-
files, although the limited variation that does exist can often be explained 
by taxonomy. Studies that separate samples of interest from controls at dif-
ferent functional resolutions, are yet to be adequately performed, however. 
Shotgun metagenomics seems to outperform amplicon-based taxonomic 
analysis in the identification of individuals (compare ref. 25 with ref. 26). 
Re-analysis of 16S rRNA amplicon data using oligotyping27, a technique 
that is based on the fine detail of polymorphisms, has improved resolu-
tion, and this is demonstrated by its ability to identify sexual partners 
through shared sequences. No examples are thought to exist in which 
shotgun metagenomics has been able to identify a medically relevant 
trait that could not have been revealed through taxonomic analysis alone, 
although the potential for doing so is high.

Integrating human metagenomic and metabolomic profiles has great 
potential for discriminating between disease traits (Fig. 1). The ability 
to systematically link the variance in metabolomic data between sam-
ples with changes in the composition and structure of communities of 
microbes from the same samples enables not only improved resolution but 
also the potential to infer the mechanisms that produce observed trends28. 
This potential is highlighted by a study29 that shows how the microbiome 
alters bile-acid metabolite profiles during the establishment of Clostridium 
difficile in mice. Similarly, the ability to link metabolite profiles in urine 
and blood serum to microbial metabolism in the gut can help to synthe-
size links between dysbiosis (an imbalance of microbes in the body) and 
the onset of neurological symptoms that are associated with conditions 
such as autism spectrum disorder in a mouse model30. Metaproteomics 
is also enabling the identification of new biomarkers. Proteins such as 
l-lactate dehydrogenase and arginine deiminase, as well as those that 
are involved in the synthesis of exopolysaccharides, iron metabolism 
and the immune response, seem to be indicative of a healthy human 
oral cavity31. The combination of microbial community profiling with 
metabolomics and proteomics has precipitated understanding of how 
the microbiota responds to specific disease states, including IBD32–34. The 
combined findings reveal specific species (for example, Faecalibacterium 
prausnitzii), proteins and metabolites that are involved in the metabolism 
of butyrate and bile acids, which can be used to differentiate between 
individuals with inflammation of the ileum that is the result of Crohn’s 
disease and those with inflammation of the colon and a healthy gut. In 
another example35, children with non-alcoholic fatty liver disease show a 
significant increase in Gammaproteobacteria and Prevotella as well as in 
levels of ethanol and certain short-chain fatty acids (SCFAs), which leads 
to an increase in energy production and a decrease in the metabolism of 
carbohydrates and amino acids and in the activity of the urea cycle and 
urea transport systems.

From correlation to causation
A crucial challenge for the field is to move beyond associations between 
the microbiome and specific clinical states towards the establishment of 
causality. The importance of MWAS with large cohorts in determining 
causality should not be underestimated. The limitation of the case–
control model is that it is impossible to distinguish whether the micro-
biome drives the disease, the disease drives the microbiome or if both 
are modified by a confounding factor. For example, a lack of replication 
of  the microbiota differences that separate people with type 2 diabetes 
from controls in Chinese and European cohorts was found to be due to 
variation in the levels of usage of the drug metformin, which is used only 
in the disease state and with different frequencies in the two populations 
and which had a large and unanticipated effect on their microbiotas36. 
Consequently, the effect that had been attributed to the disease was 

Figure 1 | Sources of metabolites from the human microbiome. The core 
physiology of the microbial cells that make up the microbiome can produce 
by-products and intermediates that affect health, including short-chain fatty 
acids (such as acetate) and tryptophan metabolites. Secondary (or specialized) 
metabolites are produced from accessory genetic elements that are often 
transferred horizontally between microbes. Some of these metabolites, 
including colibactin15 and rhamnolipids109 (Rha-Rha-C10-C10), are known to 
cause disease. Microbes can also alter metabolites that are produced by the host, 
such as bile acids110 (CA, cholic acid) and even drugs that are consumed, such as 
acetaminophen (paracetamol)61. DCA, deoxycholic acid; Rha, rhamnose.
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actually the result of the treatment.
Several popular methods exist for identifying causality, each of which 

has specific strengths and weaknesses. Prospective longitudinal studies, 
such as of the CHILD (Canadian Healthy Infant Longitudinal Devel-
opment) birth cohort, allow researchers to test whether changes in the 
microbiome precede or follow the development of disease. Such studies 
are expensive, however, and can require large populations to capture rare 
events. If it is difficult to continue to collect samples, the study population 
can also be affected by attrition. Intervention studies, in which a deliberate 
clinical event such as the administration of a drug is used to drive change 
in the microbiome and phenotypes, are useful, but it is often unethical to 
withhold treatment from a control group to isolate the effect of the spe-
cific intervention. Interventions such as faecal microbiota transplantation 
also face substantial regulatory hurdles, especially in the United States. 
The comparison of identical and non-identical twins can be valuable for 
unravelling genetic differences in the host: causality can be established 
because the microbiome is not known to modify the inheritable host 
genome. However, such cohorts are difficult to assemble and privacy 
issues can be considerable, especially when the same twins are used in 
many studies. Animal models can be helpful for establishing mechanisms, 
but the quantitative importance of these mechanisms for human disease 
is often less clear. For example, the demonstration that faecal microbiota 
transplantation from people who are lean or obese to germ-free mice 
can confer differences in adiposity indicates that microbes can affect this 
phenotype, but it does not establish that transplantation can affect the 
weight of obese people37.

The metabolome reveals important microbial activities
Metabolomic biomarkers are especially useful for diagnostics because 
changes in metabolism can be rapid and can reveal the physiological state 
of both the host and its microbiota. Such biomarkers are also the end 
products of the metabolism of microbes and they can provide mechanistic 
explanations for particular associations between microbes and disease. 
The metabolome is being characterized through metabolomics (the study 
of the complete repertoire of molecules in the body, which is analogous to 
genomics, the study of the complete repertoire of genes in the genome), 
metabonomics (the comparison of general metabolomics profiles with 
their many unidentified compounds, rather than the comparison of spe-
cific metabolites within profiles) and exposomics (the study of cumulative 
exposures to molecules from the environment)38–40. A crucial challenge 
for the characterization of these molecules is that only about 1.8% of 
the chemical data that can be collected with mass spectrometry can be 
annotated39,41. Unlike the genomics community, the mass-spectrometry 
community lacks adequate mechanisms of knowledge dissemination that 
enable data reuse. To overcome this challenge, the community is develop-
ing a plethora of resources to store data from mass spectrometry, includ-
ing databases such as MassBank, METLIN, MetaboLights and the Human 
Metabolome Database (HMDB), the Metabolomics Workbench plat-
form and the software OpenMS. Its efforts have also led to GNPS (Global 
Natural Products Social Molecular Networking), the first crowdsourced 
platform that enables the community-driven curation of mass-spectrom-
etry data and dissemination of existing knowledge of mass spectrometry 
in the public domain40,41. Ultimately, these databases and infrastructures 
for analysis will allow the estimation of metabolite flux from the genomes 
to enable prediction of the overall function of communities of microbes42. 
Although a few strains of gut microbes are pathogenic, most are harmless 
or beneficial to health; similarly, some molecules that are produced by 
microbes are detrimental to the health of the host43, but most are innocu-
ous or even beneficial44. Metabolites are particularly important agents of 
the human microbiome. This is because molecules that are produced by 
the microbiota can cross epithelial barriers more freely than the microbes 
to cause systemic effects at distant sites in the body.

The small-molecule repertoire of the human microbiome consists of 
four groups. The first is composed of primary metabolites, which are mol-
ecules produced by the catabolic and anabolic reactions that are required 
for cellular growth and homeostasis. The second group comprises 

specialized metabolites, which includes virulence factors, secondary 
metabolites and natural products. These compounds are produced by 
accessory genetic elements that are often acquired through horizontal 
gene transfer, and they are designed to directly influence the cells of the 
host and other microbes (Fig. 1). Knowledge of changes in the second-
ary metabolites can be useful for understanding toxins, quorum sensing 
and beneficial secondary metabolites of food such as lycopenoids and 
carotenoids. The third group is composed of metabolites produced by 
cells of the host or from exogenous sources that are directly modified 
by microbial enzymes to create unique chemical products. Knowledge 
of changes in this group can be useful for understanding how microbes 
modify products of the host’s metabolism. The final group is the expo-
some, which describes the chemistry and metabolites that are encoun-
tered through exposure to personal-care products, medical intervention, 
food or the environment. Knowledge of changes in this group is especially 
useful for understanding how compounds that are applied to the body, 
whether intentionally or unintentionally, can trigger toxic responses 
or can be modified into forms that differ in activity from the originally 
applied compound. Although decades of research on primary metabolism 
have led to a good understanding of these four groups of metabolites, 
the specialized metabolome of microbes is a veritable sea of unknown 
chemistry45,46.

Linking metabolomes to health and disease
Evidence is accumulating that the metabolic output of the microbial 
metabolome has a direct impact on human health. Significant opportu-
nities exist to elucidate the mechanisms that result in this effect. However, 
current methods of chemical annotation can identify only a small fraction 
of detected metabolites within the metabolome41, and models for testing 
hypotheses about the interactions among microbes, their molecules and 
the host are challenging to use.

The best-known examples of microbiome-derived primary metabolites 
that affect human health are probably the SCFAs. SCFAs such as ace-
tate, propionate and butyrate are produced through the fermentation of 
dietary fibre by gut microbes and then absorbed by epithelial cells, which 
provides them with energy44,47. Defects in the production of SCFAs have 
been linked to many conditions, including IBD48,49, although it is unclear 
whether testing for SCFA levels per se has clinical value.

The development of germ-free animal models has been very useful for 
identifying primary metabolites produced or altered by the microbiota of 
the host. A comparison of metabolomes from germ-free and colonized 
mice revealed that indole-3-propionic acid and other products of tryp-
tophan metabolism are found only in mice with an intact microbiota 
and are associated with the presence of Clostridium sporogenes50. These 
tryptophan metabolites are thought to affect neuronal signalling in the 
gut and brain51. But their role in human health remains elusive.

Some specialized metabolites from the human microbiota are known 
to cause disease. For instance, colibactin induces double-strand breaks in 
the DNA of human cells52. The genetic machinery for the production of 
colibactin can be transferred from pathogenic to non-pathogenic strains 
of E. coli. Colibactin is associated with colorectal cancer in mouse mod-
els15 and provides an example of how commensal microbes of the gut can 
harbour or acquire specialized metabolites that can result in disease53. 
The true pathogenic elements within the human microbiota might be the 
genetic islands encoding specialized metabolites that circulate within the 
microbial ecosystem, rather than the core genomes of pathogenic species 
(Fig. 1). The prevalence of these genetic islands could be associated with 
the prevalence of microbiome-associated diseases; it is here that the inter-
face between GWAS and MWAS can best be understood. Tests at the level 
of single genes, such as for genes that are necessary for colibactin produc-
tion, might prove more useful for identifying preventive treatments than 
would tests for the presence or absence of specific taxa, akin to the way 
that levels of glucose or insulin are measured for diabetes.

Integration of multi-omics studies
To comprehensively understand the role of the human microbiome and 
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its metabolome in health and disease, integrative analyses are needed that 
apply ‘omics’ techniques to animal or other empirical models. Integrative 
analysis can help to identify the effect of treatment with antibiotics on the 
gut microbiota during infection with Clostridium difficile in both mice 
and people54. A multidisciplinary approach that employs mathematical 
modelling, 16S rRNA gene sequencing, metagenome sequencing and 
animal models identified how microbiotas can help the hosts to resist 
C. difficile infection, which led to the identification of Clostridium scindens 
as a candidate for resistance to infection in mouse models. In a study of 
24 people who took antibiotics while undergoing chemotherapy54, half 
had active C. difficile infections, which suggests that there is an association 
between C. scindens and resistance to infection with C. difficile. Preven-
tion of C. difficile infections through transfer of C. scindens to animals 
that were undergoing treatment with antibiotics confirmed this role55. 
Metagenomic and metabolomic-based findings56 have been used to iden-
tify the importance of bile acids in this resistance to infection, and subse-
quent experiments showed that certain levels of specific bile acids were 
associated with resistance to C. difficile during treatment with antibiotics. 
This work is an excellent example of how a comprehensive approach to 
microbiome analysis can link the microbiome to disease. The next step is 
to translate such findings into clinically useful tests.

The resident microbiota of the human gut has an important role in 
modulating the efficacy and toxicity of pharmaceuticals14,57. Variability 
in the microbiomes of individuals58 leads to differences in the metabo-
lism of drugs and therefore in effective dose availability and side effects. 
Simultaneous measurement of variability in both the microbiome and the 
metabolome will play an important part in identifying causative mecha-
nisms of xenobiotic metabolism. The role of microbiome-associated drug 
toxicity is exemplified in the treatment of colon cancer with irinotecan, 
which resulted in decreased efficacy of the drug in 40% of treated indi-
viduals59. Irinotecan is reactivated in the gut by microbial β-glucuronidase 
enzymes, which leads to diarrhoea and prevents administration of the 
appropriate dose. Inhibitors that modulate the activity of the commen-
sal microbiota by specifically inhibiting the β-glucuronidase enzyme in 
bacteria are in clinical trials59. This represents a precedent for the trans-
lation of metabolic mechanisms of the human microbiota into clinical 
applications and highlights the importance of investigations in the fields 
of pharmacomicrobiomics60 and pharmacometabonomics61,62. In con-
junction with testing for the genes that encode these enzymes, inhibitor-
based therapies could increase the efficacy of irinotecan, although the 
diagnostic and therapeutic system this approach requires has yet to be 
demonstrated. Advanced data acquisition and computing and stream-
lined analysis pipelines are enabling multi-omics analysis to be performed 
on clinically relevant timescales, and the adaption of multi-omics micro-
biome analysis in the clinic will probably emerge within the next decade63. 
Future prospects should also reflect on how inhibiting specific enzymes 
of commensal microbes affects the overall activity and structure of the 
gut microbiota in the longer term.

Dynamics of the microbiome
Although many MWAS take a case–control approach, understanding 
how the microbiome as a whole changes remains a challenge. Relatively 
few studies have assessed the whole microbiome at many time points; 
such studies point towards using dynamic — rather than static — features 
as the input for MWAS. It is challenging to capture the dynamics of an 
invisible microbial world through snapshots of its current state. However, 
the situation has vastly improved in the past 15 years, during which DNA 
sequencing costs dropped by a factor of about one million. By increasing 
the frequency and depth of observations, the rate and directionality of the 
transfer of bacteria between ecosystems is starting to be inferred.

Assessing the transfer of microbes between environments
The application of microbial survey techniques to built environments 
and the people who inhabit those spaces has shown the utility of high 
spatiotemporal resolution for inferring interactions between people and 
surfaces in the environment at the microbiome level64. But even with daily 

sampling and observations at multiple sites on each individual (such as 
the nose, the hand and the foot), as well as their pets and surfaces in their 
home, it is still difficult to make more than comparative statements about 
the microbial similarity of surfaces and changes in this similarity over 
time. Higher-resolution temporal analysis, such as hourly sampling65, can 
improve appreciation of the successional dynamics of these communities. 
These tools have not yet been applied to understanding how consistently 
specific components of the microbiota are transferred to or from people, 
let alone within the body. Alternative approaches, such as using differen-
tial coverage of parts of the microbial genome to infer activity in a single 
sample66, have great promise for directly revealing activity, but samples 
still need to be assessed across time points because the activity of microbes 
can change rapidly in response to conditions. Direct monitoring of the 
transfer of microbes between environments and of the rapid dynamics in 
those environments will require a substantial improvement in the deter-
mination of genotypic resolution and temporal and spatial sampling. Near 
real-time microbial epidemiology is being demonstrated with genotypic 
resolution (at the strain level) through the rapid genomic sequencing 
of individual species of pathogenic microbes in hospital settings67. It is 
essential that this technology is developed to be more applicable to entire 
communities of microbes, especially because the most important inputs 
to MWAS might not be the relative abundance of each microbe or gene 
at a single time point but rather the variations in particular species over 
time, as well as their co-variations in linked environments.

Tracking pathogenic infections
Clinical application of MWAS inspires a vision of a future in which the 
studies are used to track entire communities of microorganisms involved 
in the complex ‘pathobiomes’ that are associated with different disease 
states. For example, the transfer of bacteria from mother to child might 
be tracked and augmented by personalized microbial therapies that range 
from vaginal innoculation68 to customized prebiotic and probiotic sup-
plements that are based on breast milk69. This would require automated 
approaches to quantify the abundance and composition (at serotype reso-
lution) of whole communities of bacteria, as well as rapid deployment of 
MWAS techniques to determine current health status or to predict future 
health status from the trajectories. Although such sensors are not yet avail-
able, key platforms are being developed that will provide a substantial 
improvement on existing systems70. However, real-time interpretation of 
the vast quantity of data that are produced by these sensors will require 
a radical improvement in automated data processing. This will demand 
the integration of statistical modelling, high-performance computing and 
engineering to enable high-throughput transfer, interpretation and visu-
alization of spatiotemporal data. Despite the limitations of existing cor-
relation network techniques (that is, their sparsity and compositionality), 
network analysis has helped to uncover real associations in complex data. 
One useful example of the prediction of interactions, and subsequent 
validation of the prediction through empirical observation, comes 
from marine microbial ecology: network analysis has been applied to 
microbial-community sequence data to predict an interaction between an 
acoel flatworm (Symsagittifera sp.) and a green microalga (Tetraselmis sp.), 
and the finding was subsequently validated using microscopy71. An exam-
ple in people is the use of correlation network analysis to demonstrate the 
connectivity of organisms in the microbiota of human milk. Cooperative 
and opportunistic subgroups have been identified in which the oppor-
tunistic pathogenic species could, in principle, be suppressed through 
competitive exclusion72, pointing to therapeutic approaches based on pro-
biotics (that directly introduce beneficial competing microorganisms) 
or prebiotics (that encourage the growth of beneficial microorganisms). 
The movement of microbes between environments cannot be captured 
by these methods, but the ability of these microorganisms to establish 
themselves and proliferate on arrival can be inferred through an under-
standing of the ecological network of their destination and their ability to 
incorporate. In early life, the shifting sands of an infant’s microbiota can 
lead to an increase or decrease in the colonization success of particular 
microorganisms68. These dynamics have been tracked using longitudinal 
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characterization in work that has demonstrated the correlations between 
the microbiota of mother and child, especially after vaginal delivery, as 
well as the influence of this interaction on the transitional succession 
of microbial ecology in the child’s gut73. The application of longitudinal 
design to MWAS would significantly improve the ability to understand 
the complex linkage between the microbiome and disease, and it would 
also improve knowledge of the link between environmental exposure and 
health outcomes through MWAS-enabled epidemiological investigations. 
Projects such as the Integrative Human Microbiome Project (iHMP)74 are 
beginning to apply these approaches to larger populations.

The visualization of complex longitudinal data
Visualization improves the interpretation of data and could help to guide 
clinical decision-making75. For example, temporal dynamics could be 
observed in the human gut following a faecal microbiota transplant to 
treat a C. difficile infection76, and the successional dynamics of infant 
microbial development could be explored77,78. Better visualization can 
also help to define the stability, resistance to perturbation and resilience 
to change of microbial communities; however, the quality of the initial 
experimental design is important. Healthy adults have unique microbial 
dynamics, yet patterns of stability and resistance show elements of similar-
ity, which hints at the potential for universal ecological rules that define 
these relationships between individuals79. Determining the frequency at 
which longitudinal samples should be taken to capture the dynamics that 
are relevant to a specific disease state is an open problem80. For instance, 
two studies with different sampling intervals81,82 found conflicting results 
with regards to the stability of the microbiota during pregnancy, although 
differences in dietary intervention could have confounded the patterns. 
Capturing the temporal dynamics of specific characteristics, such as the 
level of glucose in the blood or behavioural traits, also presents a constant 
challenge. The frequency at which various types of data show patterns that 
enable the integration and mechanistic prediction of microbial interac-
tions should be considered. In an era of precision medicine, an under-
standing of when and how often different sources of information must 
be acquired to enable the appropriate integration of data is paramount. 
At best, inappropriate sampling frequencies fail to produce correlations 
even when mechanistic interactions exist; at worst, they produce mis-
leading information, which might lead to the identification of incorrect 
biomarkers or therapeutic targets.

From explanation to prediction
The microbiome, or even the microbiota, could be used to predict the 
onset of disease before it occurs and to guide individualized therapies.

Stratification on the basis of the microbiome
The stratification of people for treatment holds considerable promise. For 
example, variation in the toxicity of acetaminophen (paracetamol) in the 
liver is largely caused by differences in how the drug, which is an analogue 
of the naturally occurring amino acid tyrosine, is metabolized through 
the tyrosine sulfonation pathway61. Similarly, the effectiveness of digoxin 
depends on whether the gut of an individual contains specific strains of 
Eggerthella lenta, the plasmids of which encode an enzyme that rapidly 
degrades digoxin and renders it ineffective14. Similar stories are emerg-
ing for many other classes of drug, which suggests that incorporating 
the gut microbiome into the stratification of participants in clinical trials 
and the prescription of medication could be of great value. An especially 
interesting example is the emerging relationship between trimethylamine 
N-oxide (TMAO) and cardiovascular disease. People can metabolize cho-
line, which is found in dietary sources such as red meat and cheese, in a 
variety of ways. One such pathway is catalysed by groups of bacteria that 
are found only in some individuals: choline is metabolized to trimethyl-
amine, which is then oxidized to TMAO, a compound that contributes 
to the formation of atherosclerotic plaques through mechanisms not yet 
well understood83, although work in mice suggests a possible pathway6. 
Inhibition of the enzyme that produces TMAO or targeting relevant 
bacteria could therefore provide potent weapons against heart disease. 

Conversely, it might be possible to predict whether a particular diet has 
adverse consequences for the heart at the level of the individual rather 
than the population. A study84 involving hundreds of people was able to 
demonstrate this potential for diabetes; it used continuous monitoring of 
blood-glucose levels to understand the effects of standardized meals and 
their dietary components. Remarkably, ice cream was less deleterious than 
white rice for some people’s blood glucose, and differences such as these 
could largely be predicted by the microbiota (and not by other factors). 
Consequently, using the microbiota to reduce the immense variability 
experienced by those who receive dietary therapies holds much promise.

Several studies have substantially advanced the field towards the goal 
of using the microbiome or the microbiota to predict disease before it 
occurs. Fascinatingly, different diseases have different dynamics. Gingi-
vitis, an inflammation of the gums that can be reversed with thorough 
cleaning of the teeth, shows relapse trends that are specific to individu-
als, which indicates that a person’s unique gingivitis-causing community 
of microbes returns in a predictable way85. By contrast, many individu-
als carry the same community of dental-caries-causing bacteria, yet the 
emergence of caries can be predicted months in advance of observable 
clinical symptoms by monitoring changes in the microbiota86. Similarly, 
the development of rheumatoid arthritis can be predicted using both oral 
and gut microbial biomarkers87. The potential use of oral biomarkers to 
predict disease that emerges at less accessible sites in the body is exciting. 
The oral microbiota and gut microbiota share many community mem-
bers, yet the structures of communities are highly distinct, and only weak 
associations have been found between them24,88. The oral cavity provides 
an ideal site for non-invasive sampling and biomarker testing; the ability 
to use the oral microbiota to predict disease, following MWAS, there-
fore has tremendous promise. Predictive models are also being applied 
to many other sites in the body and to many other conditions, including 
obesity22,89, IBD18,90 and acne91.

An evidence scale for microbiome studies
Although many studies have reported links between the microbiome and 
disease, technical variation between the studies, the effects of which often 

Although, intuitively, the host genome was thought to be important 
in shaping the microbiome, evidence to support this had been 
lacking. Single genes have been known to exert large effects on the 
gut microbiome in mice; for example, the ob/ob5,118 and Toll-like 
receptor 5 knockout models119 of obesity have been well studied, 
and the changes in the microbiota that are induced by a single-
allele mutation can even confer part of the adiposity phenotype 
when transmitted by oral gavage to a genetically normal mouse. 
Consequently, it is well established that a genetic change can trigger 
an aberrant microbial community that is transmissible and can 
transmit the phenotype. Studies of panels of mice have shown that 
diet has a much larger effect on the microbiota than does the host 
genotype120, and this is consistent with the observation that studies 
consisting of only dozens of people are unable to demonstrate that 
monozygotic twins are more similar in composition and function 
of their microbiota than are dizygotic twins23. However, larger 
studies composed of hundreds of individuals are able to find a 
small association between host genetics and the overall microbial 
community121,122. Intriguingly, a few taxa seem to be highly heritable, 
notably Christensenella, which is associated with leanness and even 
leads to weight reduction when fed to germ-free mice inoculated 
with the gut microbiota of obese people122.

BOX 2

Integrating the host 
genome into MWAS
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exceed those of the underlying biology, makes it difficult to compare and 
interpret MWAS findings78. Efforts to quantify methodological effects 
enable considerable progress to be made towards performing large-scale 
epidemiological studies of the microbiome92,93, but the ability to determine 
when specific biases require studies to be analysed separately rather than 
together still relies on intuition.

Crohn’s disease represents one of the best-studied links between the 
microbiome and disease. Multiple studies18,32–34,94, including investigations 
of a cohort of Swedish twins (n = 40 pairs of twins)32–34, have revealed 
the depletion of beneficial members of the microbiota (for example, 
F. prausnitzii, a producer of butyrate) in people with inflammation in 
the small intestine that is associated with Crohn’s disease, known as 
ileal Crohn’s disease, compared with those who have inflammation of 
the colon or with healthy individuals. Increases in Proteobacteria have 
also been seen in these and many other studies3,18,32. Analysis of faecal 
samples from the Swedish twin cohort33 also revealed the depletion in 
ileal Crohn’s disease of proteins required for the metabolism of butyrate, 
whereas metabolite analysis34 revealed an increase in the amounts of some 
bile-acid metabolites and pancreatic enzymes, as well as thousands of 
unidentified metabolites, that could be used to differentiate people with 
Crohn’s disease from healthy individuals.

Type 1 diabetes has been studied in many disparate but small cohorts 
(n < 20 per group per study) of newly diagnosed children95,96. These stud-
ies identified an elevated relative abundance of Bacteroides and a reduced 
relative abundance of Prevotella in those with the disease compared with 
controls. A longitudinal study97 of children with a high risk of developing 
diabetes determined that increases in α diversity (the diversity of species at 
a particular site in the body) during development were slowed in children 
who went on to develop diabetes (n = 4) but not in seroconverters without 
clinical symptoms (n = 7) or in healthy children (n = 22). A metabolic 
study in a different cohort found that children who developed diabetes 
(n = 50) had lower levels of triglycerides compared with controls (n = 67). 
Seroconversion was associated with a transient increase in 2-hydroxy-
butryate and a decrease in ketoleucine. Some of these metabolites might 
have microbial origins.

Rheumatoid arthritis, a disease not typically thought of as 
being associated with the gut or the mouth, has been linked to the 
microbiomes of both. People with rheumatoid arthritis demonstrate 
consistently increased relative abundances of species of Prevotella in their 
oral and gut microbiotas8,87,98. Those with newly diagnosed (n = 31) and 
chronic (n = 32) rheumatoid arthritis have higher rates of periodontal 
disease than do healthy controls (n = 18), even when other risk factors 
such as age and smoking are taken into account98. Amplicon sequenc-
ing has shown that Prevotella and Leptotrichia OTUs are increased in 
individuals with rheumatoid arthritis, independent of their periodon-
tal disease status98. Metagenomic profiling of oral and gut microbiomes 
has identified elevated levels of Prevotella copri in people with rheuma-
toid arthritis (n = 115) compared with controls (n = 97), as well as an 
enrichment in Gram-positive microorganisms, including members of 
the family Veillonellaceae87. The presence of Lactobacillus salivarius 
in the oral cavity and faeces correlates positively with antibody titres, 
and this microorganism was more likely to be present in active cases of 
rheumatoid arthritis than in controls. Treatment with disease-modifying 
antirheumatic drugs can partially restore characteristics of the control 
microbiome, including decreased levels of Prevotella, in individuals with 
rheumatoid arthritis98.

Cardiovascular disease99,100 has been linked to high levels of TMAO, 
a metabolite of phosphotidylcholine, and TMAO is strongly correlated 
with both atherosclerotic plaques in a mouse model6,83 and adverse car-
diovascular outcomes in people99,100. TMAO has been implicated in other 
conditions that involve the vascular system, including renal disease101 
and colon cancer102. Treatment with antibiotics attenuates the production 
of TMAO in both mice6 and people103 after challenge with phosphotidyl-
choline. Alterations have been seen in 16S rRNA amplicon sequencing 
profiles of adults from Sweden99 and China100 who have experienced 
cardiovascular events, although the same OTUs were not identified in 

both cohorts. TMAO might also modulate platelet function and the 
risk of developing thrombosis in people104. Subsequent experiments in 
conventional mice have confirmed that TMAO has a role in thrombo-
sis, whereas germ-free mice seem to be protected from developing this 
phenotype104. In conventional mice, long-term exposure to dietary cho-
line altered the composition of the microbiome, and several candidate 
taxa, including the families Lachnospiraceae and Mogibacteriaceae, were 
negatively associated with thrombosis104. Interestingly, the identification 
of the role of TMAO in cardiovascular disease began in a study of serum 
metabolites, and only later moved to studies of the microbiome.

The links between autism spectrum disorder and the microbiome 
remain controversial; although studies in people have provided statisti-
cally significant associations, they can be confounded by factors that 
include the diet, gastrointestinal issues and drugs. A 16S rRNA ampli-
con study showed that people with autism spectrum disorder (n = 20) 
had a lower α diversity than did neurotypical individuals (n = 20) 
(ref. 11). Autism spectrum disorder was associated with higher levels of 
Akkermansia and fewer species of fermenter bacteria, including Prevo-
tella, Coprococcus and Veillonellaceae11. A study of the offspring of mice 
who had undergone maternal immune activation (MIA) showed that 
alterations occur in the microbiomes and metabolomes of such mice, 
including a reduction in the levels of members of the family Lachno-
spiraceae, which ferment SCFAs30. The introduction of Bacteroides 
fragilis, a common commensal microbe, led to decreased expression of 
4-ethylphenylsulfate and corrected behaviourial symptoms. The admin-
istration of 4-ethylphenylsulfate was sufficient to transmit symptoms of 
anxiety to wild-type mice30 and led to permanent immune dysfunction105.

Despite the emergence of some common themes such as the pres-
ence of specific taxa, overall trends in α diversity and the ability to sepa-
rate cases and controls using metrics of β diversity (the differences in 
community composition between different samples), it is impossible to 
determine whether a particular condition has a smaller or larger effect 
on the diversity of the microbiota than another, owing to the way that 
individual studies are conducted. A set of standardized protocols would 
enable many different biological and technical effects to be placed on 
a scale that compares common effect sizes. The Microbiome Quality 
Control Project is beginning to do this for technical effects by com-
paring the specific effects of sample storage, DNA extraction, PCR 
amplification and bioinformatics pipelines, all of which can have sur-
prisingly large effects; for example, methods and databases used in the 
assignment of taxonomy can have much larger effects on the apparent 
profile of a microbiome than does which biological specimen was exam-
ined106. Large-scale efforts such as the Earth Microbiome Project107 and 
American Gut are beginning to address these issues by studying tens 
of thousands of samples using common methods. The dream would 
be to provide quantitative information that indicates which biological 
effects are larger than specific technical effects (to facilitate a rational 
choice for which studies to compare) and describes the directionality 
of effects, which would enable the use of generalized linear models to 
detrend for specific variables so that subtle effects can be seen against 
the background. For example, American Gut has observed that the age of 
an individual and their self-reported frequency of alcohol consumption 
have approximately equal statistically significant effects on the diversity 
of the gut microbiota: to measure the influence of one variable accurately, 
it is therefore necessary to detrend for the other (American Gut, unpub-
lished observations). By contrast, body mass index (BMI) has a much 
smaller, although still detectable effect, on the gut microbiota, which 
means that controls for age and alcohol use must be applied (or the data 
detrended) to understand the specific effects of BMI. The development 
of a scale for this type of effect size would also be enormously useful for 
scoping out new studies: it would enable an educated guess to be made 
about the expected effect size of an intervention or condition from a 
large database of past studies of similar phenomena, and the number of 
participants and longitudinal sampling design (if applicable) could be 
scoped out rationally on the same basis, to the relief of both investigators 
and their institutional review boards.
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Developing a microbial Global Positioning System
An important challenge for the field is to move beyond abstract maps of 
the microbiome, which enables multivariate samples to be placed in the 
context of other samples. It is important to understand which factors, 
including the host genome (Box 2), can change the microbiome from a 
given starting point on a ‘map’, as well as where the ideal endpoint would 
be. Such a microbial Global Positioning System (GPS) would comprise a 
defined start point, a defined end point and directions for how to get from 
one to the other and would depend on the standardization of results from 
microbiome studies so that each participant can be located accurately on 
the map and their progress tracked. It also relies on well-defined clinical 
cohorts that enable desirable and undesirable endpoints to be assessed. 
Unstratified patients have the potential to be placed anywhere on the 
map, and their initial location is determined, for example, by principal 
coordinates analysis (PCoA) of UniFrac distances between samples108, 
as performed by the Human Microbiome Project and American Gut. 
Stratification is then performed to identify certain groups of people in 
different parts of the map, according to specific biomarkers, such as genes, 
functions, metabolites or networks of these features, and perhaps by cross-
ing different levels of analysis. These biomarkers are then used to relocate 
study participants to appropriate regions of the map, which helps to sug-
gest specific treatments that would move them from their present location 
to another (Fig. 2). For example, a small change in the diet might provide 
a subtle shift in location on the map and treatment with antibiotics might 
produce a larger shift whereas faecal transplantation could be considered 
‘teleportation’. Readout of biomarkers over time would allow the progress 
of each participant to be tracked from unhealthy to healthier regions of 
the map. Overall, many more participants would be expected to reach 
a healthy location on the map than would be possible with unstratified 
treatment, although genetic defects, intractable microbiome states or 
other factors might prevent the recovery of some. This vision requires a 
substantially faster, cheaper and more accurate readout of the microbiome 
across multiple levels than is possible at present, although it will provide 
an exceptionally powerful and clinically relevant model after it has been 
subjected to the appropriate regulatory processes.

Perspective
The considerable power of using the microbiome, or even the inexpen-
sively assayed microbiota, to separate cases from controls, as well as to 
predict responses to treatment or the development of diseases in the 
absence of treatment, has already been demonstrated through carefully 
controlled MWAS in research settings. To further develop these tech-
niques for robust clinical use, MWAS must be validated in larger and 
more diverse populations. Methodologies must also be standardized so 
that differences in the size of technical effects between laboratories do not 
outweigh differences in the size of biological effects, which can make stud-
ies difficult to combine78,90. This problem remains a crucial challenge to 
overcome and prevents findings from being developed into clinical tests.

Longitudinal studies have been especially informative in revealing 
microbiome dynamics that cannot be observed through a before–after 
model. In infants, where profound changes in the microbiota and micro-
biome occur in the first three years of life, a more detailed understanding 
of the developmental process, and deviations from it, is required to under-
stand whether changes introduced by diet, environmental exposures, 
antibiotics and other factors in early life keep the microbiome on track or 
divert it towards danger. Similarly, moving away from taxonomic inven-
tories towards an understanding of the genes, transcripts, proteins and 
metabolites of the microbiome in a multi-omics, systems-biology context 
is crucial for generalizing our understanding of a wide range of diseases in 
which the microbiome is involved, as well as for developing biomarkers 
that could be the basis of useful clinical tests. However, these are conflict-
ing imperatives: multi-omics studies greatly increase the cost of analysing 
each sample, which means that longitudinal studies on large populations 
quickly become infeasible and tests are too expensive and slow to apply 
on clinically relevant timescales. Consequently, even higher-throughput 
and cheaper methods to process samples for multi-omics studies, as well 

as improved modelling techniques that derive systems-level dynamic 
parameters from fewer samples, are urgently required. These advances 
will rapidly bring us nearer to the dream of a microbial GPS. The Human 
Microbiome Project, the Earth Microbiome Project, American Gut and 
other large-scale efforts have already, and very effectively, provided a 
microbial ‘map’ that enables healthy and diseased samples to be placed 

Figure 2 | Developing a microbial Global Positioning System to stratify 
individuals and to guide their treatment. An unstratified pool of individuals 
(black), all of whom have the same disease but with different underlying states 
(red, blue and grey), are stratified according to a biomarker from the microbiota, 
the microbiome or the metabolome (differentiated on a PCoA plot (bottom) or 
other analysis). This enables treatments to be chosen for each subpool, which 
facilitates movement from an ‘unhealthy’ region to a ‘healthy’ region of the 
microbial ‘map’. The position of an individual in the main pool indicates the 
same person over time. The microbial Global Positioning System therefore 
enables determination of the current location of an individual in terms of their 
microbiome configuration, as well as a prediction of their final destination and 
directions for how to get there. Ideally, this moves all individuals in the pool to 
a healthy status (green) and microbiome, although in real-world situations no 
treatment will work perfectly. PC, principal coordinate.
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in context, provided that consistent laboratory and bioinformatics meth-
ods are used. In the next few years, data that are collected using consistent 
protocols will enable intervention studies from many investigators to be 
aggregated to build a general picture of how the microbiome can change in 
specific directions in multivariate space. This understanding will facilitate 
the provision of ‘turn-by-turn’ directions that enable individuals to use 
their microbiome and perhaps even their genotype to understand where 
they might want to go on this map and how they can get there most effec-
tively, in a way that preserves their lifelong health. ■
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