
Appreciation of the important role of the microbiota in human 
health and nutrition has grown steadily in the past decade. Initial 
studies focused on cataloguing the microbial species that com-

prise the microbiota and correlating the composition of the microbiota 
with the health or disease state of the host. The present period of renais-
sance has resulted in technologies and interdisciplinary research that are 
conducive to mechanistic studies and, in particular, those that focus on 
associations between the microbiota, the host and pathogenic bacteria. 
Exciting research is now starting to unravel how the composition of the 
microbiota can offer either resistance or assistance to invading pathogenic 
species. The majority of these studies were conducted in the gastrointes-
tinal tract, in which associations between the host and microbes are of 
paramount importance. The gut microbiota of each individual is unique at 
the genus and species levels; however, it is more generally conserved at the 
phylum level, which is populated most prominently by Bacteroidetes and 
Firmicutes, followed by Proteobacteria and Actinobacteria. Host genetics, 
diet and environmental insults such as treatment with antibiotics alter 
the microbiota1–4, which can lead to varying susceptibility to infectious 
diseases between individuals5.

The microbiota can promote resistance to colonization by pathogenic 
species6–9. For instance, mice that are treated with antibiotics or that are 
bred in sterile environments (known as germ-free mice) are more sus-
ceptible to enteric pathogenic bacteria such as Shigella flexneri, Citrobac-
ter rodentium, Listeria monocytogenes and Salmonella enterica serovar 
Typhimurium10–13. And some microbiotas can lead to the expansion or 
enhanced virulence of pathogenic populations7. A notable example con-
cerns how differences in the composition of microbiotas determine the 
susceptibility of the mice to infection with C. rodentium: the transplanta-
tion of microbiotas from strains of mice that are susceptible to infection 
induced similar susceptibility in animals that were previously insuscep-
tible, and the transplantation of microbiotas from resistant animals led to 
resistance to infection in previously susceptible animals14,15. Epidemiolog-
ical surveys reinforce this idea. For example, differential susceptibility to 
infection with Campylobacter jejuni was shown to depend on the species 
composition of the microbiotas in a study of Swedish adults16. Individuals 
with a higher diversity within their microbiotas, and with an abundance of 
bacteria from the genera Dorea and Coprococcus, were significantly recal-
citrant to C. jejuni infection compared with people who had low-diversity 
microbiotas and non-abundance of Dorea and Coprococcus.

The host’s diet profoundly affects the composition of the microbiota, 

with repercussions for the physiology, immunity and susceptibility to 
infectious diseases of the host17. Dietary choices have been shown to affect 
colonization by enterohaemorrhagic Escherichia coli (EHEC) serotype 
O157:H7 and the severity and length of its resulting disease18, and sup-
plementation of the diet with phytonutrients promotes the expansion 
of beneficial Clostridia species that protect mice from colonization by 
C. rodentium19.

The use of innovative technologies, in combination with more con-
ventional approaches, is driving our understanding of the interactions 
between the microbiota, the host and pathogenic bacteria. The genetic 
tractability of several species of bacteria, as well as of their mammalian 
hosts (such as mice), allows for the mechanistic investigation of these rela-
tionships. The investigation of changes in the composition of microbiotas 
has been driven by next-generation sequencing, which also facilitated the 
analysis of transcriptomes. The growing power and finesse of metabo-
lomics studies are quickly expanding our knowledge of the impact of both 
the microbiota and of pathogenic bacteria on the metabolic landscape of 
the gut. Here, we review advances in our understanding of the complex 
relationships that determine the severity and outcome of gastrointesti-
nal infections. The majority of the mechanistic studies that investigate 
these interactions have been conducted in S. Typhimurium, EHEC and 
Clostridium difficile: therefore, these pathogenic organisms are covered 
more extensively than others in this Review.

Antibiotics
Antibiotics revolutionized medicine and were justifiably dubbed ‘magic 
bullets’ against bacterial infections. However, conventional antibiotics 
are generally bacteriostatic or bactericidal, which means that they indis-
criminately kill or prevent the growth of both pathogenic and beneficial 
microbes. Antibiotics can alter the taxonomic, genomic and functional 
features of the microbiota, and their effects can be rapid and sometimes 
everlasting20. They can decrease the diversity of the microbiota, which 
compromises resistance to colonization by incoming pathogenic bacte-
ria20 — most notably leading to an expansion of C. difficile that can cause 
diarrhoea that leads to potentially fatal colitis21.

C. difficile is a spore-forming bacterium that, on germination, colonizes 
the large intestine and causes colitis through the action of two toxins: 
TcdA and TcdB. The majority of C. difficile infections are nosocomial, 
but there has also been an increase in community-acquired infections, 
mainly due to the ubiquitous presence of C. difficile spores. C. difficile can 
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colonize the mammalian intestine without causing disease, but one of the 
most important risk factors for colitis that is mediated by C. difficile is the 
use of antibiotics21. The antibiotics-mediated loss of resistance to coloni-
zation also allows colonization by S. Typhimurium and the development 
of disease22. Both C. difficile and S. Typhimurium catabolize sialic acid 
as a source of carbon in the lumen to promote their expansion23. They 
rely on saccharolytic members of the microbiota, such as Bacteroides the-
taiotaomicron, to make this sugar freely available in the intestinal lumen. 
Treatment with antibiotics increases the abundance of host-derived free 
sialic acid as well as enhancing its release into the lumen by B. thetaio-
taomicron, which promotes the expansion of the two pathogenic bacte-
ria23. Antibiotic use also triggers production of the organic acid succinate, 
another microbiota-derived nutrient that confers a growth advantage to 
C. difficile. It is often present at a low concentration in the microbiotas of 
conventional mice, but its presence increases on treatment with antibiot-
ics, which promotes a bloom of C. difficile24 (Fig. 1).

Knowledge of how microbiota disruption affects the ability of bona fide 
or opportunistic pathogenic organisms to infect hosts is still in its infancy. 
However, two underlying themes converge: microbiota-induced changes 
in the metabolite landscape of the gut and inflammation.

Utilization of nutrients
Simple dietary sugars are absorbed in the small intestine, which means 
that they are unavailable as sources of carbon for the microbiota and 
pathogenic bacteria in the colon. The most abundant members of the 
microbiota are those that are able to utilize the undigested plant polysac-
charides and host glycans that are present in the colon25.

The gut epithelium is protected by a layer of mucus that is composed 
of proteins known as mucins that are rich in fucose, galactose, sialic acid, 
N-acetylgalactosamine, N-acetylglucosamine and mannose. These sug-
ars are harvested by saccharolytic members of the microbiota, such as 
Bacteroidales in the gut, which makes them available to species within 
the microbiota that lack this capability26. However, pathogenic bacteria 
in the gut can also exploit the availability of these sugars to promote their 
own expansion. Several studies have used B. thetaiotaomicron as a model 
Bacteroides in which to investigate these syntrophic links. Sialic acid is 
a terminal sugar of some mucosal glycans, and B. thetaiotaomicron has 
sialidase activity but lacks the catabolic pathway for sialic-acid utilization. 
The bacterium therefore releases sialic acid to gain access to underlying 
glycans that it can use as a source of carbon. The sialic acid that B. thetaio-
taomicron releases from the mucus can be catabolized by both C. difficile 
and S. Typhimurium, which provides them with a growth advantage23. 
The ability of the microbiota to use sialic acid therefore depends on 
the action of B. thetaiotaomicron, and mutants that lack sialidase fail to 
enhance the growth of these two pathogenic bacteria23.

B. thetaiotaomicron also releases fucose from the mucus. It harbours 
multiple enzymes that can cleave fucose from host glycans, so its presence 
results in the high availability of fucose in the lumen of the gut27–30. This 
free fucose can also be used as a source of carbon by S. Typhimurium23. 
Importantly, B. thetaiotaomicron can promote the fucosylation of mucosal 
glycans when introduced into monoassociated germ-free mice31,32.

The microbiota resides in the lumen and the outer mucus layer of 
the intestine. EHEC, however, aims to achieve a unique niche by closely 
adhering to the enterocytes of the intestinal epithelium. To achieve its 
goal, EHEC must successfully compete with the microbiota for nutri-
ents. B. thetaiotaomicron does not need to compete with EHEC, however, 
because it can utilize polysaccharides; EHEC can only utilize monosac-
charides and disaccharides13,33. EHEC’s main competitors are commensal 
E. coli, which preferentially utilizes fucose as a source of carbon when 
growing in the mammalian intestine13,33. To circumvent this competition, 
EHEC utilizes other sources of sugar, such as galactose, the hexuranates, 
mannose and ribose, which commensal E. coli cannot catabolize opti-
mally33,34 (Fig. 2).

EHEC uses fucose as a signalling molecule with which to adjust its 
metabolism and to regulate the expression of its virulence repertoire in the 
lumen and the outer mucus layer of the colon35. It horizontally acquired 

Figure 1 | The impact of antibiotics on the microbiota and the expansion 
of enteric pathogens. a, A diverse and non-disturbed microbiota confers 
resistance to colonization by enteric pathogens in the intestinal epithelium. 
b, Treatment with antibiotics decreases the diversity of the microbiota and 
leads to expansion of the C. difficile population. Toxins that are released from 
C. difficile (TcdA and TcdB) enter and damage the cells of the epithelium, 
which leads to inflammation (colitis) and cell death. c, Treatment with 
antibiotics also leads to an increase in the levels of free sialic acid (from the 
host) and succinate (from the microbiota) in the lumen of the intestine. 
Elevated sialic acid promotes the expansion of the S. Typhimurium 
population, which can lead to inflammation (gastroenteritis) if the bacterium 
invades the cells of the intestinal epithelium. Elevated levels of sialic acid and 
succinate further promote the expansion of the C. difficile population and the 
development of colitis and cell death.
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a pathogenicity island of genes that encode a fucose-sensing signalling-
transduction system35. This system is unique to EHEC and to C. roden-
tium35 (which is used extensively in mouse models as a surrogate for the 
human pathogen EHEC36). It is composed of the membrane-bound 
histidine sensor kinase FusK, which specifically autophosphorylates 
in response to fucose. FusK then transfers its phosphate to a response 
regulator called FusR, which is a transcription factor. Phosphorylation 
activates FusR, which represses the expression of the fucose utilization 
genes in EHEC, and helps EHEC to avoid the need to compete for this 
nutrient with commensal E. coli35. To prevent the unnecessary expendi-
ture of energy by EHEC, FusR represses the genes that encode the EHEC 
virulence machinery, a syringe-like apparatus known as a type III secre-
tion system (T3SS), which the bacterium uses to adhere itself to entero-
cytes and highjack the function of these host cells35. EHEC therefore uses 
fucose, a host-derived signal that is made available by the microbiota, to 
sense the environment of the intestinal lumen and to modulate its own 
metabolism and virulence.

To reach the lining of the epithelium, EHEC and C. rodentium produce 
mucinases37, which cleave the protein backbone of mucin-type glyco-
proteins. Expression of these enzymes is increased by metabolites that 
are produced by B. thetaiotaomicron38. Because mucus is one of the main 
sources of sugar in the colon, where EHEC and C. rodentium colonize, 
obliteration of the mucus layer creates a nutrient-poor environment near 
the epithelium that is referred to as gluconeogenic. The colonization of 
mice by B. thetaiotaomicron therefore profoundly changes the metabolic 
landscape of the mouse gut because it raises the levels of organic acids such 
as succinate24,38,39. Moreover, several metabolites that indicate a gluconeo-
genic environment, such as lactate and glycerate, are also elevated38. EHEC 
and C. rodentium sense this gluconeogenic and succinate-rich environ-
ment through the transcriptional regulator Cra. On receiving the cue that 
they have reached the lining of the gut epithelium, these bacteria activate 
the expression of their T3SSs38. EHEC therefore exploits metabolic cues 
from B. thetaiotaomicron, and probably other members of the microbiota, 
to precisely programme its metabolism and virulence (Fig. 2).

Other pathogenic bacteria can also adjust their gene expression in the 
presence of microbiota-produced succinate. C. difficile induces a pathway 
that converts succinate to butyrate, which confers a growth advantage 
in vivo24. Populations of C. difficile mutants that are unable to convert 

succinate fail to expand in the gut in the presence of B. thetaiotaomicron24.
Several short-chain fatty acids that are produced by the microbiota, 

are important determinants of interactions between the microbiota and 
pathogenic bacteria in the gut. The abundance and composition of short-
chain fatty acids is distinct in each compartment of the intestine, and the 
ability to sense these differences might help pathogenic bacteria in niche 
recognition. The most abundant short-chain fatty acids in the gut are 
acetate, propionate and butyrate. S. Typhimurium preferably colonizes 
the ileum40, which generally contains acetate at a concentration of 30 mM. 
This acetate concentration enhances the expression of the S. Typhimu-
rium Salmonella pathogenicity island 1 (SPI-1)-encoded T3SS (T3SS-1), 
which is involved in the bacterium’s invasion of the host. Conversely, 
70 mM propionate and 20 mM butyrate, concentrations typical of the 
colon, suppress the expression of the T3SS-1 (ref. 41). Propionate and 
butyrate seem to affect the T3SS-1 regulatory cascade at various levels. 
However, the detailed mechanism of this regulation is yet to be unravelled. 
In EHEC, exposure to the levels of butyrate found in the colon increases 
the expression of the EHEC T3SS through post-transcriptional activation 
of the transcriptional regulator Lrp42. Exposure to the concentrations of 
acetate and propionate that are found in the small intestine does not sig-
nificantly affect the virulence of EHEC.

Diet has a profound effect on the composition of the microbiota and the 
concentration of short-chain fatty acids in the gut17. A diet that is high in 
fibre results in the enhanced production of butyrate by the gut microbiota. 
That increases the host’s expression of globotriaosylceramide, which is a 
receptor for the Shiga toxin that is produced by EHEC18. Shiga toxin can 
lead to the development of haemolytic uraemic syndrome (HUS) and 
is the cause of the morbidity and mortality associated with outbreaks of 
EHEC43. Consequently, animals that are fed a high-fibre diet are more 
susceptible to Shiga toxin than are those on a low-fibre diet and develop 
more severe disease18. Conversely, increased levels of microbiota-derived 
acetate protect animals from disease that is caused by the toxin. Certain 
species of Bifidobacteria contribute to higher levels of acetate in the gut, 
which helps to improve the barrier function of the intestinal epithelium 
and to prevent Shiga toxin from reaching the bloodstream44.

Enteric pathogenic bacteria also use other nutrients to successfully 
overcome the microbiota’s resistance to their colonization. Ethanolamine 
is abundant in the mammalian intestine45. It can be used as a source of 

Figure 2 | Modulation of enterohaemorrhagic E. coli virulence through 
nutrients provided by the microbiota. a, The microbiota resides in the 
lumen and outer mucus layer of the intestine. The saccharolytic bacterium 
Bacteroides thetaiotaomicron is a prominent member of the microbiota. It can 
release fucose from the mucus and makes the sugar available to other bacteria. 
When EHEC senses fucose through the FusKR signalling system, it represses 
both its use of the sugar and the expression of genes that encode the T3SS, a 
protein-translocation apparatus that enables the bacterium to secrete effector 
proteins into host cells. This repression prevents EHEC from competing for 

fucose with commensal E. coli and from expending energy unnecessarily on 
T3SS expression. b, Metabolites that are provided by B. thetaiotaomicron, such 
as succinate, lead to an increase in the expression by EHEC of the enzyme 
mucinase, which obliterates the mucus layers of the intestine. EHEC is then able 
to reach the intestinal epithelium. B. thetaiotaomicron then begins to secrete 
succinate and other metabolites that are required for gluconeogenesis into the 
now nutrient-poor environment. The compounds are sensed by EHEC, which 
upregulates its expression of the T3SS to enable the bacterium to attach to the 
epithelial cells of the host intestine and form lesions that cause diarrhoea.
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carbon and of nitrogen by a number of pathogenic species46, and food-
borne bacteria are particularly adept at using it. However, it cannot be 
metabolized by the majority of commensal species47. S. Typhimurium, 
EHEC and L. monocytogenes gain a growth advantage in the intestine 
through their ability to use this compound45,48,49. Ethanolamine is also 
used as a signal by EHEC and S. Typhimurium to activate the expression 
of virulence genes50,51. And S. Typhimurium uses hydrogen produced 
by the microbiota as an energy source to enhance its growth during the 
initial stage of infection52.

The exploitation of microbiota-derived molecules as both nutrients 
and signals is crucial for the successful infection of the host by pathogenic 
bacteria. Although such organisms have clearly developed many strate-
gies through which to circumvent the microbiota’s resistance to coloniza-
tion, and in many cases even employ its help, the microbiota pushes back, 
which creates an intense competition for resources. The ability of EHEC 
to colonize the intestine stems from differences in the sources of sugar 
that are used by EHEC and by commensal E. coli. For example, the pres-
ence of multiple strains of commensal E. coli with overlapping nutritional 
requirements interferes with the colonization of the mouse intestine by 
EHEC53. This study uses a streptomycin-treated mouse model of EHEC 
and three distinct commensal strains of E. coli to assess differential sugar 
requirements for the successful colonization of the intestines53. EHEC 
could colonize mice that were pre-colonized with any one of the com-
mensal strains, but it could not colonize mice that were pre-colonized 
with all three strains53. EHEC has evolved to exploit distinct sources of 
sugar during colonization of the gut. It utilizes catabolic pathways for the 
hexuronates glucuronate and galacturonate and for sucrose that are not 
employed by commensal E. coli within the gut33,53. It can also metabolize 
several sugars simultaneously. The loss of multiple catabolic pathways 
has an additive effect on colonization. This phenomenon is not observed 
in commensal E. coli, however, which suggests that E. coli uses available 
sugars in a stepwise fashion54. EHEC therefore differs from commensal 
E. coli in metabolic strategy and the use of nutrients for the colonization 
of the mammalian intestine.

C. rodentium is outcompeted and then cleared from the mouse gut 
through a bloom in the population of commensal E. coli , which com-
petes with C. rodentium for monosaccharides for nutrition13. By contrast, 
C. rodentium is not cleared by B. thetaiotaomicron in germ-free mice that 
are fed a diet that contains both monosaccharides, which can be used by 
Enterobacteriacae such as C. rodentium, and polysaccharides, which can 
be used by Bacteroides. However, when the mice are switched to a diet that 
consists only of monosaccharides, B. thetaiotaomicron and C. rodentium 
are forced to compete for sugars, and B. thetaiotaomicron outcompetes 
C. rodentium13. The ability of pathogenic bacteria to successfully com-
pete with commensal species for nutrients is therefore important for their 
establishment in the gut.

Interception of signals from the microbiota and the host
The microbiota affects the risks and courses of enteric diseases. Vibrio 
cholerae is a major cause of explosive diarrhoea in which there is extensive 
disruption of the intestinal population of microbes. Metagenomic stud-
ies of the faecal microbiota of people with cholera in Bangladesh show 
that recovery is characterized by a certain microbiota signature. Recon-
stitution of this microbiota in germ-free mice restricts the infectivity of 
V. cholerae. Specifically, the presence of Ruminococcus obeum can hamper 
the colonization of the intestines by V. cholerae through the production of 
the furanone signal autoinducer-2, which causes the repression of several 
V. cholerae colonization factors55.

Another example of the effect of microbiota-derived signals on host 
colonization is their use by EHEC in the colonization of its ruminal res-
ervoir. EHEC exclusively colonizes the recto–anal junction of adult cattle. 
Through the sensor protein SdiA, EHEC detects acyl-homoserine lactone 
signals from the rumen microbiota, which it uses to reprogram itself to 
survive the acidic pH of the animal’s stomachs and to successfully colonize 
the rectoanal junction56.

As well as being able to directly detect signals that are derived from the 

microbiota, pathogenic bacteria can detect host-derived signals that have 
been modified by the microbiota to modulate their virulence. V. cholerae 
has a type VI secretion system (T6SS), which it uses to kill other bacteria. 
During its colonization of the intestine, V. cholerae comes in contact with 
the mucosal microbiota, which can affect the composition of bile acids in 
the intestine. For example, Bifidobacterium bifidum negatively regulates 
the T6SS activity of V. cholerae through the metabolic conversion of three 
bile acids (glycodeoxycholic acid, taurodeoxycholic acid and cholic acid) 
into the bile acid deoxycholic acid. Deoxycholic acid, but not its unmodi-
fied salts, decreases the expression of T6SS genes. This leads to a decrease 
in the killing of E. coli by V. cholerae owing to bile-acid conversion by other 
commensals, which decreases the activity of the T6SS57.

Another microbiota-modified host signal that is detected by pathogenic 
bacteria is the neurotransmitter noradrenaline. The gut is highly inner-
vated, and neurotransmitters are important signals in the gastrointestinal 
tract, where they modulate peristalsis, the flow of blood and the secretion 
of ions58. The microbiota affects the availability of neurotransmitters in the 
intestinal lumen, as well as their biosynthesis. For example, the microbiota 
induces biosynthesis of serotonin59, and microbiota-derived enzymatic 
activities increase the levels of active noradrenaline in the gut lumen60. 
Noradrenaline is synthesized by the adrenergic neurons of the enteric 
nervous system61 and it is inactivated by the host through conjugation 
with glucuronic acid (to produce a glucuronide). Microbiota-produced 
enzymes known as glucuronidases then deconjugate glucuronic acid from 
noradrenaline, which increases the amount of active noradrenaline in the 
lumen of the intestine60. Several pathogenic bacteria of the gut, including 
EHEC, S. Typhimurium and V. parahaemolyticus, sense noradrenaline 
to activate the expression of virulence genes62–65. Two adrenergic sensors 
have been identified in bacteria: the membrane-bound histidine kinases 
QseC and QseE66,67. QseC also detects the microbiota-produced signal 
autoinducer-3 (refs 64 and 66), so the sensing of signals from both the 
host and the microbiota converge at the level of a single receptor, a process 
known as inter-kingdom signalling.

Inflammation
Although diet and the composition of the microbiota heavily influence 
the availability of nutrients in the gut, the host also has an important 
part to play. A crucial driver of changes in the gut environment is the 
inflammatory response of the host. Intestinal inflammation in people is 
associated with an imbalance in the microbiota, known as dysbiosis, and 
is characterized by a reduced diversity of microbes, a reduced abundance 
of obligate anaerobic bacteria and an expansion of facultative anaerobic 
bacteria in the phylum Proteobacteria, mostly members of the family 
Enterobacteriaceae68–73. Similar changes in the composition of the gut 
microbiota are observed in mice with chemically induced colitis74 and 
genetically induced colitis75. These changes in the structure of the micro-
biota probably reflect an altered nutritional environment that is created 
by the inflammatory response of the host.

The availability of nutrients in the large intestine is altered during 
inflammation through changes in the composition of mucous carbo-
hydrates. Interleukin (IL)-22, a cytokine that is prominently induced in 
the intestinal mucosa when mice and rhesus macaques are infected with 
S. Typhimurium76,77, stimulates the epithelial expression of galactoside 
2-α-l-fucosyltransferase 2 and enhances the α(1,2)-fucosylation of mucus 
carbohydrates78,79. The gut microbiota can liberate fucose from mucus 
carbohydrates23,80, which leads to the induction of genes for fucose utili-
zation in E. coli78. Similarly, increased fucosylation of glycans is observed 
during S. Typhimurium-induced colitis in mice, which correlates with 
elevated synthesis of the proteins involved in fucose utilization81. Mucus 
fucosylation that is induced during infection with C. rodentium causes 
changes in the composition of the gut microbiota that help to protect the 
host from the expansion and epithelial translocation of the pathobiont 
Enterococcus faecalis79.

Another driver of changes in the nutritional environment of the gut is 
the generation of reactive oxygen species and reactive nitrogen species 
during inflammation. Pro-inflammatory cytokines such as interferon-γ 
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(IFN-γ) activate dual oxidase 2 in the intestinal epithelium, which pro-
duces hydrogen peroxide82. Increased expression of DUOX2, the gene that 
encodes dual oxidase 2, in the intestinal mucosa of patients with Crohn’s 
disease and ulcerative colitis correlates with an expansion of Proteobac-
teria in the gut  microbiota83. IFN-γ also induces epithelial expression of 
the gene Nos2 (ref. 84), which encodes inducible nitric oxide synthase, the 
enzyme that catalyses the production of nitric oxide from l-arginine85. 
As a result, the concentration of nitric oxide is elevated in gases from the 
colons of people with inflammatory bowel disease86–88. Although reactive 
oxygen and nitrogen species have antimicrobial activity, these radicals 
quickly form non-toxic compounds in the lumen of the gut as they diffuse 
away from the epithelium. For example, when they are generated during 
inflammation by host enzymes in the intestinal epithelium, these spe-
cies react to form nitrate89. This by-product of inflammation is present at 
elevated concentrations in the intestines of mice with chemically induced 
colitis90 (Fig. 3). Nitrate reductases, enzymes that are broadly conserved 
among the Enterobacteriaceae, couple the reduction of nitrate to energy-
conserving electron transport systems for respiration, a process termed 
nitrate respiration. However, the genes that encode them are absent from 
the genomes of obligate anaerobic Clostridia or Bacteroidia91. Nitrate res-
piration drives the Nos2-dependent expansion of commensal E. coli in 
mice with chemically or genetically induced colitis, but not in animals 
without signs of intestinal inflammation91. Respiratory electron accep-
tors that are generated as a by-product of the host inflammatory response 
therefore create a niche in the lumen of the intestines that supports the 
uncontrolled expansion of commensal Enterobacteriaceae rather than 
of obligate anaerobic bacteria91. The resulting bloom in the inflamed 

intestine is one of the most consistent and robust ecological patterns that 
has been observed in the gut microbiota92.

The creation of a niche for respiratory nutrients during inflammation 
is also an important driver of the strategies that pathogenic bacteria from 
the family Enterobacteriaceae use to invade the gut ecosystem. In the 
absence of inflammation or treatment with antibiotics, members of the 
gut microbiota occupy all available nutrient niches, which makes it very 
challenging for pathogenic Enterobacteriaceae to enter the community. 
One solution is for these bacteria to trigger intestinal inflammation, which 
would coerce the host into creating a fresh niche of respiratory nutrients 
that is suitable for its expansion — an approach that is used by S. Typh-
imurium93. On ingestion, S. Typhimurium uses T3SS-1 to invade the 
intestinal epithelium94 and T3SS-2 to survive in the tissue of the host95. 
Both of these processes trigger acute intestinal inflammation in cattle 
and in mouse models of gastroenteritis96–98 (Fig. 3). The inflammatory 
response of the host drives the expansion of S. Typhimurium in the lumen 
of the gut99, which is required for the transmission of this pathogenic spe-
cies to a new host through the faecal–oral route100.

Although such expansion allows S. Typhimurium to side-step com-
petition with obligate anaerobic Clostridia and Bacteroidia, this strategy 
forces the bacterium into battle with commensal Enterobacteriaceae 
over limited resources. For example, S. Typhimurium expands in the 
inflamed gut through nitrate respiration101,102, which results in rivalry 
with commensal Enterobacteriaceae that pursue a similar strategy91. 
S. Typhimurium can gain an edge in this competition through its ability 
to utilize a broader range of inflammation-derived electron acceptors 
than its rivals. A source of one such electron acceptor is sulfate-reducing 
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Figure 3 | The effect of intestinal inflammation on nutrient availability. 
S. Typhimurium uses its virulence factors (T3SS-1 and T3SS-2) to trigger 
intestinal inflammation. Cytokines that are released during inflammation, 
such as IL-22 and IFN-γ, trigger the release of antimicrobial molecules 
lipocalin-2, reactive oxygen species (ROS) and reactive nitrogen species 
(RNS) from the intestinal epithelium. Lipocalin-2 can block the growth of 
commensal Enterobacteriaceae that rely on the siderophore enterobactin 
for the acquisition of iron (Fe3+). It does not bind to the S. Typhimurium 

siderophone salmochelin, however, which confers the bacterium with 
resistance to its effects on growth. RNS and ROS react to form nitrate, 
which drives the growth of Enterobacteriaceae through nitrate respiration. 
Microbiota-derived hydrogen sulfide is converted to thiosulfate by colonic 
epithelial cells. Neutrophils that migrate into the lumen of the intestine during 
inflammation generate ROS that convert endogenous sulfur compounds 
(thiosulfate) into an electron acceptor (tetrathionate) that further boosts the 
growth of S. Typhimurium through tetrathionate respiration.
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species of Desulfovibrio from the microbiota, which release hydrogen 
sulfide, a compound that is converted to thiosulfate by the epithelium 
of the colon to avoid toxicity103. Deployment of the virulence factors of 
pathogenic bacteria leads to the recruitment of neutrophils to the intesti-
nal mucosa, which is the histopathological hallmark of S. Typhimurium-
induced gastroenteritis96. A fraction of these recruited neutrophils migrate 
into the lumen of the intestine — a diagnostic marker of inflammatory 
diarrhoea104. In the lumen, neutrophils help to protect the mucosa by 
engulfing bacteria in the vicinity of the epithelium105, but reactive oxygen 
species that are generated by the phagocyte-produced NADPH oxidase 2 
(also known as cytochrome b-245 heavy chain) convert thiosulfate into 
tetrathionate, a respiratory electron acceptor that supports the expansion 

of S. Typhimurium in the lumen of the inflamed gut106 (Fig. 3). Although 
tetrathionate respiration is a characteristic of Salmonella serovars and has 
been used empirically in their isolation in clinical microbiology labora-
tories since 1923 (ref. 107), insights into the respiratory nutrient niche 
that Salmonella occupies suggest that this property is part of a strategy to 
edge out competing commensal Enterobacteriaceae in the inflamed gut106.

The inflammatory response of the host also ignites competition 
between commensal and pathogenic Enterobacteriaceae over trace ele-
ments such as iron, which is less available during inflammation. IL-22 
induces the release of the antimicrobial protein lipocalin-2 (also known 
as neutrophil gelatinase-associated lipocalin) from the epithelium in 
mice and rhesus macaques108,109. Lipocalin-2 reduces iron availability 

An imbalance in the gut microbiota might underlie many human 
diseases but, in most cases, the development of treatment options 
is still in its infancy. This could be in part because the mechanisms 
that lead to adverse effects in the host differ for each disease, which 
means that intervention strategies must be developed for each. The 
treatment options for antibiotic-induced dysbiosis are perhaps the 
most advanced, mainly because faecal microbiota transplantation 
can reverse this imbalance in the gut microbiota129. Nonetheless, the 
mechanisms through which treatment with antibiotics encourages 
an uncontrolled expansion of the obligate anaerobe C. difficile differ 
markedly from those that stimulate the growth of the facultative 
anaerobes Enterobacteriaceae, which has implications for the 
development of precision microbiome interventions.

Mice that are treated with streptomycin have a reduced abundance 
of members of the class Clostridia130, which are credited with 
producing the lion’s share of the short-chain fatty acid butyrate in the 
large intestine131. The resulting depletion of short-chain fatty acids 

drives an expansion of Enterobacteriaceae through mechanisms that 
are not fully resolved44,132. Depletion of Clostridia-derived butyrate 
affects the metabolism of enterocytes in the colon, which derive most 
of their energy by butyrate respiration133. The depletion of short-chain 
fatty acids also leads to a contraction in the pool of regulatory T cells 
in the colonic mucosa134–136. These changes in the host physiology 
increase the inflammatory tone of the mucosa, as indicated by the 
elevated expression of Nos2, the gene that encodes inducible nitric 
oxide synthase, and contributes to the expansion of commensal E. coli 
through nitrate generation137. Although other mechanisms probably 
contribute to the post-antibiotic expansion of certain populations of 
bacteria in the gut126, the transfer of Clostridia, with their capacity 
for producing short-chain fatty acids, represents the most effective 
treatment for limiting the growth of E. coli in streptomycin-treated 
mice138.

By contrast, the post-antibiotic expansion of the C. difficile 
population is driven by a depletion of secondary bile salts. The liver 
produces the primary bile salts cholate and chenodeoxycholate, which 
are conjugated to the amino acids taurine (to produce taurocholate 
and taurochenodeoxycholate) or glycine (to produce glycocholate 
and glycochenodeoxycholate) and then secreted into the gut. Bile 
salt hydrolases, enzymes that are produced by many members of the 
gut microbiota, remove the conjugated amino acid from the primary 
bile salt. C. scindens is one of a limited number of species of bacteria 
that can actively transport cholate and chenodeoxycholate into its 
cytosol, where these unconjugated primary bile salts are converted 
into the secondary bile salts deoxycholate and lithocholate, which 
are subsequently secreted into the extracellular environment139 
(Box Fig.). Although both primary and secondary bile salts induce the 
germination of C. difficile spores, only secondary bile salts efficiently 
prevent the growth of vegetative C. difficile cells140. By significantly 
reducing the abundance of species that are capable of producing 
deoxycholate and lithocholate, treatment with antibiotics causes a 
depletion of these secondary bile salts and promotes the expansion 
of vegetative C. difficile cells in the large intestine141,142. Faecal 
microbiota transplantation restores the production of secondary bile 
salts and therefore prevents the expansion of C. difficile143. Direct 
supplementation of the diet with secondary bile salts warrants caution 
because increased concentrations of bile salts have been linked 
to gastrointestinal cancers144. However, inoculation with only the 
secondary-bile-salt-producing C. scindens confers mice with resistance 
to C. difficile expansion following treatment with antibiotics128. This 
remarkable observation opens the door to novel precision microbiome 
interventions that aim to prevent or treat the colitis that is associated 
with C. difficile infection after antibiotic therapy.

BOX 1 

Microbiota interventions as therapeutic  
strategies to limit pathogen expansion
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by binding to enterobactin, a low-molecular-weight iron chelator (or 
siderophore) that is produced by Enterobacteriaceae110,111. To overcome 
this, S. Typhimurium and some commensal E. coli secrete a glycosylated 
derivative of enterobactin, termed salmochelin, which is not bound by 
lipocalin-2 (ref. 108). By producing salmochelin as well as two further 
siderophores that are not bound by lipocalin-2, yersiniobactin and aero-
bactin, the probiotic E. coli strain Nissle 1917 can limit the expansion of 
S. Typhimurium in the lumen of the inflamed gut112. Conversely, lipoca-
lin-2 secretion by the epithelium generates an environment that enables 
S. Typhimurium to edge out commensal Enterobacteriaceae that depend 
solely on enterobactin for the acquisition of iron109 (Fig. 3).

Through its limitation of iron availability, intestinal inflammation also 
sets the stage for battles between Enterobacteriaceae that use protein-
based toxins known as colicins113 that affect a narrow range of hosts. Iron 
limitation induces the synthesis of siderophore receptor proteins for the 
bacterial outer membrane113, which also commonly serve as receptors 
for colicins114–116. Expression of a siderophore receptor protein termed 
the colicin I receptor (CirA) confers commensal E. coli with sensitivity 
to colicin Ib produced by S. Typhimurium113. The respiratory nutrient 
niche that is generated by the inflammatory response of the host is there-
fore a battleground on which commensal and pathogenic Enterobacte-
riaceae struggle for dominance using a diverse arsenal of nutritional and 
antimicrobial strategies.

Perspective and the future
The study of the microbiome began more than a century ago. equenc-
ing of 16S rRNA genes provided the first insights into the taxonomic 
composition of microbial communities. Later, sequencing of the com-
plete metagenome of microbial communities provided a more detailed 
insight into the full genetic capacity of such a community. The use of 
germ-free animals, either alone or in combination with emerging tech-
nologies such as laser-capture microdissection and transcriptomics, ena-
bled mechanistic studies of the associations between the microbiota, the 
host and pathogenic bacteria117. Multi-taxon insertion sequencing now 
allows researchers to investigate both the assembly and the shared and 
strain-specific dietary requirements of communities of microbes, and 
it has also facilitated the informed manipulation of such communities 
through diet118. The development of quantitative imaging technologies 
has provided insight into the localization of microbes within the gastro-
intestinal tract, and it has also enabled studies on the proximity of and 
interactions between microbes119. The increasing refinement and power 
of metabolomics, imaging mass spectrometry and three-dimensional 
mapping of mass-spectrometry data provide a high-resolution image of 
the complex chemistry landscape of the interactions between microbes 
and the host, which sets the stage for manipulating this chemistry to pre-
vent or treat infectious diseases24,38,120–127. A marriage of metagenomics 
and mathematical modelling promises to enhance the precision of 
microbiome reconstitution, which has proven successful for tackling 
C. difficile infections in mice128. In these exciting times, the expansion of 
multidisciplinary research is rapidly generating new technologies and 
mechanistic insights into interactions between the microbiota, the host 
and pathogenic bacteria (Box 1). ■
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