Claire Smith
Editor

Encyclopedia of Global Archaeology

With 2619 Figures and 106 Tables

Springer Reference
South America: Lithic Industries

Antoine Lourdeau
Departamento de Arqueologia, Universidade Federal de Pernambuco, Recife, PE, Brazil

Introduction

The lithic industries of South America constitute a privileged archaeological record for the reconstruction of the modalities for human settlement of this region, relatively recent on a global scale, and the techno-cultural identities of the human groups who occupied it.

Often focused on bifacial projectile points, studies have nonetheless demonstrated an impressive range of variability in knapping concepts and technological solutions employed by the first inhabitants of this vast and varying landscape. Our knowledge of such techniques is not yet as refined as in other parts of the world. It is, however, already possible to identify the broad developmental lines of these lithic industries and to distinguish techno-cultural groups relatively well defined in time and space.

Definition

The lithic assemblages form the principal evidence of the very first human activities on the continent, probably starting in oxygen isotope stage 3, less than 50,000 years ago. Use of stone persisted until contact with the first European colonists at the beginning of the sixteenth century and often even after. The major originality of South American prehistory is the expansion of human settlement of this subcontinent, linked in part to two elements: (1) the relative isolation of this area, flanked by two vast oceans and accessible by land via a narrow isthmus and (2) the recent date, on a global scale, of the first human presence. The approach to the history and evolution of techniques on the continent is thus limited to a much more restrained timescale than elsewhere. These techniques underwent a unique sequence of development, which appears to have been linked as much to local dynamics as to external contributions.

From a strictly technological viewpoint, the main characteristics of the South American lithic industries are common to all prehistoric lithic production systems. The broad families of knapping techniques are found in all of the industries in South America: shaping, which can be bifacial or unifacial; reduction processes, represented by concepts considered little developed but also sometimes by laminar, lamellar, and Levallois concepts. Similarly, most of the known knapping techniques are represented here: direct stone percussion, bipolar percussion on anvil, direct organic percussion, and pressure flaking. It is thus with the same methodological kit used elsewhere that these lithic industries are examined and in particular by technological, technofunctional, and use-wear approaches.

However, the South American lithic production systems are not devoid of originality, because while lithic knapping concepts are finite, methods of exploitation of stone and especially knapping objectives, that is, the intended tools,
can be represented by a number of aspects. In the specific context of South American prehistory, new technological solutions were invented. These particularities are discussed below.

Historical Background

Apart from rare ethnographic comments by chroniclers and the first European voyagers, the earliest references to the South American lithic material date to the mid-nineteenth century. As for most of the continents at that time, what really matters is not the lithic artifact as evidence of a specific technological activity but rather as the marker of a human presence in the distant past. This is the case, for example, for the pioneering research of the Danish intellectual P. Lund, who sporadically mentioned the lithic material recovered during his excavations around 1840 in the Lagoa Santa region (Brazil) to support his discoveries of human remains found in stratigraphic layers assumed to be very old (Fig. 1).

It is also in this context of debate on the antiquity of human occupation of the Americas that F. Ameghino would use, at the beginning of the twentieth century, complementary to the bones discovered, the lithic material recovered on the pampas to propose his hypothesis of an Argentine origin for our species. This theory was vigorously discussed, notably by A. Hrdlicka, but the positive effect of this debate led to more detailed analyses of the lithic material. As a direct result, one of the first rigorous and in-depth studies was carried out by W. Holmes, on artifacts collected by A. Hrdlicka during surveys along the northern coast of Argentina. These were principally cobbles industries, transformed by pecking, percussion, or knapped using the bipolar on anvil method. This material, coming mainly from surface collection, is of undetermined age. The 1912 publication presents many innovative elements: in addition to an initial typology and many illustrations of excellent quality, we find comments on the criteria for raw material selection by the knappers and on the modes of production for stone tools, with some experiments on knapping techniques (Hrdlicka 1912).

South America: Lithic Industries, Fig. 1 Distribution map of the archaeological sites mentioned in the text. 1: Taima-Taima, Venezuela; 2: El Abra, Columbia; 3: El Inga, Ecuador; 4: Paiján; 5: Guitarrero cave; 6: Telarmachay; 7: Pikimachay; 8: Asana, Peru; 9: Pedra Furada and Sitio do Meio; 10: Lagoa Santa region; 11: Serranópolis; 12: Santa Elina, Brazil; 13: Monte Verde, Chile; 14: Cerro La China; 15: Los Toldos, Argentina; 16: Fell’s cave; 17: Cabo San Vicente, Chile

It is only in the 1930s that the lithic material was studied in its own right, as evidence of prehistoric human identities and activities. One of the key figures in research at this time is J. Bird, who excavated main sites in Patagonia (Bird 1988). Based principally on bifacial projectile points that he discovered, Bird established a typology structured in successive chronological phases. In 1950, with the invention of radiocarbon dating, Bird’s studies took on a new dimension: the dates obtained for the earliest phase that he defined were older than 10,000 years at Fell’s Cave, dates much older than anticipated. Considering the settlement theories and data obtained from North America, these dates would imply a very rapid movement of the initial occupants to the south. Following these discoveries, the lithic industries found in South America would have a tendency to be systematically studied through the filter of what is known in the north.
In the South American material, one would thus look for markers typical of the Clovis culture, assumed to be the oldest in the Americas. The Clovis point, a bifacial foliate armature with a fluted base, is the emblematic element of the first assumed industries in North America. It is not found in South America, but the discovery of bifacial projectile points with small thinned tang (called “fishtail” points) by J. Bird in the early layers at Fell’s Cave suggested a southern adaptation of the North American point. This hypothesis was all the more followed when it was seen that fishtail points were not confined to Patagonia but were also common further to the north, in the Pampas (Fig. 2) and also on the Pacific coast in Peru and Ecuador, for example, at the site of El Inga.

This view of the Clovis culture as the sole origin of all human (and thus technological) manifestation in the prehistory of the Americas would dominate throughout the second half of the twentieth century and even today still have its supporters. However, in the 1960s and 1970s, a few dissenting voices made themselves heard. Based on the position maintained by A. Krieger, according to which the first American lithic industries lacked bifacial projectile points, A. Bryan argued that South American industries with projectile points at the Pleistocene-Holocene transition and during the
Early Holocene resulted from evolution from a local Pleistocene substrate (Bryan 1999). He thus argued against the idea that all South American lithic technology was due to migration from the north.

Such “liberation” of South American prehistory from its influence from the north would open the field to consider the variability within the lithic industries, both spatially and diachronically. From then on, true technological groups would be described, not only on the basis of bifacial projectile points, thus revealing the considerable variety of industries within South America. So, in the 1960s–1970s, the Abriensian would be defined by G. Correal and T. Van der Hammen, later termed the Edge-Trimmed Tool Tradition by W. Hurt, in central Colombia, the Paijanian by P. Ossa in northern Peru, the Andean Biface Horizon by E. Lanning in the Andes mountains, the Itaparica Tradition by V. Calderón and then P. Schmitz in central and northeast Brazil, the “Cerca Grande” complex by W. Hurt and O. Blasi at Lagoa Santa, the Umbu and Humaitá Traditions by E. Miller in southern Brazil, the Toldensian and the Casapedrensian by O. Menghin, and then A. Cardich in Argentinean Patagonia, to cite only a few (Dillehay 2000; Lavallée 2000).

As on the other continents, the approach to the lithic industries in South America would undergo significant changes during the 1970s. Very generally, two broad trends developed. The first, influenced by the Anglo-Saxon school, is characterized by a new perspective with respect to the material and the questions that can be addressed by it. Cultural questions and definitions of technological groups take second place in particular to processes, spatial organization, social evolution, and modes of adaptation to different environments. Lithic raw material analyses, their nature, provenance, and mode of circulation, develop considerably, especially in Argentina. The second trend is the result of a methodological approach rather than a change in perspective. Questions of a cultural order remain at the heart of research problems, behavioral approaches not being as excluded as in the first trend. This approach is based on the observation according to which the typological approaches to the material thus far are not sufficient for a complete understanding of the lithic material. The definitions of cultural groups by a simple list of types are seen as scarcely operational. A new, more technological, approach to lithic production was thus developed. Research is no longer focused only on the tools made but also examines the technological processes and the knowledge and know-how applied by the knappers. This approach, coming out of French research on lithic technology, is particularly heuristic for the interpretation of the differences observed between collections. Technological studies thus enable reevaluation of the validity of the previously defined cultural units and rationalization of the increasingly marked trend during the 1970s to create a new group, a new “tradition” or “culture” at each new site discovered. We note, among the studies done in this perspective, those of C. Chauchat and J. Pelegrin on the Paijanian industries (Chauchat et al. 2004), H. Nami on the Levallois debitage in southern Patagonia and Tierra del Fuego (Nami 1992), and more recently, the analyses of N. Pigeot, also on Patagonian material (Pigeot 2003).

With the rise of local research centers, the discovery and analysis of lithic assemblages have considerably multiplied in South America over the last two decades. Approaches remain most often more typological than technological, but knowledge has improved in the broad regions previously unknown, and the chronological framework for the analyses has expanded to include the periods as recent as the end of the Pleistocene and the Early Holocene. New methods to analyze the industries has also seen significant development, such as the technofunctional analyses in Brazil, which enables the finished products (tools) to be once again included in the discussion of technological processes and intentions (Fig. 1).

Key Issues

What Do the Points Tell Us (or Not)
Throughout the Americas, projectile points are the most commonly exploited artifacts in the
lithic assemblages to address the questions of human settlement, spread, and circulation during prehistory. The contours of such points enable definition of types, for which one attempts to perceive development through time and to interpret the meaning of their distribution across space. To the north, this typological approach has been proven and the chronological and geographic limits of the different categories of bifacial foliate points (Clovis, Folsom, Plano, etc.) can be clearly followed. In South America, attempts at typology on a continental scale are not lacking, but apart from a few zones, this approach has not been particularly fruitful. This may be due first to the near complete absence of points in vast regions, such as central and northeast Brazil. In addition, the defined types often have a limited spatial distribution and are represented by fairly low frequencies.

Fishtail points are, however, an exception. These short bifacial points, with convex edges and a tang often thinned by what is interpreted as a small flute, have been found in Argentina, Chile, Peru, and Ecuador, in contexts dating to the Pleistocene-Holocene transition (Fig. 2). This flute has led to many publications regarding the possibility of the relationship between the fishtail point and the Clovis point. Dominant in the first half of the twentieth century, this interpretation of the fishtail point as a development of its homologue to the north is today far from being unanimous. The only argument of the “flute” is quite weak since technological studies have demonstrated that, in most cases, these small removals thinning the tang were made during the shaping phase of the piece and not at the end of the production phase. They are thus not truly flutes or grooves. Therefore, several authors attribute a possible South American origin to this type of point (Politis 1991), and some even argue that there is not a single fishtail point type but several, each with its own regional origin and that their similarity is due to morphological convergence (Borrero 1983 cited in Nami 2010). Many other types of projectile points have been defined in South America, such as the “El Jobo” lanceolate point in Venezuela, the long-tanged point of Paiján type on the northern coast of Peru, and the Ayampitín point, one of many Andean point types. These artifacts were made by bifacial shaping with soft percussion, sometimes completed by a phase of pressure flaking. But fishtail points, probably the most studied type and for which the spatial distribution is the largest, are particularly representative of the limited potential of projectile points for approaching questions going beyond a regional scale. The principal danger of all morphological interpretations is the convergence of forms. To prove the existence of a historical link between two types of artifacts, one may ask, “Is the simple criterion of form really valid?” These variations between projectile points indicate limited technological differences, since the technical knowledge and skills needed are overall the same regardless of the kind of point produced and, excluding a few specific cases, the functional intentions appear to be similar. This variability may be linked to technological procedures related to different hafting modes. However, these differences may rather evidence, at least in part, stylistic variability, in other words, relatively versatile traits of technological productions that are difficult to follow for prehistoric periods. These traits are not necessarily markers of significant differences between the human groups studied.

The development of technological approaches to lithic assemblages has shown that, in order to estimate the degree of difference between several assemblages, it is necessary to study them at the scale of shaping concepts and not be limited to simply the forms resulting from application of such concepts. The profusion of publications on projectile points has had a tendency to overshadow the rest of the lithic industry, which forms the overwhelming majority of material recovered, and represent a potential often little exploited to study the development of techniques on the continent and the definition of cultural groups.

Industries of the First South Americans

Often mentioned to question their age or to discuss their human origin, South American industries dating to the Pleistocene are more rarely examined from a technological view. The earliest
lithic productions discovered would date to oxygen isotope stage 3. At Pedra Furada (Brazil), a production based solely on quartz and quartzite cobbles has been found in layers dating between 50,000 and 15,000 BP (Parenti 2001). These cobbles were shaped into different classes of massive tools by uni- or bifacial removals and were knapped in the aim of obtaining flakes. Such reduction was organized into short series of removals, generally unidirectional. Bipolar on anvil reduction has also been identified. Most of the flakes obtained are cortical and sometimes retouched. At Santa Elina (Brazil), the toolkit from stratigraphic assemblage III, dating to around 25,000 BP, was obtained from limestone plaquettes and flakes (Vilhena Vialou 2005). The latter were produced via simple reduction. The supports were sometimes retouched, generally by abrupt retouch, in order to create concave or denticulated edges. In layer MV-I at Monte Verde (Chile), dated to around 33,000 BP, a few pieces of knapped basalt were found, including a core showing the production of small flakes in unidirectional series.

These early lithic industries are thus always very simple. The tools are essentially made of natural untransformed volumes (cobbles or plaquettes) on which only the edges were retouched. Tools are also sometimes made on flakes. These come from reduction processes in which the cores were subject to short series of removals without prior preparation. Shaping is absent in these industries.

Sites dating to the end of the Pleistocene, between 15,000 and 12,000 BP, attest in particular the appearance of bifacial shaping. This appears to be associated from the start with the production of projectile points, as at Taima-Taima (Venezuela) and layer MV-II at Monte Verde (Dillehay 1997). In these two cases, lanceolate bifacial points were found. These are elongated, untanged, shaped by soft percussion, and traditionally associated with the El Jobo type. The production of tools on natural supports (cobbles or plaquettes) and on flakes obtained by short series is still present, either in association with shaping activities, as at Taima-Taima and Monte Verde, or exclusively, as at Sítio do Meio (Brazil) and Pikimachay (Peru). Monte Verde is further set apart by the discovery of ground stones, including two small grooved cobbles.

Flaking Systems and Main Technocomplexes

The objective here is not to list, site by site, the lithic material produced. This section being thematic, a purely chronological organization is not presented but rather an overview based on the principal technological systems encountered throughout South American prehistory. This is, of course, a very general and fragmented summary, the reflection of current knowledge on this topic.

Ubiquitous “Simple” Reduction Process

Flake production from “simple” reduction processes are found throughout the continent, in all time periods and in significant proportions during South American prehistory. Such omnipresence has, in a way, slowed detailed studies of the lithic industries. Indeed, what can be said, from a typological viewpoint, of an industry where no standardization of products can be clearly seen? A technological approach to these industries, and in particular to the cores, enables the observation that reduction is structured in relatively short series, often unidirectional, in which the sequence of removals is based on naturally present criteria of convexity, without advance preparation of the block of raw material. It is possible to differentiate groups of methods by the mode of core management: number of flakes produced by series, organization of removals within a single series, number of series per block, and organization of these series on a single block (Fig. 3). Knapping techniques also offer a second degree of differentiation of the industries: all of this reduction is carried out by direct stone percussion, but some cores were exploited by launched percussion, without support, and others by bipolar on anvil percussion. Bipolar on anvil percussion is effectively common through the continent, particularly when knapping small volumes.

Description of intentions, or the classes of intended tools, forms another criterion of variability for this type of production. This is without
doubt the most significant criterion to isolate techno-cultural groups. For such industries without standardization of blanks, the typological approach, which aims to identify artifact classes based on form, is not suitable. Determination of flaking objectives must be done by a techno-functional analysis that combines tool production schemas, the volumetric structures of the tools, the functional potentials of their active parts, and modes of grasping or hafting. Such analyses, still rare, have enabled identification, for example, in central Brazil during the Early Holocene, of the systematic intent to create short tools with a concave or denticulated edge opposite a back on flakes produced by “simple” reduction (Mello 2005).

Regions Noted for the Development of Bifacial Shaping
The utilization of bifacial shaping is observed from the end of the Pleistocene in several regions of South America, in particular for the production of projectile points. In addition to these armatures, the use of bifacial shapes also enables the creation of a broad range of tools, varying as much as tools on flakes. One of the areas notable for the development of bifacial shaping to produce a wide range of tools is the Central Andean zone. In several sites dating from the end of the Pleistocene to the Late Holocene, including Guittarrero, Telarmachay, and Asana in Peru, bifacial shaping constitutes a privileged mode of blank production (Lynch 1980; Lavalleé 1985). The different types of projectile points generally represent more than half of such production, but a varied toolkit is also sought. Bifacial artifacts that are not point have had a tendency to be considered, sometimes with reason, as point preforms abandoned during the production process. However, many of these are clearly finished tools, with edges prepared by fine retouch (Fig. 4). They are supports probably destined for different functions and are comparable in this sense to the “bifaces” (or “handaxes”) known in the Old World in earlier periods. The Andean bifacial pieces are always associated, in the
archaeological assemblages, with many unifacially retouched flake tools.

In southern Brazil, bifacial retouch is also a technological solution especially used to obtain tool blanks in archaeological assemblages of the Umbu and Humaitá traditions, dating from the Early Holocene to more recent periods (Hoeltz 2005).

“Complex” Reduction Methods Still Less Tangible

The existence of exclusively blade production has long been known in Patagonia, in particular in the Casapedrense layer at Los Toldos, in Argentina (Middle Holocene) (Cardich & Flegenheimer 1978). Yet the technological traits of this reduction process and its geographic extension and development through time are still difficult to determine, due to lack of technological studies of the collections. Some indices of this type of production are also mentioned for more northern zones, in northwest Argentina and southern Brazil (Hoguin 2012).

Based on the available data, this is clearly a reduction system in which the entire core is structured to produce only blade, the angle and front being maintained during the production of these blanks. The block is at least partially prepared (presence of crests), and the technique used is hard or soft percussion. No pressure flaking has as yet been described in South America. “Blades” and “bladelets” are mentioned in several other regions, but, given the lack of detailed description of the cores, it cannot be excluded that such elongated blanks could have been obtained during non-elongated flake production.

Predetermined flake production from cores for which the volumetric structure is identical in all respects to the Levallois system in the Old World has been identified by H. Nami in Patagonia (Nami 1992). Levallois reduction, until then known in quite different geographic and chronological contexts, is present in Patagonia with the same variability as elsewhere: preferential and recurrent flake methods have been described by F. Morello at Cabo San Vicente, Tierra del Fuego (Morello 2005) (Fig. 5). For now, this reduction system is limited to the extreme southern tip of the continent, in contexts dating to the Late Holocene. Based on the traits of some of the published flakes, it could, however, extend across a broader area and go back to earlier periods.
Unifacial Shaping: An Original Technological Solution?

Unifacial shaping constitutes a fairly common mode of blank production in South America between the end of the Pleistocene and the mid-Holocene. This is a relatively original solution with respect to the history of lithic flaking techniques, situated between shaping and reduction. The procedure consists of shaping large flakes only on their dorsal face, while the ventral face is never directly modified. The volumes obtained in this way are generally elongated, with an overall plano-convex section. Such pieces differ from flake tools with unifacial retouch by the fact that the removals after knapping clearly alter the initial volume of the blank and are not intended only to create or modify the active parts of the tool. Unifacial shaping is observed essentially in central and northeast Brazil in the Itaparica technocomplex (Lourdeau 2010). Detailed analysis of the Serranópolis collections have enabled determination that the tools obtained, often termed limaces, systematically have a symmetrical transformative part at one end, with a rounded, pointed, or transversal rectilinear delineation (Fig. 6). The analysis has demonstrated that these blanks were probably destined for several different functions and a single piece could have several independent functional parts on the ends and/or the
lateral edges. These are thus, like some bifacial pieces, supports for varied tools. Similar pieces exist further to the west, in Peru, Ecuador and Colombia, and to the south in Argentina, also dating to the Early and Middle Holocene.

This rapid overview of the main technological solutions that can be encountered in the South American lithic industries enables one to appreciate the significant variability in lithic production. One finds most of the concepts, methods, and reduction techniques known in other regions, but their position in time and space remains difficult to determine. To this can also be added certain uniquely South American practices, such as unifacial shaping, a practice that has not as yet been observed elsewhere.

International Perspectives

Despite a certain idea of isolation associated with South American prehistory, full understanding of the South American lithic industries requires an overall vision of these productions. Only such a broad perspective enables us to attempt to interpret the variability in the lithic industries,
determine their local or external origin, and thus explain the dynamics of human settlement of South America.

One can consider the signification of the very first lithic industries here. They are still fairly poorly understood but are based only on natural volumes or blanks produced by simple reduction. These productions are fairly out of sync with the development of contemporaneous industries on other continents (with the exception perhaps of East Asia). Is this local development or should we look elsewhere for the origin of such production systems? One or the other of these alternatives involves in its turn many questions.

As for bifacial shaping, this technique appears abruptly in the form of projectile points without intermediary stages. Based on data for the development of bifacial shaping observable in other regions, its presence in South America could thus be interpreted as an external contribution, already at a certain stage of development.

Unifacial shaping, in contrast, appears to have had its own unique development in South America. A few examples of limaces have been mentioned in North America, but as yet nothing described is comparable to the productions in the Itaparica technocomplex. In Southeast Asia, the Hoabinhian is also known for its unifaces made on cobbles. However, important differences exist between these and the South American industries with respect to concepts of volumes and tools.

The example of the lithic industries of South America, and the singular context of its prehistory, may in addition enable understanding of certain important phenomena for the global explanation of technology (Boëda 2005). How better to illustrate technological convergence, that is, the independent development of two similar flaking systems, than by the example of Levallois reduction in Patagonia? The lack of geographic and chronological continuity with the Levallois of the Old World is so obvious that it excludes any hypothesis of diffusion. South American blade production, while still lacking detailed technological description, would appear to be another example of convergence.

Future Directions

The next few decades should be decisive for the study and explanation of the South American lithic industries. The creation of new research centers, as well as a return to detailed studies of the material (relatively neglected for awhile in favor of more general considerations) but with more rigorous methods, foreshadow a clear increase in technological analyses of the modes of blank production and the tools which are the objective of such reduction. These new studies, coupled with new dating programs (particularly by OSL), should enable refinement of the regional sequences and offer the possibility of reconstructing a general framework for the development of lithic industries on a continental scale. New approaches, particularly use-wear analysis, will widen the field of knowledge of this material.

Cross-References

- Acheulean Industrial Complex
- Bird, Junius
- Handaxes and Biface Technology
- Hrdlička, Aleš
- Lithic Technology, Paleolithic
- Monte Verde, Archaeology of
- Mousterian Industry Tradition
- Paleoindians
- Pedra Furada, Archaeology of
- Peopling of the Americas
- Technological Studies in Archaeological Science

References

Further Reading

Introduction

Problematic Entrance as Entrance to the Problematic

A South American postcolonial perspective on any problem involves, first and foremost, a consideration of whether or not South America is a place from which it is possible to have such a perspective. If such perspectives are indeed postcolonial, this suggests two possibilities: (1) that they were later to a colonial experience or (2) that they were inspired by a body of theory and assumptions designated as postcolonial. Those options are external because they could mean that the colonial experience is a thing of the past – thus post – or that postcolonial theory is something that you can embrace or reject as any other theory. However, that the colonial experience, on the one hand, was not surpassed by political independence and, on the other hand, is constitutive of subjectivity becomes immanent to the perspective and not external to it. Whether we call it postcolonial or otherwise, the colonial experience is immanent to the place of these theories. The postcolonial world, in this case, is more a pre-theoretical condition than a theoretical framework, i.e., more a condition of thinking, of knowledge, than a knowledge about a delimited field of content. Moreover, once introduced into theory, that postcolonial pre-theoretical condition is, at the same time, metatheory, i.e., it is theoretical knowledge about theory and its conditions. Finally, as knowledge about the conditions of knowledge, it leads through to the possibility of overcoming the conditions of coloniality, something which has been designated as a decolonial option.

If, even more, these South American postcolonial perspectives are given in the disciplinary framework of archaeology, two other issues must be weighed: (1) the object-history of archaeology established as prehistory, i.e., a historical narrative of a time without history, i.e., as an anomalous history, and (2) the importance of disciplining and institutionalization in the demarcation of the boundaries of the object-history, demarcation which is, at the same time, of the subjectivity of history.

Finally, if we try to make history of these perspectives – as this entry suggests – we could either consider history as a narrative of what happened objectively and externally or recognize from the beginning that history itself – its idea, its method, and its scope – is an integral and active part of colonialism and the conditions of possibility of postcolonial (and even decolonial) archaeologies in South America.

Key Issues and Current Debates

Colonial Designations and the Place of Theory

I shall begin with the first of the assumptions referred to in the preceding paragraph: that South America is a place from which a perspective on archaeology can emerge. This, again, leads to the colonial question, at least in two senses. It is clear that South America (or Latin America, or Ibero America, or Hispanic America, or any of the usual geographical categories) is the result of the history of colonial designations. America was not a geographical name or its real referent until 1507 when Martin