Seleção natural

Bio 0208 - 2017

Diogo Meyer

Departamento de Genética e Biologia Evolutiva Universidade de São Paulo

Leitura básica: Ridley 5.6, 5.7, 5.10, 5.12

Seleção Natural

Lembremos o quão complexas e ajustadas são as relações mútuas dos seres vivos uns aos outros e às suas condições físicas de vida. Seria então, improvável, pensar que variações úteis de algum modo a cada ser na grande e complexa batalha da vida, devam às vezes surgir ao longo de milhares de gerações? E se isso ocorre, podemos duvidar (lembrando que mais indivíduos nascem do que podem possivelmente sobreviver) que indivíduos com qualquer vantagem, por mais sutil que seja, sobre os outros, teriam uma melhor chance de sobreviver e procriar? Por outro lado, podemos ter certeza que qualquer variação minimamente prejudicial seria rigidamente rejeitada. Essa preservação das variações favoráveis e a rejeição das prejudiciais eu chamo de Seleção Natural.

Charles Darwin, em A origem das espécies, 1859

Visão contemporânea

 \rightarrow se há variação na população

→ se essa variação contribui para a sobrevivência e reprodução diferencial

 \rightarrow se essa variação é herdável

Haverá seleção natural

Quando há seleção natural?

Genótipo	AA	Aa	aa	
ao nascimento	150	210	140	
entre adultos	75	105	70	
sobrevivência	50%	50%	50%	

Não há seleção: probabilidade de sobrevivência é igual para todos genótipos

Quando há seleção natural?

Genótipo	AA	Aa	aa
ao nascimento	150	210	140
entre adultos	100	140	70
sobrevivência	2/3	2/3	1/2
sobrevivência <u>normalizada</u>	1	1	3/4

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficiente seletivo é s=0,25
- "s" Mede decréscimo de sobrevivência devido à seleção

Um modelo populacional para seleção natural (agora em proporções)

Genótipo	AA	Aa	aa
Valor adaptativo	WAA	W _{Aa}	Waa
Valor adaptativo relativo	Waa /Waa	W _{Aa} /W _{AA}	W _{aa} /W _{AA}
Em função de "s"	1	1	1-s

Nesse exemplo:

- Valores adapativos $W_{AA} = 1$; $W_{Aa} = 1$; $W_{aa} = 3/4$
- Coeficiente seletivo é s=0,25
- "s" Mede decréscimo de sobrevivência devido a seleção.

O modelo genético de seleção

Parâmetro do modelo evolutivo	No modelo de seleção
Tamanho da população	Infinitamente grande
Cruzamento	aleatório
Sobrevivência e reprodução dos genótipos	Diferente entre genótipos
mutação e migração	Não há

Um modelo populacional para seleção natural

Genótipo	AA	Aa	aa
Valor adaptativo	1	1	1-s

Um modelo populacional para seleção natural

Genótipo	AA	Aa	аа
nascimento	p ²	2pq	Q ²
Aptidão	1	1	1-s
adultos	p ²	2pq	q² (1-s)

como calcular:

Exemplo de seleção

Redução de forma melânica de biston betularia em regiões sem poluição, na Inglaterra.

Um modelo populacional para seleção natural

	AA	Aa	aa
Ao nascimento	p^2	2pq	q^2
Valor adaptativo	W _{AA}	W_{Aa}	Waa
Entre adultos	$p^2 W_{AA}$	$2pqW_{Aa}$	$q^2 W_{aa}$
Entre adultos normalizado	$\frac{p^2 W_{AA}}{\bar{W}}$	$\frac{2pqW_{Aa}}{\bar{W}}$	$\frac{q^2 W_{aa}}{\bar{W}}$

$$\bar{W} = p^2 W_{AA} + 2pq W_{Aa} + q^2 W_{aa}$$

$$p' = \frac{p^2 W_{AA} + pq W_{Aa}}{\overline{W}}$$
$$q' = \frac{q^2 W_{aa} + pq W_{Aa}}{\overline{W}}$$

Diversos regimes seletivos

AA	Aa	аа	Alelo vantajoso	Alelo deletério
1	1	1-s	dominante	recessivo
1	1-s	1-s	recessivo	dominante
1	1-(s/2)	1-s	aditivo	
1-s	1	1-t	vantagem do heterozigoto	

Exemplos de seleção natural

1. Diversidade reduzida

Bersaglieri et al., 2004

Um exemplo de homogeneidade: lactase em humanos

2. Diferenciação aumentada

Diferenciação aumentada

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção?

Diferenciação aumentada

Com seleção

Só com deriva

Seleção natural em populações humanas

Comparando Tibetanos e Chineses:

Gene EPAS1:

Frequência do alelo A em Chineses: 10 % Frequência do alelo A em Tibetanos: 90%

Como saber se diferença resulta de seleção? \rightarrow ver se deriva explicaria tamanha diferença

Yi et al., 2010

Alta diferenciação: gene SLC24A5

Alta diferenciação: evidência de evolução adaptativa da **pigmentação** (Northon et al., 2007). Nesse caso o alelo comum na Europa e parte da Ásia contribui para a pigmentação cara, e foi favorecido nessas regiões.

3. Distribuição geográfica de alelos

Valor adaptativo em zonas de malária

W_{AA} = 0,88 W_{SS} = 0,14 **W_{AS} = 1,00**

Desafios para estudar a seleção natural

O modelo que vimos é muito simples!

O mundo real tem várias <u>complicações</u>.

Complicação: ligação física

Região influenciado por carona genética

Complicação: pleiotropia

Valor adaptativo em gene que influencia resistência a antibiótico

Com antibiótico:

Com alelos de resistência: W=1 Sem alelo de resistência W=0

Sem antibiótico:

Com alelos de resistência: W=0,5 Sem alelo de resistência W=1

Pleiotropia: um mesmo gene influencia vários fenótipos

Complicação: carga genética

AA	Aa	аа	
1-s	1	1-t	vantagem do heterozigoto

A população com valor adaptativo médio máximo seria uma só de heterozigotos.

Mas ela nunca se manterá, pois sempre se formam homozigotos, apesar deles serem menos vantajosos.

Quando há vantagem de heterozigoto

 mutação S é mantida, apesar do homozigoto SS ter aptidão baixa.

- Gera indivíduos com anemia falciforme (SS).

Desafio: qual traço é selecionado?

Sobrevivência nem sempre é favorecida

A seleção incide sobre histórias de vida complexas.

Há "tradeoffs":

Fecundidade alta + longevidade baixa (r) Fecundidade baixa + longevidade alta (k)

Exemplo:

ambiente com **alta predação**: seleção favorece alta fecundidade, baixa longevidade.

ambiente com **baixa predação**: muitos lebistes, muita competição, seleção favorece fecundidade baixa, alta longevidade.

Complicação: epistasia

	bl/bl	bl/BL	BL/BL
td/td	0.79	1	0.83

Complicação: dependência de frequência

Traço é mais vantajoso quando raro, menos vantajoso quando comum

Conceitos chave

- Há diferentes tipos de seleção:

- direcional (com diferentes padrões de dominância)
- vantagem de heterozigoto
- Podemos estabelecer um model determinístico de seleção, que prevê mudança de p
- Usamos várias abordagens para detectar seleção
- Há importantes complicações: carona, pleiotropia, epistasia, dependência de frequência.