MAP2220 — aula 18

MAP 2220 - FUNDAMENTOS DE ANALISE NUMERICA
22 Semestre - 2017

Prof. Dr. Luis Carlos de Castro Santos
Isantos@ime.usp.br/lccs13@yahoo.com

— MAP2220

2 Solutions of Equations in One Variahle

2.2 Fixed-Point Iteration

Definition 22 The number p is a fixed point for a given function g if g(p) = p.

e Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at
p in a number of ways,. for example, as

glx)=x— f(x) oras g(x)=x+4+3f(x).

e Conversely, if the function g has a fixed point at p, then the function defined by
fx) =x—g(x)

has a zero at p.

Theorem 2.3 MAP2220

(i) If g € Cla,b] and g(x) € [a,b] for all x € [a, b], then g has at least one fixed
point in [a, b].

(ii) If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

lg'(x)] <k, forallx e (a,b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.) u
YA
.}J = I
b+ |
' |
| |
| |
p=glp)+ |
|
I
| -y = gl
I
a - v I
I I I -
a p b X

Proof

MAP2220

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) = aand g(b) < b. The function h(x) = g(x)—x is continuous on [a, b], with

(ii)

hia) =g(a) —a =0 and h(b)=2g(b)—b <.

The Intermediate Value Theorem implies that there exists p € (a, b) for which
h(p) = 0. This number p is a fixed point for g because

0=h(p)=g(p)—p impliesthat g(p)=p.

Suppose, in addition, that |g'(x)| < k < 1 and that p and g are both fixed points
in [a, b]. If p #£ g, then the Mean Value Theorem implies that a number & exists
between p and g, and hence in [a, b]. with

g(p)—glq) _ 2(®).

Thus

lp—ql=lg(p)—g@=1g'E)llp—ql <klp—gqgl| < |p—ql.

which is a contradiction. This contradiction must come from the only supposition,
p # ¢. Hence, p = g and the fixed point in [a, b] is unique. moEow

MAP2220

Theorem 2.4 (Fixed-Point Theorem)

Let g € Cla, b] be such that g(x) € [a,b]. for all x in [a, b]. Suppose, in addition, that
g’ exists on (a, b) and that a constant 0 < k < 1 exists with

1g'(x)| <k, forallx € (a,b).
Then for any number p; in [a, b], the sequence defined by
pﬂzg(pn—l)- nZ]-.

converges to the unique fixed point p in [a, b]. B

Proof Theorem 2.3 implies that a unique point p exists in [a, b] with g(p) = p. Since g
maps [a, b] into itself, the sequence {p,}~, is defined for all n > 0, and p, € [a. b] for all
n. Using the fact that |g'(x)| < k and the Mean Value Theorem 1.8, we have, for each n,

|Pn — Pl = 18(Pa—1) — 8(P)| = 18" ED| Pa—1 — p| < k| Pp—1 — P
where &, € (a.b). Applying this inequality inductively gives
|Pn =Pl S Kklpay —pl S K| ppa—pl < --- < k" po—pl. (2.4)
Since 0 < k < 1, we have lim,,_. ~ k" = 0 and
lim |p, —p| < lim k[po —p| = 0.

00
n=

Hence { p,},-, converges to p. A

Corollary 2.5

MAP2220

If g satisfies the hypotheses of Theorem 2.4, then bounds for the error involved in using p,
to approximate p are given by

| pn — pl = K" max{py —a.b — po} (2.5)

and
|pn —p| = l k|PJ —pol. forall n=1. (2.6)
[|

Proof Because p < [a, b], the first bound follows from Inequality (2.4):

| Pn — P < k" po — p| < k" max{py —a.b — py}.

For n = 1, the procedure used in the proof of Theorem 2.4 implies that

| Put1 — Pal = 12(Pa) — 2(Pa-)| < k|pp—Pot] < <K"|p1 — Pol.

MAP2220

Thus form =n = 1.

| Pm — Pl = | Pm — Pm—1 +Pm—1 — -+ Pnt1 — Pal
= |Pm = Pm—1| + | Pm—t = Pm—2l + -+ + | Pu1 — Pl
< k"' pr —pol + K" py — pol + - - - + K" Py — pol
= K"\ pr —pol (1 +k+ k> +---+k""7").
By Theorem 2.3, limy,_.oc P = p. 80

m—n—| oo
|P—Pul = lim_|pm —pa| = lim £"|p1 — pol Zﬂ: k' < k"| pi — pol Zﬂ:k".

But Zﬁﬂk" is a geometric series with ratio £ and 0 < k < 1. This sequence converges to
1/(1 — k), which gives the second bound:

f

- -f:: - - | | | | | |
P — Pl =]_k|P| Pol

MAP2220

2.3 Newton's Method and Its Extensions

Isaac Newton (1641-1727) was
one of the most brilliant scientists
of all time. The late 17th century
was a vibrant period for science
and mathematics and Newton's
work touched nearly every aspect
of mathematics. His method for
solving was introduced to find

a root of the equation

¥y’ — 2y — 5 = 0. Although he
demonstrated the method only for
polynomials, it is clear that he
realized its broader applications.

Newton’s Method MAP2220

Suppose that f € C*[a, b]. Let po € [a., b] be an approximation to p such that f'(po) #
O and | p — pg| 1s “small.” Consider the first Taylor polynomial for f(x) expanded about py
and evaluated at x = p.

2
f(p)=f(po) +(p—po)f'(po) + ——— (P— pn) f (E(p)),

where £(p) lies between p and po. Since f(p) = 0, this equation gives

2
0=f(pa)+(p—pn}f’[pu)+(p pﬂ} fYE(p)).

Newton’s method is derived by assuming that since | p — pg| is small, the term involving
(p— p.;.)z is much smaller, so

02 f(po) + (p—po)f'(po)

Solving for p gives

Figure 2.8 on page 68 illustrates how the approximations are obtained using successive
tangents. (Also see Exercise 15.) Starting with the initial approximation pg, the approx-
imation p; is the x-intercept of the tangent line to the graph of f at (pp, f(po)). The
approximation p, is the x-intercept of the tangent line to the graph of f at (py. f(p1)) and
so on. Algorithm 2.3 follows this procedure.

VA

I |

(P, f(po)

MAP2220

MAP2220

Newton’s method is a functional iteration technique with p, = g(p,_,). for which

g(Pn1) =Pn_1 — M for n = 1. (2.11)

fF(P:r—J]
In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.
It is clear from Equation (2.7) that Newton’s method cannot be continued if f'(p,_,) =
0 for some n. In fact, we will see that the method is most effective when f' is bounded away
from zero near p.

Theorem 26 Let f € C*[a.b). If p € (a.b) is such that f(p) = 0 and f'(p) # 0. then there exists a
8 = 0 such that Newton’s method generates a sequence {p,}" converging to p for any

initial approximation py € [p — é,p + é]. u

Proof The proof is based on analyzing Newton’s method as the functional iteration scheme
Pn = g(prz—l)-: for n 3 le with

MAP2220

Let k be in (0, 1). We first find an interval [p — é. p+ 4] that g maps into itself and for which
lg'(x)| <k, forallx € (p—4d.p+8).

Since f' is continuous and f'(p) #£ 0. part (a) of Exercise 29 in Section 1.1 implies
that there exists a §; = 0, such that f'(x) £ 0forx € [p —&,.p + ;] [a.b]. Thus g is
defined and continuous on [p — &,.p + §,;]. Also

ff@f®—fof'@® _ fof &)
[f'(x)]? [f'(x)]>

forx € [p —&,.p + 8,]. and. since f € C*[a.b]. we have g € C'[p — &,.p + ;1.
By assumption, f(p) =0, so

gx) =1~

, f(p)f'(p)
— :'D
8P =T p

Since g’ is continuous and 0 < k < 1. part (b) of Exercise 29 in Section 1.1 implies that
there exists a8, with 0 = § < 4,. and

12'(x)] <k, forall x e[p—46.p+38].

MAP2220

It remains to show that g maps [p —d.p+d]into[p—4.p+6]. Ifx € [p—d.p +4].
the Mean Value Theorem implies that for some number & between x and p. [g(x) — g(p)| =
lg'(&)l|x —pl. So

lg(x) —pl = lgx) —g(p) = 1g"E)||lx —p| = k|lx —p| < [x —p|.

Since x € [p — 4, p + 4]. it follows that |[x — p| < § and that |g(x) — p| < 4. Hence, g maps
lp —4,p+d]into [p—4,p 4+ 6]

All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence
{p.}2 . defined by

f(pn—l}
ff{prr—l) ?

converges to p forany py € [p — 4, p + §]. "I

p:r:g(pn—l}:pn—l_ fDI'ﬂ:il._,

MAP2220

10 Numerical Solutions of Nonlinear Systems of
Equations 629

10.3 Quasi-Newton Methods 647

0.4 Steepest Descent Technigues 654

[0.5 Homotopy and Continuation Methods 660
0.6 Survey of Methods and Software 663

10.2 Newton’s Method MAP2220

- Newton’s Method for Systems

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima-

tion Xx:

INPUT number n of equations and unknowns; initial approximation x = (x, ..., xp)t,
tolerance TOL; maximum number of iterations N.

OUTPUT approximate solution x = (xy,...,x,;)" or a message that the number of

iterations was exceeded.

Step 1 Setk=1.

Step 2 While (k < N) do Steps 3-7.
Step 3 Calculate F(x) and J(x), where J(x);; = (3fi(x)/dx;) for 1 <i,j < n.
Step 4 Solve the n x n linear system J(x)y = —F(x).
Step5 Setx=x+4+y.

Step 6 1If ||y|| < TOL then OUTPUT (x);
(The procedure was successful.)
STOP.

Step 7 Setk=k+1.

Step 8 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [|

MAP2220

10.3 Quasi-Newton Methods

A significant weakness of Newton’s method for solving systems of nonlinear equations
is the need, at each iteration, to determine a Jacobian matrix and solve an n x n linear
system that involves this matrix. Consider the amount of computation associated with one
iteration of Newton’s method. The Jacobian matrix associated with a system of n non-
linear equations written in the form F(x) = 0 requires that the n* partial derivatives of
the n component functions of F be determined and evaluated. In most situations, the ex-
act evaluation of the partial derivatives is inconvenient, although the problem has been
made more tractable with the widespread use of symbolic computation systems, such as
Maple.

MAP2220

When the exact evaluation is not practical, we can use finite difference approximations
to the partial derivatives. For example,

8 oy o SO+) = f60)
axp h '

(10.10)

where A is small in absolute value and e, is the vector whose only nonzero entry is a 1
in the kth coordinate. This approximation, however, still requires that at least n> scalar
functional evaluations be performed to approximate the Jacobian and does not decrease the
amount of calculation, in general O(n?), required for solving the linear system involving
this approximate Jacobian.

The total computational effort for just one iteration of Newton’s method is consequently
at least n* + n scalar functional evaluations (n® for the evaluation of the Jacobian matrix
and n for the evaluation of F) together with O(n?) arithmetic operations to solve the linear
system. This amount of computational effort is extensive, except for relatively small values
of n and easily evaluated scalar functions.

MAP2220

In this section we consider a generalization of the Secant method to systems of nonlin-
ear equations, a technique known as Broyden’s method (see [Broy]). The method requires
only n scalar functional evaluations per iteration and also reduces the number of arithmetic
calculations to O(n?). It belongs to a class of methods known as least-change secant up-
dates that produce algorithms called quasi-Newton. These methods replace the Jacobian

matrix in Newton’s method with an approximation matrix that is easily updated at each
iteration.

The disadvantage of the quasi-Newton methods is that the quadratic convergence of
Newton’s method is lost, being replaced. in general, by a convergence called superlinear.
This implies that

41
lim - =,
i el
where p denotes the solution to F(x) = 0 and x"’ and x"*" are consecutive approximations
to p.

In most applications. the reduction to superlinear convergence is a more than acceptable
trade-off for the decrease in the amount of computation. An additional disadvantage of quasi-
Newton methods is that, unlike Newton’s method, they are not self-correcting. Newton's
method will generally correct for roundoff error with successive iterations, but unless special
safeguards are incorporated, Broyden’s method will not.

MAP2220

To describe Broyden’s method, suppose that an initial approximation x'?’ is given to
the solution p of F(x) = 0. We calculate the next approximation x'" in the same manner as
Newton's method. If it is inconvenient to determine J(x'?) exactly, we use the difference
equations given by (10.10) to approximate the partial derivatives. To compute x'*’, however,
we depart from Newton’s method and examine the Secant method for a single nonlinear
equation. The Secant method uses the approximation

Jx) — f(xo)

X1 — Xp

flxy) =

as a replacement for f'(x;) in the single-variable Newton’s method.
For nonlinear systems, x'" —x'? is a vector, so the corresponding quotient is undefined.

However, the method proceeds similarly in that we replace the matrix J {x'l”) in Newton's
method for systems by a matrix A; with the property that

Ay (xV —xP) =F (x'V) = F (x). (10.11)

MAP2220

For nonlinear systems. x'!’ —x'" is a vector, so the corresponding quotient is undefined.
However, the method proceeds similarly in that we replace the matrix J {x“:') in Newton’s
method for systems by a matrix A, with the property that

Ay (x —x) =F (x") - F (x). (10.11)

Any nonzero vector in B" can be written as the sum of a multiple of x'") — x'” and a
multiple of a vector in the orthogonal complement of x'"’ — x'”’. So, to uniquely define the
matrix A, we also need to specify how it acts on the orthogonal complement of x'" — x¥.
No information is available about the change in F in a direction orthogonal to x'" — x|

so we specify that no change be made in this direction, that is,
Az = J(xm’)z. whenever (x“} — x‘m}f z = 0. (10.12)

Thus, any vector orthogonal to x'" — x'? is unaffected by the update from J(x'”'), which
was used to compute x'V, to A, which is used in the determination of x‘?.

Conditions (10.11) and (10.12) uniquely define A, (see [DM]) as

[F() ~ F() — () (< =x)] (0 = x)'

— ()]
Ay —J(x)—I— ||x“?—xlm||i

MAP2220

It is this matrix that is used in place of J (x'") to determine x*' as

x? = x —AI_JF[::‘”).

Once x'* has been determined, the method is repeated to determine x"*’, using A, in place
of Ag = J (x'?), and with x® and x'" in place of x'" and x'".
In general, once x'” has been determined, x“*" is computed by

Y — AE—ISJ ¢

s
Isill3

A=A+ (10.13)

and
XD =xO —A7'F (x7), (10.14)

where the notation y; = F(x”) — F(x"") and s; = x — x""1 is introduced to simplify
the equations.

MAP2220

If the method was performed as outlined in Eqgs. (10.13) and (10.14), the number
of scalar functional evaluations would be reduced from n”> + n to n {thnse required for
evaluating F(x”)), but O(n”) calculations would still required to solve the associated n x n
linear system (see Step 4 in Algorithm 10.1)

Assip = —F(x7). (10.15)

Employing the method in this form would not be justified because of the reduction to
superlinear convergence from the quadratic convergence of Newton’s method.

Sherman-Morrison Formula

A considerable improvement can be incorporated. however, by employing a matrix inversion
formula of Sherman and Morrison (see, for example, [DM]. p. 55).

MAP2220

Theorem 10.8

(Sherman-Morrison Formula)

Suppose that A is a nonsingular matrix and that x and y are vectors with y'A~'x # —1.
Then A + xy' is nonsingular and

A_JI}’I}-‘I_J

! —1 — Al _
(A+xy) =A [T yATx

The Sherman-Morrison formula permits Ar._' to be computed directly from Af_ll , elim-
inating the need for a matrix inversion with each iteration.

MAP2220

Letting A =A; . x =(y; — A;_|5,—);’|Is,—||§._ and vy = s;, in Eq. (10.13) gives

—1
vi —Ai1S;
A:I — (A!_I + ol .I'zl fsi)
”5!”2

—1 ¥i—Ai_15] _t —1
A7 (I) A
S N 11 R

i-1 ,
vi — Ai_1S;
fa—1 g i I
l“"‘q"“(Isi12)
Lz

1 (A yi —si) siA;

i1

i—1

lIsill3 + siA;

i—

¥ — lsill3
S0

ATy) sfa !
(5, AI_J}'!) SJAJ—I. (]'[]16)

Al =AL S
;ALY

This computation involves only matrix-vector multiplications at each step and therefore
requires only O(nz} arithmetic calculations. The calculation of A; is bypassed, as is the
necessity of solving the linear system (10.15).

Algorithm 10.2 follows directly from this construction, incorporating (10.16) into the
iterative technique (10.14).

MAP2220

Broyden

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima-
tion x:

INPUT number n of equations and unknowns; initial approximation x = (x;.....x,)":
tolerance TOL:; maximum number of iterations N.

OUTPUT approximate solution x = (x,.....x,)" or a message that the number of
iterations was exceeded.

Step 1 Set Ay = J(x) where J(x);; = %(x) forl <i,j <n;
A
v=F(x). (Note: v=Fx"))
Step 2 SetA = Aﬂ_'. (Use Gaussian elimination.)

Step 3 Sets = —Av: (Note:s = s;.)
x=x4s; (Note:x =xV)
k=2.

MAP2220

Step 4 While (k < N) do Steps 5-13.

Step b Setw=v: (Savev.)
v=F(x); (Note:v=Fx"))
v=v—w. (Note:v =y;.)

.

Step 6 Setz = —Ay. (Note:z = —A;_JI}-';;..)
Step 7 Setp = —s'z. (Note:p = si..f-'l;_],}-'k.)
Step 8 Setu’ =s'A.

Step 9 SetA =A + ;—J(s +z)u’, (Nme: A= A;-_I)
Step 10 Sets = —Av. (Note: s = —A_'F(x©).)
Step 11 Setx =x+s. (Note: x = x**1))

Step 12 1If ||s|| < TOL then OUTPUT (x);
(The procedure was succ'exsfuf.)
STOP.

Step 13 Setk =k + 1.

Step 14 OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. n

MAP2220

Example 1 Use Broyden’s method with x'” = (0.1,0.1, —0.1)" to approximate the solution to the
nonlinear system

1

3x; — cos(xx3) — 2 =0,

xp —81(x; +0.1)* + sinx; + 1.06 = 0,
o 10 — 3

e 4 2003+ ———— =10

3

MAP2220

Solution This system was solved by Newton’s method in Example 1 of Section 10.2. The
Jacobian matrix for this system is

3 X3 SIN X2X3 X2 SIN X7X3
J(x1,x0,X3) = 2x4 —162(x, + 0.1) COS X3
—Xxe” 12 —xje 12 20

Let x'¥ = (0.1,0.1, —0.1)" and

F(x1,x2.x3) = (fi(x1,x2.x3), fa(xi,x2,x3), f3(x1,x2,x3))",

where
1
fi(x1.Xx2.x3) = 3x; — cos(xx3) — 3
fo(x1,%2,x3) = x7 — 81(x2 + 0.1) + sinx3 4+ 1.06,
and
10 — 3
f_ﬂ,{.ﬂ,.{g,.ﬁ} —e "1 4 2003 + —.
Then
—1.199950
F(x'7) = | —2.269833

8.462025

Because
Ao :J(:m (0) Ign;)
3 0.999833 % 10~
— 0.2 —324
—0.900498 x 1072 —9.900498 x 1072
we have
J UJ‘r LE'J m; -1
0.3333332 1.023852 % 1077
2.108607 x 10~° —3.086883 x 102
1.660520 x 10— —1.527577 x 107
So

—0.999833 x 10~
0.9950042
20

1.615701 x 1072
1.535836 x 107
5.000768 x 1072

0.4998697

x' = x™ _ AEJ F[x““) —

1.946685 x 1072

—0.5215205

—3.304465 x 10~*
—0.3443879
3.188238 x 1072

F(x")

MAP2220

MAP2220

1.199611
vi =F(x") —F(x?) = | 1.925445 |,
—8.430143
0.3998697
s; = | —8.053315 x 1072 | ,
—0.4215204

SEAT 'y, = 0.3424604,
AT' = A7+ (1/0.3424604) [(s, — Ay 'y1) 5145]

0.3333781 1.11050 x 107> 8.967344 x 10~°
= | —2.021270 x 1073 —3.094849 x 1072 2.196906 x 10~
1.022214 x 102 —1.650709 x 10~* 5.010986 x 102

and

0.4999863
x? =x" —A'F(x'V) = | 8.737833 x 10~*
—0.5231746

Additional iterations are listed in Table 10.4. The fifth iteration of Broyden’s method is
slightly less accurate than was the fourth iteration of Newton’s method given in the example
at the end of the preceding section. u

Table 10.4

Table 10.3

Broyden’s method

MAP2220

& _1.'{-‘-“} Iék} I;H ”x{k} _ :,Eﬂ.“—lr”2
3 0.5000066 8.672157 = lﬂ_'i' —0.5236918 7.88 x 10
4 0.5000003 6.083352 = 10~ —0.5235954 8.12 x 10~
5 0.5000000 —1.4488890 » 10°° —(.5235989 6.24 % 107
6 (0. 3000000 6.059030 x 1077 —(.5235088 1.50 x 10°°
Newton's Method
k .l:'[h I{_.k} I;k} ”x{h _ x(ﬁ—l]”m
0 0. 1000000000 0. 1000000000 —0. 1000000000
1 0.4998696728 0.0194668485 —0.5215204718 04215204718
2 0.5000142403 0.0015885914 —0.5235569638 1.788 x 102
3 0.5000000113 0.0000124448 —0.5235984500 1.576 x 10—
4 0.5000000000 8.516 x 10-10 —0.5235987755 1.244 % 107
5 0. 5000000000 —1.375 x 101 —0.5235987756 8.654 x 10-'@

MAP2220

EXERCISE SET 103

1. Use Broyden’s method with x'”” = 0 to compute x'¥ for each of the following nonlinear systems.

1
a. 4xt —20x + Ex% +8=0,

l
EIJI% + E.I[— 5.1'2 +8=0.

MAP2220

iteragdo x1

0

0

sl

0,4

x1

0,4

sl
0,077792
x1
0,477792
sl
0,023121
x1
0,500913
sl
-0,0007
x1
0,500212

Broyden

x2

0

s2

1,76

x2

1,76

s2
0,167411
x2
1,927411
s2
0,072505
X2
1,999916
s2
0,000608
X2
2,000524

f1

8
norm2s
3,257600
vl
1,4144
norm2s
0,034078
vl
0,28603
norm2s
0,005792
vl
-0,01469
norma2s
0,000001
vl
-0,00287

Newton's Method
iteracao x1

0

kWM

0
0,4

X2
0
1,76

f2 j11
8 -20
v2 yl

0,61952 -6,5856

v2 yl
0,20601 -1,12837

v2 yl
0,00399 -0,30072

v2
-0,00125

f1
8
1,4144

0,495894 1,983423 0,04926185
0,499988 1,999937 0,000135218

0,5
0,5

2
2

1,60427E-09
0

Jacobiana

j12
0

y2
-7,38048

y2
-0,41351

y2
-0,20202

f2

8
0,61952
0,050085
0,000202
2,55E-08
0

j21 j22
2 -5

z1 z2

det)
100

p

all
-0,05

ult

-0,32928 -1,60781 2,961454 -0,0552

z1 z2

p

ult

-0,06138 -0,11595 0,024187 -0,00782

z1 z2

-0,02382 -0,0719

dfldx1
-20
-16,8
-16,0329
-16,0001
-16

-16

p

dfldx2

0

0,88
0,991712
0,999969
1

1

ult

0,005764 -0,00417

df2dx1

2

3,5488
3,966984
3,999874
4

4

Inversa

al2 a2l
0 -0,02
u2t (s1+z1)

-0,352 0,07072

u2t (s1+z1)
-0,03716 0,01641

u2t (s1+z1)
-0,02232 -0,0007

df2dx2
-5
-4,296
-4,01643
-4,00006
-4

-4

det)

100

MAP2220

a22
-0,2

Inversa
(s24z2) al1 al2 a2l a22
0,152192 -0,05132 -0,00841 -0,02284 -0,21809

Inversa
(s24z2) al1 al2 a2l a22
0,05146 -0,05662 -0,03362 -0,03946 -0,29716

Inversa
(s2+z2) al1 al2 a2l a22
0,000605 -0,05612 -0,03092 -0,0399 -0,29951

yl y2 norm_2
0,4 1,76 3,2576

69,04986 0,095894 0,223423 0,059114
60,46077 0,004094 0,016514 0,000289
60,00155 1,24E-05 6,3E-05 4,12E-09

60
60

1,49E-10 7,87E-10 6,42E-19
0 0 0

MAP2220

10 Numerical Solutions of Nonlinear Systems of
Equations 629

0.4 Steepest Descent Technigues 654
[0.5 Homotopy and Continuation Methods 660
0.6 Survey of Methods and Software 663

MAP2220

S stem result’ 1mt1a1‘11near 1 g i
1nt

MATLABnum arycenti

differential um large factorwork bac omd

maﬂ?%%at?g p 1 rl(m?arp 0 1 ate
code bou d

1terate coeﬁic:lents
€1 genvalue p eva ua‘g[e
exagl’gn e ba31s FE0tstep Jan %‘Zﬁﬁm m
Lagrange mesh S 0 V e
1‘681(1 t integral

”3ﬁlﬁema I'lX u °°mple’;[10n
condltf“(“i“ﬁ°€I’I'OI;10t- qualtc
=polynomial=
analysis approximate

