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Numerical Solutions of Nonlinear
Systems of Equations

Introduction

The amount of pressure required to sink a large heavy object into soft, homogeneous soil
lying above a hard base soil can be predicted by the amount of pressure required to sink
smaller objects in the same soil. Specifically, the amount of pressure p to sink a circular
plate of radius r a distance & in the soft soil, where the hard base soil lies a distance I} = d
below the surface, can be approximated by an equation of the form

P =.ﬁ'|fﬁzr—|—.ﬁ'3.l",

where k|, k2, and k3 are constants depending on d and the consistency of the soil, but not
on the radius of the plate.

There are three unknown constants in this equation, so three small plates with differing
radii are sunk to the same distance. This will determine the minimal size plate required
to sustain a large load. The loads required for this sinkage are recorded, as shown in the
accompanying figure.
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This produces the three nonlinear equations
my = k™ + kary,
my = ki€ + kara,
ms = k2" + kars.

in the three unknowns &y, &7, and k3. Numerical approximation methods are usually needed
for solving systems of equations when the equations are nonlinear. Exercise 12 of Section
10.2 concerns an application of the type described here.
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Busca: Soil Bearing Capacity Test

Plate load  Load g, per unit area Eﬁiﬂjﬁ?m of

Soft clay
Pressure bulbs

-
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Solving a system of nonlinear equations is a problem that is avoided when possible,
customarily by approximating the nonlinear system by a system of linear equations. When
this is unsatisfactory, the problem must be tackled directly. The most straightforward ap-
proach is to adapt the methods from Chapter 2, which approximate the solutions of a single
nonlinear equation in one variable, to apply when the single-variable problem is replaced
by a vector problem that incorporates all the variables.

The principal tool in Chapter 2 was Newton’s method, a technique that is generally
quadratically convergent. This is the first technique we modify to solve systems of nonlinear
equations. Newton’s method, as modified for systems of equations, is quite costly to apply,
and in Section 10.3 we describe how a modified Secant method can be used to obtain
approximations more easily, although with a loss of the extremely rapid convergence that
Newton’s method can produce.

Section 10.4 describes the method of Steepest Descent. It is only linearly convergent, but
it does not require the accurate starting approximations needed for more rapidly converging
techniques. It is often used to find a good initial approximation for Newton’s method or one
of its modifications.

In Section 10.5, we give an introduction to continuation methods, which use a parameter
to move from a problem with an easily determined solution to the solution of the original
nonlinear problem.
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10.1 Fixed Points for Functions of Several Variables

A system of nonlinear equations has the form

fi(xp,x2. ..., Xp) =
fE[«rluxE !!!! 'IH] _D
(10.1)
ﬁr[xluxi sssss xp) =0,
where each function f; can be thought of as mapping a vector x = (x1,x2,..., x,)" of the

n-dimensional space R" into the real line . A geometric representation of a nonlinear
system when n = 2 is given in Figure 10.1.

This system of n nonlinear equations in n unknowns can also be represented by defining
a function F mapping R" into R" as

F();| X2y -IJ"E] = (fl{x]e-‘rz 1111 Xﬂ‘l)! fz(xlexze"-e-xﬂ} ---- fi‘l()d X2, ... X H]}r
If vector notation is used to represent the variables xj, x2, . . ., x,, then system (10.1) assumes
the form
Fix)=0. (10.2)

The functions fi, f7,..., fn are called the coordinate functions of F.
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Figure 10.1




Example 1

Place the 3 x 3 nonlinear system

3x; — cos(xxy) — 5 =0,

xj — 81(x2 4 0.1)* + sinx; + 1.06 = 0,

10m —3 _

e 12 4 20x3 + 0

in the form (10.2).

Solution Define the three coordinate functions fj, f2, and f3 from R? to B as

fi(x1,x2,x3) = 3x| — cos(xyx3) — X

fo(x1,x2,x3) = x] — 81(x2 + 0.1)% + sinx3 + 1.06,
10m — 3

filx,x0,x3) = e 42003 + ————,

Then define F from B? — R? by

F(x) = F(xy,x2,x3)

= (fi1(x1,x2,x3), fr(x1,x2,x3), f3(x1,%2,%3))

1 2 2
= (S,t] — cos(xx3) — E,x]“ — 81 (x; +0.1)"

o 10 —31\'
+sinxy + 1.06,e "2 4+ 20x3 + —) .
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Let f be a function defined on a set D ¢ R" and mapping into E. The function f is said to
have the limit L at x;, written

lim f(x) =L,

K—Xg
if, given any number £ = 0, a number § = 0 exists with

|f(x) —L| <e,
whenever x € D and

0 <= [|x — xp|| = 4. [

The existence of a limit 1s also independent of the particular vector norm being used,
as discussed in Section 7.1. Any convenient norm can be used to satisfy the condition in
this definition. The specific value of § will depend on the norm chosen, but the existence of
a & 1s independent of the norm.

The notion of a limit permits us to define continuity for functions from R" into E.
Although various norms can be used, continuity is independent of the particular choice.
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Definition 10.2

Let f be a function from a set D < R" into [R. The function f is continuous at xy € D
provided limy_.y, f(x) exists and

lim f(x) = f(xp).
X—Xp

Moreover, f 1s continuous on a set D if f is continuous at every point of D. This concept
is expressed by writing f € C(D). u

We can now define the limit and continuity concepts for functions from R" into R" by
considering the coordinate functions from R" into [.
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Definition 10.3 Let F be a function from D ¢ R" into R" of the form

F(x) = (fi(x), f2(x)..... fa(x),
where f; 1s a mapping from R" into R for each i. We define

lim F(x) =L = (L.Ls.....L,)".

X—Xp
if and only if limy_.y, fi(x) = L;, foreachi =1,2,...,n. |
The function F is continuous at xpeD provided limy .y, F(x) exists and

limy_.x, F(x) = F(xp). In addition, F is continuous on the set D if F is continuous at each
x in D. This concept is expressed by writing F € C(D).
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For functions from [ into [E, continuity can often be shown by demonstrating that the
function is differentiable (see Theorem 1.6). Although this theorem generalizes to functions
of several vanables, the derivative (or total derivative) of a function of several varniables 1s
quite involved and will not be presented here. Instead we state the following theorem, which
relates the continuity of a function of n variables at a point to the partial derivatives of the
function at the point.

Theorem 10.4 Let f be afunction from D C R" into R and xy € D. Suppose that all the partial derivatives
of f exist and constants § = 0 and K = 0 exist so that whenever ||x — xp|| < d and x € D,
we have

df (x
‘ f &) <K, foreachj=12,....n

B'.I Jl'

Then f is continuous at xg. u
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Fixed Points in "

In Chapter 2, an iterative process for solving an equation f(x) = 0 was developed by first
transforming the equation into the fixed-point form x = g(x). A similar procedure will be
investigated for functions from R" into [R".

Definition 10.5 A function G from D c R" into R" has a fixed point at p € D if G(p) = p. u

The following theorem extends the Fixed-Point Theorem 2.4 on page 62 to the
n-dimensional case. This theorem is a special case of the Contraction Mapping Theorem,

and its proof can be found in [Or2], p. 153.



Theorem 10.6

MAP2220

Let D = {(x1,x2,....xy)" | @ <x; < by, foreachi = 1,2,...,n) for some collection of
constants @y, as, ....ay and by, b, . .., b,. Suppose G is a continuous function from D < R"
into R" with the property that G(x) € D whenever x € D. Then G has a fixed point in D.

Moreover, suppose that all the component functions of G have continuous partial deriva-
tives and a constant K < 1 exists with

dgi(x K
8i(x) < —, wheneverx € D,
0x; n
foreachj = 1.2,..., n and each component function g;. Then the sequence {x*’ b defined

by an arbitrarily selected x'” in D and generated by
x® = g(x* "), foreachk > 1
converges to the unique fixed point p € D and

k
N LA 103)

DG—]_



Example 2
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Place the nonlinear system

1
3x) — cos(xxs) — 5 = 0,

x7 — 81(xy +0.1)? + sinx3 + 1.06 = 0,

10m -3

e 2 4+ 20x3 + 0.

in a fixed-point form x = G(x) by solving the ith equation for x;, show that there is a unique
solution on

D={(x;.x3.x3) | =1 <x; <1, foreachi=1,2,3}.

and iterate starting with x¥ = (0.1,0.1, —0.1) until accuracy within 10~ in the /,, norm
1s obtained.



Solution Solving the ith equation for x; gives the fixed-point problem

X1 = —cos(xxy) + —,
1=3 (x2X3) g
| I
Xy = EJxT+sm.x_q 4+ 1.06 — 0.1,
1 . 10m — 3
Xy=——¢e "2
T 720 60

Let G : BY — R? be defined by G(x) = (g(x), g2(x), g3(x))", where

g1(x1,x2,x3) = ECDS(IEIE) + e
T
g2(x1,x2,x3) = gV +sinx3 + 1.06 — 0.1,
“ N P (e
g:‘l -'lllxzavt:‘ll __EDI? - 6{] .

Theorems 10.4 and 10.6 will be used to show that G has a unique fixed point in

D={(x;,x2,x3) | =1 <x; <1, foreachi=1,2,3).

MAP2220
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For x = (x1,x2,x3)" in D,

1 1
lg1(x1, x0,x3)| < E' cos(xax3)| + ‘ < 0.50,

(=

1 . 1 :
5 x7 +sinx; + 1.06 — 0.1] < 5J1+sm1+1.06—0.1 < 0.09,

lg2(x1, x2,x3)| =

and

o ! g M0T=3 1 lor-3
X1 X2 X = —¢g = e — = ), .
S3WL A2, BT = 5, 60  — 20 60

So we have, foreachi =1, 2. 3.

—1 < gi(x1,x0,x3) < 1.

Thus G(x) € D whenever x € D.
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Finding bounds for the partial derivatives on D gives

d d d

i _o, |282|_0, and |28 -0,

3I| BIQ Eix;

as well as

&g1 1 . 1 . ag] 1 . 1 .

< —|x3| - |smxxz| < —smnl = 0281, |—| < —|x| - |smnxxz| < —sinl < 0.281,

3);'3 3 3 X3 . 3

d X

082 Pl <0.238,

= <
0x1 QJI% +sinxs +1.06 9v0.218

9 , I
521 _ | cos x| - ~0.119.

0x3 18,/x7 + sinx3 + 1.06 18+0.218

d : 1
L ME_ILIE < —e < 0.14.
dxn o

d X :
083 _ u = e = 0.14, and 20 20

o | 20 =20
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The partial derivatives of g|. g>, and g3 are all bounded on D, so Theorem 10.4 implies
that these functions are continuous on D. Consequently, G 1s continuous on D. Moreover,
for every x € D,

‘ dgi(x)

E}IJ

< (0.281, foreachi=1,2,3 and j=1,2,3,

and the condition in the second part of Theorem 10.6 holds with K = 3(0.281) = 0.843.

In the same manner it can also be shown that dg;/dx; 1s continuous on D for each
i=1,2,3andj = 1,2, 3. (This is considered in Exercise 3.) Consequently, G has a unique
fixed point in D, and the nonlinear system has a solution in D.
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Note that G having a unique fixed point in D does not imply that the solution to the
original system is unique on this domain, because the solution for x> in (10.4) involved
the choice of the principal square root. Exercise 7(d) examines the situation that occurs if
the negative square root is instead chosen in this step.

To approximate the fixed point p, we choose x” = (0.1, 0.1, —0.1)". The sequence of
vectors generated by

: | _ . 1
x?‘:' = 5 c:ﬂsng I]ng D + —.

6

. 1 _1\ 2 ) _
.:rff‘:' :—\/(,ﬂk “) + sinx ”4—1.06—[1.1,

. 1 k—1) _(k—1) 10m — 3
o0 o L grngy_ 10m =3

20 60

converges to the unique solution of the system in (10.4). The results in Table 10.1 were
generated until

||I“” — J»i“‘_”'HaG <1072, ]



Table 10.1
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s 0 <]
0 0.10000000 0.10000000 —0.10000000

1 0.49998333 0.00944115 —0.52310127 0.423

2 0.49999593 0.00002557 —0.52336331 94 x 107°

3 0.50000000 0.00001234 —0.52359814 23 % 10°*

4 0.50000000 0.00000003 —0.52359847 1.2 x 1073

5 0.50000000 0.00000002 —0.52359877 3.1 = 1077

We could use the error bound (10.3) with K = 0.843 in the previous example. This
gives

) (0.843)°

Plloe = 1 _0843{0.423) < 1.15,

| x

which does not indicate the true accuracy of x**’. The actual solution is

Ty -
p= (0.5,0, _E) ~ (0.5,0, —0.5235987757), so [Ix® — pllec =2 x 1075,
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Accelerating Convergence

One way to accelerate convergence of the fixed-point iteration is to use the latest estimates

x'j“, - ,.I!';f]] instead of xik_]:', . ,x}ﬁ” to compute x;-[“, as 1n the Gauss-Seidel method

for linear systems. The component equations for the problem in the example then become

w1 ( (k—1) I:k—l::) 1
x = —cos(x, x + -,
1 3 2 3 6

| . .
0 = a\/(x?‘)) + sinxf‘ D4 1.06-0.1,

1 o 10m —3
.Jr_iih =——e "1 —

20 60
With x? = (0.1, 0.1, —0.1)", the results of these calculations are listed in Table 10.2.



Table 10.2
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£ P [x® —x*D],
0 0.10000000 0. 10000000 —0.10000000

1 0.49998333 0.02222979 —0.52304613 0.423

2 0.49997747 0.00002815 —0.52359807 2.2 % 102

3 0.50000000 0.00000004 —0.52359877 2.8 x 107°

4 0.50000000 0.00000000 —0.52359877 3.8 x 10—

The iterate x** is accurate to within 1077 in the /» norm; so the convergence was indeed
accelerated for this problem by using the Gauss-Seidel method. However, this method does

not always accelerate the convergence.
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EXERCISE SET 10.1

Use functional iteration to find solutions to the following nonlinear systems, accurate to within 1077,
using the /., norm.

b. 3 — a2 =0,

I —x —1=0
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iteragao x1

0

O 0o N O U & WN B

=
o

1

1,154701
0,471405
0,494341
0,510288
0,501915
0,496664
0,499365
0,501122
0,500212
0,499627

X

X2

2
0,816497
0,856224
0,883844
0,869342
0,860247
0,864925
0,867969
0,866393
0,86538
0,865903

_ %
J3

- X, +1
>\ 3x

norm_2 f1

-1
1,424613 3,333333
0,468472 -0,06645
0,001289 -0,04806
0,000465 0,025425
0,000153 0,015732
4,95E-05 -0,00807
1,66E-05 -0,00527
5,57E-06 0,002734
1,85E-06 0,001755
6,16E-07 -0,00091

f2

10
-0,2302
-0,06797
0,037706
0,024083
-0,01215
-0,00786
0,004095
0,002638
-0,00136
-0,00088

MAP2220
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10.2 Newton's Method

The problem in Example 2 of Section 10.1 is transformed into a convergent fixed-point
problem by algebraically solving the three equations for the three variables x, x7, and x3.
It 1s, however, unusual to be able to find an explicit representation for all the variables. In
this section, we consider an algorithmic procedure to perform the transformation in a more

general situation.
To construct the algorithm that led to an appropriate fixed-point method in the one-

dimensional case, we found a function ¢ with the property that

glx) =x—o(x)f(x)

gives quadratic convergence to the fixed point p of the function g (see Section 2.4). From this
condition Newton’s method evolved by choosing ¢ (x) = 1/f'(x), assuming that f'(x) # 0.
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A similar approach in the n-dimensional case involves a matrix

[aj(x) ap(x) - ap(x)]
a|(x) anp(x) --- ay(x)
Ax) = _ , . ; (10.5)
_Hnl{x} ap(x) --- ﬂmr(x]'_

where each of the entries a;;(x) 1s a function from " into [E. This requires that A(x) be
found so that

Gx)=x — Ax)"'F(x)

gives quadratic convergence to the solution of F(x) = (), assuming that A(x) is nonsingular
at the fixed point p of G.

The following theorem parallels Theorem 2.8 on page 80. Its proof requires being able
to express G in terms of its Taylor series in n variables about p.



MAP2220

Theorem 10.7 Let p be a solution of G(x) = x. Suppose a number § > 0 exists with
(i) dgi/ox;iscontinuouson Ny = {x | [x —p|l <}, foreachi =1,2,..., n and
Jj=12,...,m

(11) azg;{x}f{ﬂxjaxk} is continuous, and Iazgi{.‘i]j(ﬂxjﬂxk}l < M for some constant
M, wheneverx € N;, foreachi = 1.2,...n.j=1.2,....n,and k = 1,2, ..., n;

(iii) dgi(p)/oxy =0,foreachi=1,2,....nandk =1.2,....n.

Then anumber § < § exists such that the sequence generated by x® = G(x*~") converges
quadratically to p for any choice of x¥, provided that |x® — p| < 4. Moreover,

2
M 2
”x{k] _ p”DC < HT"x{k_h — p”‘_"“;cI1 for each k > 1. u
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To apply Theorem 10.7, suppose that A(x) is an n x n matrix of functions from R"
into B in the form of Eq. (10.5), where the specific entries will be chosen later. Assume,
moreover, that A(x) i1s nonsingular near a solution p of F(x) = 0, and let b;j(x) denote the
entry of A(x)~! in the ith row and jth column.

For G(x) = x — A(x) " 'F(x), we have gi(x) = x; — ZL, bij(x) fj(x). So

f

o B u | ) —
1 — i (bi"h)a, {x}+ﬁ.:n, (x)fi(x) ), ifi=k,
agi j=1
14

—Z (B0 50+ 320 ifi £k

Theorem 10.7 implies that we need dg;(p)/dx; = 0, foreach i = 1,2,...,n and
k=1,2,...,n. This means that for i = k,

0=1 —Zbutp)—ffm

j=1
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that 1s,
f.e
qu(p (p) = 1. (10.6)
Jj=I
When k # i,
Zbﬂp fm,
S0

f 9
Z bg(]ﬂ—fj’fp) = 0. (10.7)
1 3,1,1;;
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The Jacobian Matrix

Define the matrix J(x) by

- af afi fi 7
?‘:]{X} % (x) - H—H( )
af afs 12
o =|ma™ ™ 9, ) (10.8)
dfn dfn dfn
_E]{x} 5% (x) - a—%m_

Then conditions (10.6) and (10.7) require that
A{p}_lf(p} = [, the identity matrix, so A(p) = J(p).

An appropriate choice for A(x) is, consequently, A(x) = J(x) since this satisfies condition
(i11) in Theorem 10.7. The function G is defined by

Gx) =x—J(x) Fx),
and the functional iteration procedure evolves from selecting x'”’ and generating, for k > 1,

Wb = GxD) = xD g (xD) B, (109)
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This is called Newton’s method for nonlinear systems, and it is generally expected
to give quadratic convergence, provided that a sufficiently accurate starting value 1s known
and that J(p) ! exists. The matrix J(x) is called the Jacobian matrix and has a number of
applications in analysis. It might, in particular, be familiar to the reader due to its application
in the multiple integration of a function of several variables over a region that requires a
change of variables to be performed.

A weakness in Newton’s method arises from the need to compute and invert the matrix
J(x) at each step. In practice, explicit computation of J(x)~! is avoided by performing
the operation in a two-step manner. First, a vector y is found that satisfies J(x*~ )y =
—F(x"*~1). Then the new approximation, x*’, is obtained by adding y to x*~V. Algorithm
10.1 uses this two-step procedure.
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Newton's Method for Systems

To approximate the solution of the nonlinear system F(x) = 0 given an initial approxima-

tion Xx:

INPUT number n of equations and unknowns; initial approximation x = (x, ..., xp)t,
tolerance TOL; maximum number of iterations N.

OUTPUT approximate solution x = (xy,...,x,)" or a message that the number of

iterations was exceeded.

Step 1 Setk=1.

Step 2 While (k < N) do Steps 3-7.
Step 3 Calculate F(x) and J(x), where J(x);; = (3fi(x)/dx;) for 1 <i,j < n.
Step 4 Solve the n x n linear system J(x)y = —F(x).
Step5 Setx=x+4+y.

Step 6 If ||y|| < TOL then OUTPUT (x);
(The procedure was successful.)

STOP.
Step 7 Setk=k+1.

Step 8 OUTPUT (‘Maximum number of iterations exceeded’);
(The procedure was unsuccessful.)
STOP. [ |
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Example 1 The nonlinear system

1

3x; — cos(xxy) — 5= 0.
X7 — 81(x2 4+ 0.1)” 4 sinx3 + 1.06 = 0,

10m =3

e 1 4 20x3 + 0

was shown in Example 2 of Section 10.1 to have the approximate solution (0.5, 0, —0.52359877)".
Apply Newton’s method to this problem with x'” = (0.1,0.1, —0.1)".



Solution Define MAP2220

F(xy, x2,x3) = (fi1(x1,%2,x3), fr(x1, %2, X3), f3(x1,%2,%3))",

where
1
J1(x1.x2,x3) = 3x1 — cos(xx3) — >’
frlxp,0,x3) = x}‘l — 81(x +0.1)> + sinx3 + 1.06,
and
10m — 3
fix,x,03) = e 2 42003 + —.
The Jacobian matrix J(x) for this system is
3 X3 SIN X2.X73 X7 SIN X72X3
J(x1.x0,X3) = 2x4 —162(x2 +0.1) COS X3
—xpe T2 —xje 12 20

Let x¥ = (0.1,0.1, —0.1)". Then F(x®) = (—0.199995, —2.269833417, 8.462025346)’
and
3 0.999833334 x 10~* 9.999833334 x 104
J(x") = 0.2 324 0.9950041653
—0.09900498337  —0.09900498337 20
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Solving the linear system, J’{xm}')}'{m = —F(xm}} gives
0.3998696728 0.4998696782
v = —0.08053315147 and x =x@ +y?P =] 001946684853
—0.4215204718 —0.5215204718

Continuing for K = 2,3, ..., we have

-xﬁ“_ -,ﬂk_“_ -},{lﬁ:—n—
IS;:I — Iéﬁ:—l} 1 }’{Ek_” 1
_x;”_ _x_{f_”_ _},g‘k—l}_
where
-}{k—]]— ;
y{zk—n _ (J (x%k_”,x{;_”,x_ﬁk_”)) F (ng—l}?xf{ik—n}x;ﬁ:—n) _
Rl




Thus, at the kth step, the linear system J (x*=1) y*=D =

where

Jr(x'iff—U) _

}.Ek—l}

and

F(xD) =

- 3 I;k—ljsm Tgk 1) gk 1)
2 kD —162 (" +0.1)
Hi‘ L) lk 1 Hi‘ l} ik—1}
—xik D, x! _Inik D ,—x{~x]
- (k=1
Y
(k—1)
Y2 ’
k—1
vy
" (k—1) k=1 (k—1) 1
3x, —COSXy X3  — 5
12
(x]”‘ ”) —81( - ]}+D.l) —I—smtg_k D
(k=1) (k=1)
e Xy +2{]x |]_|_ ]Eh- 3
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—F (x':‘““') must be solved,

(k—1) (k—1) _(k—1)—
X, osinx, Xy

COs .IEA D

20

+ 1.06

The results using this iterative procedure are shown in Table 10.3. u
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k X vy Xy Ix® —x* oo
0 0.1000000000 0.1000000000 — 0. 1000000000

1 0.4998696728 0.0194668485 —0.5215204718 0.4215204718
2 0.5000142403 0.0015885914 —(.5235569638 1.788 x 102
3 0.5000000113 0.0000124448 —0.5235984500 1.576 = 10—
4 0.5000000000 8.516 x 10~1° —0.5235987755 1.244 % 1073
5 0.5000000000 —1.375 x 101 —0.5235987756 8.654 x 10-19

The previous example illustrates that Newton’s method can converge very rapidly once

a good approximation is obtained that is near the true solution. However, it is not always easy
to determine good starting values, and the method is comparatively expensive to employ. In
the next section, we consider a method for overcoming the latter weakness. Good starting
values can usually be found using the Steepest Descent method, which will be discussed in
Section 10.4.
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EXERCISE SET 10.2

1. Use Newton's method with x'” = 0 to compute x'¥ for each of the following nonlinear
systems.

1
a.  4xt —20x + Ex% +8=0,

l
EIJI% + E.I[ — 5.1'2 +8=0.
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iteragdo x1 x2 f1 f2 dfldx1l dfldx2 df2dxl1 df2dx2 det) yl y2 norm_2
0 0 0 8 8 -20 0 2 -5 100 0,4 1,76 3,2576

0,4 1,76 1,4144 0,61952 -16,8 0,88 3,5488  -4,296 69,04986 0,095894 0,223423 0,059114
0,495894 1,983423 0,04926185 0,050085 -16,0329 0,991712 3,966984 -4,01643 60,46077 0,004094 0,016514 0,000289
0,499988 1,999937 0,000135218 0,000202 -16,0001 0,999969 3,999874 -4,00006 60,00155 1,24E-05 6,3E-05 4,12E-09
0,5 2 1,60427E-09 2,55E-09 -16 1 4 -4 60 1,49e-10 7,87E-10 6,42E-19
0,5 2 0 0 -16 1 4 -4 60 0 0 0

u b WN -
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