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Theorem 8.6

If {¢p....,¢,} is an orthogonal set of functions on an interval [a, b] with respect to the
weight function w, then the least squares approximation to f on [a, b] with respect to w is

n
PO = ) ai;(x).
j=0
where, foreachj =0.1,...,n,

e fmdr 1

aj =~ =— | wx)g;x)f(x) dx. Il
T umigorda o '

Definition 8.5

{do,@1.....¢,} 1s said to be an orthogonal set of functions for the interval [a, b] with
respect to the weight function w if

b 0 hen j # k.
f w(X)gp(x)di(x) dx = l d when j #

aj > 0, when j=Kk.
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Theorem 8.7  Gram-Schmidt process.

The set of polynomial functions {¢yg, ¢, . . .. ¢,} defined in the following way is orthogonal
on [a, b] with respect to the weight function w.

dox) =1, ¢(x) =x— By, foreachxinla.b],
where

[ xw@) o)1 dx
[7 w(@) o)) dx

B

and when k = 2,

Gr(X) = (X — B)p_1(x) — Cyp—2(x), foreachxin [a, b],

where
g _ Ja @B T dx
k=
fab w(X) [Pr_1(x)]* dx
and
¢ = Lt 1@ o) dx i

I w () [ ()12 dix
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The set of Legendre polynomials, {P,(x)}, is orthogonal on [—1, 1] with respect to the
weight function w(x) = 1.

VA
Po(x) =1
P(x) =X 1 -+ y = P,(x)
P,(x)=x*-1

P,(x)=x>-$x

P(x)=x"-8x*+3

P(X)=x"-2x°+2x




L,(x)=1

Li(x)=1-x
L(x)=2-4x+x

L (x)=6-18x+9x" —x’ )

Laguerre Polynomials
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Chebyshev Polynomials |
y Y y =T

TEI{.I} = 1
I(x) = x
T,(x) = 2x —1

T,(x) = 4x" =3x
T,(x) = 8x' —8x* +1 , ’;jl'l’ .
T.(x) = 16x° —20x" + 5x [
T.(x) = 32x° —48x" +18x" — 1 | I.'I
T.(x) = 64x" —112x° +56x° —Tx

|
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8.4 Rational Function Approximation
The class of algebraic polynomials has some distinct advantages for use in approximation:

e There are a sufficient number of polynomials to approximate any continuous function on
a closed interval to within an arbitrary tolerance;

® Polynomials are easily evaluated at arbitrary values; and

® The derivatives and integrals of polynomials exist and are easily determined.

The disadvantage of using polynomials for approximation is their tendency for oscil-
lation. This often causes error bounds in polynomial approximation to significantly exceed
the average approximation error, because error bounds are determined by the maximum
approximation error. We now consider methods that spread the approximation error more
evenly over the approximation interval. These technigues involve rational functions.

A rational function r of degree N has the form

rix) = @

g(x)’

where p(x) and g(x) are polynomials whose degrees sum to N.
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Every polynomial is a rational function (simply let g(x) = 1), so approximation by
rational functions gives results that are no worse than approximation by polynomials. How-
ever, rational functions whose numerator and denominator have the same or nearly the same
degree often produce approximation results superior to polynomial methods for the same
amount of computation effort. (This statement is based on the assumption that the amount
of computation effort required for division is approximately the same as for multiplication. )

Rational functions have the added advantage of permitting efficient approximation
of functions with infinite discontinuities near, but outside, the interval of approximation.
Polynomial approximation is generally unacceptable in this situation.

Pade Approximation

Suppose r is a rational function of degree N = n 4+ m of the form

pix)  pot+pix+---+ pax”
gix)  go+qix+ -+ gux™

rix) =

that is used to approximate a function f on a closed interval I containing zero. For r to be
defined at zero requires that gy # 0. In fact, we can assume that g = 1, for if this is not
the case we simply replace p(x) by p(x)/gp and g(x) by g(x)/g,. Consequently, there are
N + 1 parameters g, qz. - ... qm. Po.P1. - - .. Py available for the approximation of f by r.
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The Padé approximation technigue, is the extension of Taylor polynomial approxi-
mation to rational functions. It chooses the N + 1 parameters so that £ (0) = r'®)(0), for
eachk =0.1,..., N. When n = N and m = 0. the Padé approximation is simply the Nth

Maclaurin polynomial.
Consider the difference

p(x) _ fx)g(x) — pi(x) _ Y gx =Y paxt
qix) g(x) g(x)

fx) —rix) = f(x) —

5

and suppose f has the Maclaurin series expansion f(x) = ZED a.x’. Then

0o i P .
fl::-r} _ r(-x.] — Zr:D ﬂ!'r Zr:ﬂqr'r Er=|:|p"r ) {3.14']
qgix)
The object is to choose the constants g, 2. . ... ¢y and pg. 1. . ... Py 50 that

FE0)—r*0) =0, foreachk=0,1,....N.
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In Section 2.4 (see, in particular, Exercise 10 on page 86) we found that this is equivalent
to f — r having a zero of multiplicity N 4+ 1 at x = 0. As a consequence, we choose
I AP g, and pg. py. . ... p, S0 that the numerator on the right side of Eq. (8.14),

(@m+ax+-- )1+qx+- -+ gux") — (Po+P1X+ -+ pax’), (8.15)

has no terms of degree less than or equal to N.

To simplify notation, we define p, .| = pPpos = --- =py =0and g,y = g2 =
... = gy = 0. We can then express the coefficient of x* in expression (8.15) more compactly
as

The rational function for Padé approximation results from the solution of the N 4 1 linear
equations

in the N + 1 unknowns g.qz.....4mw-Po.P1s- . Pn-
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Example 1 The Maclaurin series expansion for e is

o0

(1)
Z i! X

Find the Padé approximation to e of degree 5 withn =3 and m = 2.
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Solution To find the Padé approximation we need to choose pg. py. P2. P3. ¢, and g» so that
the coefficients of x* fork = 0.1,.. ., 5 are 0 in the expression

2

2 i
X X
(I —xt5 - +---)H + @1X + g2x7) — (P + P1X + pax® + pax).

Expanding and collecting terms produces

Ly : : : 0: 2, ] :
© "0 T padt T g2 =Y L g4 T q=p

—_—

! | 1
x4 — — —g,+ —g; =0; s 14 = p.
Y ﬁ‘?l 2*—'31 1 ™M
1 |
3: —— -] — = 1. IDI 1 = Fo.
X 15+ 2!?1 g = P Po
This gives
3 3 1 2 1
FI=_; FE:?} FJJ\:_E-‘-?I_E ff2=ﬁ
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Table 8.10 lists values of r(x) and Ps(x). the fifth Maclaurin polynomial. The Padé approx-
imation is clearly superior in this example.

X et Ps(x) le™™ — Ps(x)| rix) le™ — r(x)|
0.2 0.81873075 0.81873067 8.64 x 10-% 0.81873075 7.55 % 1077
0.4 0.67032005 0.67031467 5.38 % 10°° 0.67031963 4.11 x 1077
0.6 054881164 0.54875200 5.96 x 107 0.54880763 4.00 % 10-°
0.8 0.44932896 0.44900267 3.26 x 1074 0.44930966 1.93 % 10~
1.0 0.36787944 0.3666666T 1.21 =% 1073 036781609 6.33 % 1077
- Padé Rational Approximation
To obtain the rational approximation
_p)  Yiapx

for a given function f(x):

r(x)

S x) Y aw
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Continued Fraction Approximation

[t is interesting to compare the number of arithmetic operations required for calculations of
Ps(x) and r(x) in Example 1. Using nested multiplication, Ps(x) can be expressed as

Ps(x) = ((((—%.r+ %)I— é)x+%).r — l)x—l— 1.

Assuming that the coefficients of 1,x.x*.x°,x* and x° are represented as decimals, a
single calculation of Ps(x) in nested form requires five multiplications and five addi-

tions/subtractions.
Using nested multiplication, r(x) is expressed as

(—oX+3)x—2)x+1
(pr+3)x+1

rix) =

*

so a single calculation of r(x) requires five multiplications, five additions/subtractions, and
one division. Hence, computational effort appears to favor the polynomial approximation.



However, by reexpressing r(x) by continued division, we can write

_ 3 342 1,3
| =X+ 55t a0

1 + %.r + ﬁ,ﬁ

rix) =

—1x 4+ 3% — 120+ 20

x? 4+ 8x + 20
17 (=8 -E
R T
B s

3 3 12 4 Bx 20
x+{35/1%)

or

h
Il

l_u|

! 17
rx) = —EI—I— — +

3 oy '
7 . 3125/361
(I T T oo u)

\P2220

(8.16)

Written in this form, a single calculation of r(x) requires one multiplication, five ad-
ditions/subtractions, and two divisions. If the amount of computation required for division
is approximately the same as for multiplication. the computational effort required for an
evaluation of the polynomial Ps(x) significantly exceeds that required for an evaluation of

the rational function r(x).

https://www.khanacademy.org/math/algebra2/arithmetic-with-
polynomials/long-division-of-polynomials/v/polynomial-division
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Expressing a rational function approximation in a form such as Eq. (8.16) is called
continued-fraction approximation. This is a classical approximation technique of current
interest because of the computational efficiency of this representation. It is. however, a
specialized technique that we will not discuss further. A rather extensive treatment of this
subject and of rational approximation in general can be found in [RR]. pp. 285-322.

Although the rational-function approximation in Example 1 gave results superior to
the polynomial approximation of the same degree, note that the approximation has a wide
variation in accuracy. The approximation at 0.2 is accurate to within 8 x 10", but at 1.0 the
approximation and the function agree only to within 7 x 10~>. This accuracy variation is
expected because the Padé approximation is based on a Taylor polynomial representation
of e, and the Taylor representation has a wide variation of accuracy in [0.2, 1.0].
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Chebyshev Rational Function Approximation

To obtain more uniformly accurate rational-function approximations we use Chebyshev
polynomials, a class that exhibits more uniform behavior. The general Chebyshev rational-
function approximation method proceeds in the same manner as Padé approximation, except
that each x* term in the Padé approximation is replaced by the kth-degree Chebyshev
polynomial T, (x).

Suppose we want to approximate the function f by an Nth-degree rational function r
written in the form

> o PeTi(x)
b—o @k Ti(x)

rix) = ., Where N =n4+mand g, = 1.

Writing f(x) in a series involving Chebyshev polynomials as

0o
fx) = EHJ&TJ&{I),
k—0)

oives

> o PiTi(x)
Yo @k Ti(x)

fx) —rx) =) aTix) -
k=0
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or

> oo @ T () 30 @ Tel(x) — 3¢ o T (%)
S i @eTr(x)
The coefficients gy.q2.....¢m and po, p1. . ...pPs are chosen so that the numerator on the

right-hand side of this equation has zero coefficients for T;(x) when k = 0.1,. .., N. This
implies that the series

flx)y—rix)= (8.17)

(anTo(x) + a1 Ty(x) + --- WTo(x) + @1 Th(x) + - - - + G T (X))
— (poTo(x) + 1T (x) + - 4+ puTu(x))

has no terms of degree less than or equal to V.

Two problems arise with the Chebyshev procedure that make it more difficult to im-
plement than the Padé method. One occurs because the product of the polynomial g(x) and
the series for f(x) involves products of Chebyshev polynomials. This problem is resolved
by making use of the relationship

T:(x)Tj(x) = ';[T,-ﬂ-:;x} + T (0)]. (8.18)
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(See Exercise 8 of Section 8.3.) The other problem is more difficult to resolve and involves
the computation of the Chebyshev series for f(x). In theory, this is not difficult for if

flx)y= Zﬂka[I}.
k=0

then the orthogonality of the Chebyshev polynomials implies that

1 ! . 2 ! |
iy = — ﬂdx and a; = — de. where k = 1.
T J 41 —x° wJ 1 1 =2F

Practically, however, these integrals can seldom be evaluated in closed form, and a
numerical integration technique is required for each evaluation.
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Example 2 The first five terms of the Chebyshev expansion for ¢ are

Ps(x) = 1.266066Ty(x) — 1.1303187T; (x) + 0.271495T; (x) — 0.044337T5(x)
+ 0.005474 T (x) — 0.000543T5(x).

Determine the Chebyshev rational approximation of degree 5 withn = 3 and m = 2.
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Solution Finding this approximation requires choosing py, py. P2. P3. ¢y, and g, 5o that for
k=0.,1.2.3.4, and 3, the coefficients of T (x) are 0 in the expansion

Ps(0)[Ty(x) + g, T, (x) + g2 T2 (x)] — [poTo(x) + py Ty (x) + paTa(x) + p3T3(x)].

Using the relation (8.18) and collecting terms gives the equations

Tn:

1.266066 — 0.563159g, + 0.1357485¢> = po.

—1.130318 + 1.401814g, —
0.271495 — 0.587328q, +
—0.044337 + 0.138485q, —
0.005474 — 0.022440q, +
—0.000543 + 0.002737g, —

0.587328g> = p1.
1.268803g> = p-.
0.565431g, = ps.
0.135748¢, = 0,
0.022169g, = 0.
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The solution to this system produces the rational function

1.055265T;(x) — 0.613016T; (x) + 0.077478T;(x) — 0.004506T; (x)
Ty(x) + 03783317, (x) + 0.022216T(x) '

We found at the beginning of Section 8.3 that
Tox) =1, Ty(x) =x. TH(x) = 2x* — 1, T3(x) = 4x* — 3x.

rrix) =

Using these to convert to an expression involving powers of x gives

0.977787 — 0.599499x + 0.154956x2 — 0.018022x
0.977784 + 0.37833 1x + 0.044432x2 '

Table 8.11 lists values of rr(x) and, for comparison purposes, the values of r(x) obtained
in Example 1. Note that the approximation given by r(x) is superior to that of ry(x) for
x = 0.2 and 0.4, but that the maximum error for r(x) is6.33 % 10— compared to 9.13 x 10—°
for rr(x). [

rrilx) =
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Table 8.11 x e~ X rix) le™ — rix)| ry(x) le™ — rr(x)]|
0.2 081873075 031873075 7.55 % 107° 081872510 5.66 x 1078
0.4 0.67032005 0.67031963 4.11 = 1077 0.6T031310 6.95 x 10~°
0.6 0.54881164 054880763 4.00 x 10-° 0.54881292 1.28 x 10—
0.8 (0.44932896 0.44930966 1.93 % 1077 0. 44933809 9.13 x 107°
1.0 0.36787944 036781609 6.33 = 107 0.36787155 7.80 % 10°°

To obtain the rational approximation

rp(x) =

for a given function f(x):

Y ioPiTe(x)
Yo diTe(x)

The Chebyshev approximation can be generated using Algorithm 8.2,

- Chebyshev Rational Approximation
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EXERCISE SET 84

11.

Find the Chebyshev rational approximation of degree 4 with n = m = 2 for f(x) = sinx. Compare
the results at x; = 0.1, fori =0, 1, 2, 3, 4, 5, from this approximation with those obtained in Exercise
5 using a sixth-degree Padé approximation.

f) =) aTi(x),
k=0

1! 2 (' FoT
dy = —f ﬂ dx and a = — f 1) dx, wherek = 1.
T J_1 41 —x2 T Jo A1 —x?

Yoo @ T ) D0 @i Te(x) = 34 o PeTr(x)

fx)—rx)= N

]
T;(0)Tj(x) = = [Tisj () + Ty (0) ]
2
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