MAP2220 — aula 13

MAP 2220 - FUNDAMENTOS DE ANALISE NUMERICA
22 Semestre - 2017

Prof. Dr. Luis Carlos de Castro Santos
Isantos@ime.usp.br/lccs13@yahoo.com



MAP2220

8 Approximation Theory 497

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Discrete Least Squares Approximation 498

Orthogonal Polynomials and Least Squares Approximation 510
Chebyshev Polynomials and Economization of Power Senes 518
Rational Function Approximation 528

Trigonometric Polynomial Approximation 538

Fast Fourier Transforms 547

Survey of Methods and Software 558



PTER

MAP2220

Approximation Theory

Introduction

Hooke's law states that when a force 1s applied to a spring constructed of uniform matenal,
the length of the spring is a linear function of that force. We can write the linear function
as F(l) = k(l — E), where F(l) represents the force required to stretch the spring [ units,
the constant E represents the length of the spring with no force applied, and the constant &
is the spring constant.

Iy

14+
/T 12 + .
— 10 + .
i{ + E 6T '
& ki — E) =F() l
1 B




MAP2220

Approximation theory involves two general types of problems. One problem arises
when a function is given explicitly, but we wish to find a “simpler” type of function,
such as a polynomial, to approximate values of the given function. The other problem in

approximation theory is concerned with fitting functions to given data and finding the “best™
function in a certain class to represent the data.

Both problems have been touched upon in Chapter 3. The nth Taylor polynomial about
the number x; is an excellent approximation to an (n + 1)-times differentiable function f
in a small neighborhood of xp. The Lagrange interpolating polynomials, or, more generally,
osculatory polynomials, were discussed both as approximating polynomials and as poly-
nomials to fit certain data. Cubic splines were also discussed in that chapter. In this chapter,
limitations to these techniques are considered, and other avenues of approach are discussed.
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8.1 Discrete Least Squares Approximation

Consider the problem of estimating the values of a function at nontabulated points, given
the experimental data in Table 8.1.

Figure 8.1 shows a graph of the values in Table 8.1. From this graph, it appears that the
actual relationship between x and y is linear. The likely reason that no line precisely fits the
data is because of errors in the data. So it is unreasonable to require that the approximating
function agree exactly with the data. In fact, such a function would introduce oscillations
that were not originally present. For example, the graph of the ninth-degree interpolating
polynomial shown in unconstrained mode for the data in Table 8.1 is obtained in Maple

Table 8.1

Xj Yi Aj Yi
] 1.3 6 8.8
2 3.5 7 10.1
3 4.2 8 125
4 5.0 9 13.0
5 7.0 10 156




MAP2220

=

e N0 00 =] O Lh e LD b e

—

Figure 8.1
Yi ¥4
1.3 16 1 :
3.5 144
4.2 1 .
5.0 12 + ’
7.0 T
3.8 0T .
10.1 g 1
12.5 + g
13.0 6T .
15.6 L
E__
———————————
2 4 6 8 10 ¥




MAP2220

Figure 8.2
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Let ajx; + ap denote the ith value on the approximating line and y; be the ith given
y-value. We assume throughout that the independent variables, the x;, are exact, it is the

dependent variables, the y;, that are suspect. This is a reasonable assumption in most exper-
imental situations.

The problem of finding the equation of the best linear approximation in the absolute
sense requires that values of ap and a; be found to minimize

Ey(ap.a;) = max {|y; — (a1x; + ap)|}.
<f=10

This is commonly called a minimax problem and cannot be handled by elementary tech-
niques.

Another approach to determining the best linear approximation involves finding values
of ap and a; to minimize

10
Ei(ap,ar) = ) _ lyi — (@1x; + ).

i=1
This quantity is called the absolute deviation. To minimize a function of two variables, we

need to set its partial derivatives to zero and simultaneously solve the resulting equations.
In the case of the absolute deviation, we need to find ap and a; with

10 10
d d
0=— E i — ' d 0=— E i — i .
dag L lvi — (@a1xi +ao)| an 3a L |vi — (a1xi + ao)|

The problem is that the absolute-value function is not differentiable at zero, and we might
not be able to find solutions to this pair of equations.
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Linear Least Squares

The least squares approach to this problem involves determining the best approximating
line when the error involved is the sum of the squares of the differences between the y-values
on the approximating line and the given y-values. Hence, constants ag and a; must be found
that minimize the least squares error:

10
Es(ap,a)) = z lyi — (a1x; + ﬂr:-]"]2 :

i=1
The least squares method is the most convenient procedure for determining best linear
approximations, but there are also important theoretical considerations that favor it. The
minimax approach generally assigns too much weight to a bit of data that is badly in
error, whereas the absolute deviation method does not give sufficient weight to a point
that is considerably out of line with the approximation. The least squares approach puts
substantially more weight on a point that is out of line with the rest of the data, but will
not permit that point to completely dominate the approximation. An additional reason for

considering the least squares approach involves the study of the statistical distribution of
error. (5ee [Lar], pp. 463-481.)
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The general problem of fitting the best least squares line to a collection of data
{(x;, ¥i) ¥, involves minimizing the total error,

i1

E = Ey(ag,a) = E i — (a1x; -l-iln}]zs

i=1

with respect to the parameters a; and a;. For a minimum to occur, we need both

dE dE
— =0 and — =0,
dap daj
that 1s,
7 = 2 =
0= E Z [[}';' — (ay1xi — mj}] = EZ@; —apxi —ap)(—1)
05 i=1
and

m m

[vi — (a1xi +ap)]’ =2 Y i — ax; — ag)(—xy).
!

d
0=—
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and

These equations simplify

m
ap - m —+ a) Z_l:;'
i=1

to the normal equations:

m m m m
¥
= Z}-‘; and ap ZIE +d) Z-r;'_ = ZIE}‘f'
i=1 i=1 i=l =1

The solution to this system of equations is

m ‘ m ‘ m ' m '
;Iij‘;:}‘i — ;-‘:f:}’;;lf

a0 m m 2
2
m (ZI:) - (ZI:)
m m I
IR
i=1 i=1 i=l
ay) =
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Example 1 Find the least squares line approximating the data in Table 8.1.

Solution We first extend the table to include 1;-? and x;y; and sum the columns. This is shown

in Table 8.2.
Table82 v, 2 . P(x,) = 1.538x; — 0.360

1 1.3 1 1.3 1.18
2 3.5 4 7.0 2.72
3 4.2 9 12.6 4.25
4 5.0 16 20.0 5.79
5 7.0 25 35.0 7.33
6 8.8 36 52.8 8.87
7 10.1 49 70.7 10.41
8 12.5 64 100.0 11.94
9 13.0 81 117.0 13.48

10 15.6 100 156.0 15.02

55 81.0 385 5724 E=Y" (v — P(x)))* =~ 2.34
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The normal equations (8.1) and (8.2) imply that

385(81) — 55(572.4
apg = (81) ( ) = —0.360
10(385) — (55)2

and

10(572.4) — 55(81)

— 1.538,
10(385) — (55)2

a) =

so P(x) = 1.538x — 0.360. The graph of this line and the data points are shown in Fig-

ure 8.3. The approximate values given by the least squares technique at the data points are
in Table 8.2. |
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Polynomial Least Squares

The general problem of approximating a set of data, {(x;,v;) | i = 1,2,...,m}, with an
algebraic polynomial

Pu(x) = anx" + ap1x" ' + - - + a1x + ao,

of degree n = m — 1, using the least squares procedure is handled similarly. We choose the
constants ap, @y, . . .. @, to minimize the least squares error E = E>(ag, ay, . ..,a,), where

E =" "(yi—P.(x))’
i=l

=Y W =2 ) Palalyi + ) (Palx))’
i=l i=1 i=1
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As in the linear case, for E to be minimized it is necessary that dE/ E:I'aj = (), for each
j=0,1,...,n. Thus, for each j, we must have

—E——EZ‘P +22ﬂkii:rr+k

This gives n + 1 normal equations in the n + 1 unknowns a;. These are

m m
I'= =

Z a Y A=Y yiad, foreachj=0,1,...,n. 8.3)
k=0
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It is helpful to write the equations as follows:

I m m m m
@ZIP + ay ZII-I + as ZIE' +--- -I—aﬂz_rf = Z_v,—x?,

—1 i—1 =1 =1 =1

ml’ m! mf m]' Im
H.[]Z.IJ;I + a fo‘ + ap er‘ +--- +aﬂ2xf+1 = Zy;x},

i=1 i=1 i=I i=1 i=1

m m

m s m
aquf + a ZI?+I + ay ZIEH'E + .- -I—EI,,ZIE’“ = Zx,x}"
i=1 i=l i=1

These normal equations have a unique solution provided that the x; are distinct (see
Exercise 14).
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Fit the data in Table 8.3 with the discrete least squares polynomial of degree at most 2.

Table 8.3

I Xi ¥i

1 0 1.0000
2 025 1.2840
3 050 1.6487
4 075 21170
5 1.00 27183
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Solution  For this problem, n = 2, m = 5, and the three normal equations are

Sap +  2.5a1 + 1.875a; = 8.7680,
25ap + 1.875a; + 1.5625a; = 5.4514,
1.875ay + 1.5625a; + 1.3828a, = 4.4015.

Thus the least squares polynomial of degree 2 fitting the data in Table 8.3 is
P3(x) = 1.0051 + 0.86468x + 0.84316x7,

whose graph is shown in Figure 8.4. At the given values of x; we have the approximations
shown in Table 8.4.

The total error,

5
E=) (yi—P(x))* =274 x 107",

is the least that can be obtained by using a polynomial of degree at most 2. O
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Figure 8.4

y = 1.0051 + 0.86468x + 0.84316x7
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i i i L
0.25 0.50 0.75 100 X
Table 8.4
I 1 2 3 4 5
X; 0 0.25 0.50 0.75 1.00
¥; 1.0000 1.2840 1.6487 2.1170 2. T183
Pix;) 1.0051 1.2740 1.6482 2.1279 27129
vi — P(x;) —0.0051 0.0100 0.0004 —0.0109 0.0054
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At times it is appropriate to assume that the data are exponentially related. This requires
the approximating function to be of the form

y = be™ (8.4)

or

y = b, (8.5)

for some constants a and b. The difficulty with applying the least squares procedure in a
situation of this type comes from attempting to minimize

f

E = (yi—be™)? inthecasc of Eq. (8.4),

i=1
or

fm

E= Z(}-‘,- — bx)?, in the case of Eq. (8.5).

i=1
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The normal equations associated with these procedures are obtained from either

dE

0=— _EZ@ — be™i)(—e™)
and
dE
0= — = zZ@, be™)(—bx;e™), in the case of Eq. (8.4);
or
dE -
o ;0 9)(—xf)
and
dE .
0= =2 Z(} — bx")(—b(Inx;)x), in the case of Eq. (8.5).
da ;

Mo exact solution to either of these systems in @ and b can generally be found.
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The method that is commonly used when the data are suspe:cfed to be exponentially
related is to consider the logarithm of the approximating equation:

Iny=1Inb + ax, inthe case of Eq. (8.4),
and

Iny=Inb+alnx, inthe case of Eq. (8.3).

In either case, a linear problem now appears, and solutions for In » and a can be obtained
by appropriately modifying the normal equations (8.1) and (8.2).

However, the approximation obtained in this manner is nof the least squares approxima-
tion for the original problem, and this approximation can in some cases differ significantly
from the least squares approximation to the original problem. The application in Exer-
cise 13 describes such a problem. This application will be reconsidered as Exercise 11 in
Section 10.3, where the exact solution to the exponential least squares problem is approxi-
mated by using methods suitable for solving nonlinear systems of equations.
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Table 8.5
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Consider the collection of data in the first three columns of Table 8.5.

i X Yi Iny; -‘3;-2 x; Iny;
| 1.00 5.10 1.629 1.0000 1.629
2 1.25 5.79 1.756 1.5625 2.195
3 1.50 6.53 1.876 2.2500 2.814
4 1.75 1.45 2.008 3.0625 3514
5 2.00 8.46 2.135 4.0000 4.270
71.50 9.404 11.875 14.422
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If x; is graphed with Iny;, the data appear to have a linear relation, so it is reasonable to
assume an approximation of the form

y = be™, which implies that Iny = Inb + ax.

Extending the table and summing the appropriate columns gives the remaining data in
Table 8.5.

Using the normal equations (8.1) and (8.2),

__ (5)(14.422) — (1.5)(9.404)

5)(11875) — (752 =00

and

~ (11.875)(9.404) — (14.422)(7.5)

Inb
(5)(11.875) — (7.5)2

= 1.122.

With Inb = 1.122 we have b = ¢'-'*?> = 3.071, and the approximation assumes the form
y = 3.071£%70%x,

At the data points this gives the values in Table 8.6. (See Figure 8.5.) [



Table 8.6
i x; Vi 3.07100%6x lvi — 3.071%30%%
1 1.00 5.10 5.09 0.01
2 1.25 5.79 5.78 0.01
3 1.50 6.53 6.56 0.03
4 1.75 7.45 7.44 0.01
5 2.00 8.46 8.44 0.02
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5. Given the data:

x; 4.0 4.2 4.5 4.7 3.1 3.5 5.9 6.3 6.8 7.1
y; 10256 11318 13011 14205 167.53 19514 22487 1256.73 29950 326.72

Construct the least squares polynomial of degree 1, and compute the error.
Construct the least squares polynomial of degree 2, and compute the error.
Construct the least squares polynomial of degree 3, and compute the error.
Construct the least squares approximation of the form be™, and compute the error.

Construct the least squares approximation of the form bx“, and compute the error.

@® - =®
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