MAP2220 —aula 12

MAP 2220 - FUNDAMENTOS DE ANALISE NUMERICA
22 Semestre - 2017

Prof. Dr. Luis Carlos de Castro Santos
Isantos@ime.usp.br/lccs13@yahoo.com

MAP2220

7 Iterative Techniques in Matrix Algebra 431
W
e -

i omFeshni op-eivimess 5 ”
T OO I T e T

=/ 6 Hac Gonjugale GRadiea! Mothed el w= == = -
1.7 Survey of Methods and Software 495

MAP2220

oo oo ==
| |
I
I |
— (o] " — (3] (o] -t Ll
Eo, Lo, Lo, Sy My Sy By Sy
L 1
[
= T = R = T T R
[T s Y [I.__:_ o T _J.r.v_.T. r.u._.__:_
(=T I_ o - o
- o o o 1_. o o
T
o o o0 o o
© T o o0 o o
in o oo o 9

Jacobi’s Method B . MAP2220

fi

I
MO Z(—au,xj*—”)m- . fori=1.2.....n

j=1
| i

X =1x*V4e. T=D'L+U)and¢;=D"'b

The Gauss-Seidel Method

—1 i
1 : . .
k 2 : k E : k—1
_I': I _ — -_— {Hf_.'.'t; .:I:]' - (ﬂr‘rlj I:I:} + bi' E

ﬂ'..
. j=1 j=i+1

x®) — Tg?iu'_“ +¢. Ty=(D-L)y'Uande, =(D—L)"'b,

SOR. for Successive Over-Relaxation,

i—1 "
k) k1) , @ (k) (k—1)
Yo =0 —ox Tt bi - > _ax — Y ai;
" j=1 j=it+l

x® = T,x Y +c,. T, = (D —oL)™'[(1 — @)D + oU] and ¢, = o(D — wL)™'b

MAP2220

1.6 The Conjugate Gradient Method

Theorem 7.31 The vector x* is a solution to the positive definite linear system Ax = b if and only if x*
produces the minimal value of

gl(x) = (x,Ax) — 2(x, b}. |

Theorem 732 Let {v'",...,v"} be an A-orthogonal set of nonzero vectors associated with the positive
definite matrix A, and let x'” be arbitrary. Define

{1.(.&]1’ h — Ax{k—l}}
e = (v Ay

and x™ =x""Y 4 v,

for k = 1,2,...,n. Then, assuming exact arithmetic, Ax'™ = b.]

Como produzir uma sequéncia de vetores A-ortogonais ?

MAP2220

Theorem 7.33 The residual vectors r'*), where k = 1,2....,n. for a conjugate direction method, satisfy
the equations

(r'® vy =0, foreach j=1,2.....k -

The conjugate gradient method of Hestenes and Stiefel chooses the search directions
{v'*'} during the iterative process so that the residual vectors {r'*} are mutually orthogonal.
To construct the direction vectors {v'!), ¥/}, _ .} and the approximations {x", x'%}, .}, we
start with an initial approximation x'°! and use the steepest descent direction r'” = b—Ax'®
as the first search direction v'!.

Assume that the conjugate directions vV, . .., v*=1) and the approximations x'V, ...,
x'*~1) have been computed with

k=D k=D oy D)
where
(VO AV =0 and (. r"y =0, for i#£].

If x*~1 i5 the solution to Ax = b, we are done. Otherwise, r—1 = b — Ax*1 £ 0 and
Theorem 7.33 implies that (r*~", v'y =0, foreachi = 1,2,....k — 1.

MAP2220

We use r'*~ to generate v'*) by setting
RO S
We want to choose §;_; so that
(v Ay =,
Since
AVE = A% g AvED
and
(vE=D Ay®)y — (yk-D Aplk-Dy Lo k=D gy—1)y
we will have (v*~D_Av&) = 0 when

I{T{k_ll,ﬂr':k_”}
(V=1 Ayk—D))"

Sp—1 = —

MAP2220

It can also be shown that with this choice of s5,_; we have (v®) Avl) = 0, for each

i=1.2,....k — 2 (see [Lu], p. 245). Thus {v'", ... v*} is an A-orthogonal set.

Having chosen v'*', we compute

R e e)
(v Ay (vE Ay
{1.{k—|]1 r{k—l}} {T(k_|]1 r{k—l}}

(vE) Ay(®)) TSk (v, Ay(B)

Iy =

By Theorem 7.33, (v*~1 =1y = 0, so

{1.{.‘:—':]’ rl:.k—l}}
{",’&]I'A‘r{k}} ’

e =
Thus
x® — x4 g o0
To compute r'®), we multiply by A and subtract b to obtain
Axm —h =Ax““”‘ b +Ikﬁn"”‘]

or

ri& — plk=1) _ ka.,r(k]_

(7.30)

MAP2220
This gives

{r{ﬁ:]I' r{ﬁ:]} — {l'(k_l].' r{k]} _ Ik{!""l'l"{k].| rl:.k]:l — _rk (r(-ﬂ,ﬂ-‘r{k]}_
Further, from Eq. (7.30),
(r&=D_ pl=1y — oy gyE)y

S0

{1"[*],Ar':*:'} {r“‘]'._...*-';'f":k:'} []ff.t}{l'{“-.. r'[“} {1'“‘]'._.r{ﬂ}
== (v AVEY (@ AvRY T (1 /) (r*=D_ =Dy — (pk—D)_p&-D)"

In summary, we have

r® = p—Ax®: () = (O,

and, fork=1,2,....n.

{1.{k—|] rl:k—l}}
Ik: { 5 "A {H} 1 x{k]:x{k—lj _|_rk‘,{k]1 r{k]:r{k—ll —fkf'-'l\-'{“1 5=
VLAY

I::l.{.l':]1 I'{'H:l
II[‘“‘_”, r{k—l)}"‘

and

,'J:k+l} — r{-‘i] +-5'.d:'1'r{“- (7.31)

MAP2220

Example 2 The linear system Ax = b given by

4x; + 3x, = 24,
3x; +4x, — x5 = 30,
— X1 +4xn =-24

has solution (3,4, —5)'. Use the conjugate gradient method with x'”) = (0,0, 0)'

LU I Ax‘-m; v — I.{D};

and, fork =1.2,....n.

,:I.i_k—]j1 I.{A‘—]j}
,:‘..:miﬂ.,.-[k)} :

{I":'“, r':“}
- {1.1,.'i.-—lj-1 r{k—l}} *

x{k}:x[k—lj 4 &_,‘__[H’ I.{.t]= I.i_k—]j . &A‘.{k}‘ St

and

viED — 0 4 o v B (7.31)

MAP2220

MAP2220
Preconditioning

Rather than presenting an algorithm for the conjugate gradient method using these formulas,
we extend the method to include preconditioning. If the matrix A is ill-conditioned, the
conjugate gradient method is highly susceptible to rounding errors. So, although the exact
answer should be obtained in n steps, this 1s not usually the case. As a direct method the
conjugate gradient method is not as good as Gaussian elimination with pivoting. The main
use of the conjugate gradient method is as an iterative method applied to a better-conditioned
system. In this case an acceptable approximate solution is often obtained in about /i steps.

When preconditioning is used, the conjugate gradient method is not applied directly
to the matrix A but to another positive definite matrix that a smaller condition number. We
need to do this in such a way that once the solution to this new system is found it will be
easy to obtain the solution to the original system. The expectation is that this will reduce
the rounding error when the method is applied. To maintain the positive definiteness of the
resulting matrix, we need to multiply on each side by a nonsingular matrix. We will denote
this matrix by C~', and consider

A=claic™,

with the hope that A has a lower condition number than A. To simplify the notation, we
use the matrix notation C~' = (C~!]r. Later in the section we will see a reasonable way to

select C, but first we will consider the conjugate applied to A.

MAP2220

Consider the linear system

where ¥ = C'x and b = C~'b. Then
AX = (C'ACTHY(C'x) = C'Ax.

Thus, we could solve AX = b for X and then obtain x by multiplying by C~'. However,
instead of rewriting equations (7.31) using F i-'[k:'., i, XM, and 5, we incorporate the
preconditioning implicitly.

Since

0 _ CIx[h,
we have
' =b—AX" =Cc'b—(c'ACTHCXY = Cc'b —AxY) = Cc7Ir.
Let v = C'v® and w® = C~1¢®_ Then

{i.i_.tj-’ I.i_.kj-} {C_]I"-'k:', C—Ir{.ﬂ;}}
{f-{k—l}’ f{k—l}} - {C_]I'[k_]:', C—Ir{.t—lj} *

5 =

50

{“,.[k} . “,1_.kj-:|
= (whk=1)_ wik=1)) "

Sk

(7.32)

Thus

~ {f‘-k_”‘f-‘-k_”} {C"r“‘_”, C—II.[k—Ij} {‘1.[k—|]5“,1_k—]}}

I = {i'[k] ;h—r,i_k}} = {Ce‘,q_kj-1 E—IAE—ICe‘.{k}:I = {C"V‘-“,E_Iﬂv[h}

and, since
I:E-r‘__[k}’{:-—]ﬂv{k]} _ [GI\-‘[h]rG_lﬂv*'“

— [W'{k]]rGG_IAV"“ — [‘,1_.*}]114.‘.1_3&} — {‘.{RliA‘__{k}}’

we have
N {“.1_.!.'—”1 “.{.t— I]}
t, = . Ay) (7.33)
Further,
& _ k-1 +Eki"’“~ so Cix™ — ity +?kC‘1'{k}
and
x = x4, (7.34)
Continuing,
I—_m _ I—.[k—]} . ;m;ﬁ__[k}‘
SO

C—]I_{j{:l _ C—]I_{j{—]:l _ },{C‘_]AC‘_HT“, I_I:i} _ I.‘.'k_]:' _ F‘:AE—ich{k]’
and

r® — p6=D _fAv®) (7.35)

MAP2220

MAP2220

Finally,
[J.+]:| I—{']_I_Eki,{k] and CE Ak+1) — |rh‘.}_|_s Cr {.i.]
50
viED — e Te® v = w4 vt (7.36)

The preconditioned conjugate gradient method is based on using equations (7.32)-
(7.36) in the order (7.33), (7.34), (7.35), (7.32), and (7.36). Algorithm 7.5 implements this
procedure.

MAP2220

- Preconditioned Conjugate Gradient Method

To solve Ax = b given the preconditioning matrix C~! and the initial approximation x'':

INPUT the number of equations and unknowns n: the entries aij. 1 = i,j = nof the
matrix A: the entries bj, 1 = j = n of the vector b; the entries y; i 1 =1i,j = nof the
preconditioning matrix C~ l, the entries x;, | =i = n of the initial approximation x = x‘-m,
the maximum number of iterations N: tolerance TOL.

OUTPUT the approximate solution x,, . .. x, and the residual ry, ... r, or a message that
the number of iterations was exceeded.

Step 1 Setr = b — Ax: (Compute r'”".)
w=C"lr: (Note: w = w‘-m}
v = C'w; (Note: v =v'1)
fn 2
o = Z}:I H.JJI- .
Step? Setk =1.
Step 3 While (k = N) do Steps 4-7.

Step 4 1If ||v|| = TOL, then
OUTPUT (*Solution vector™; Xy, ..., X,);
OUTPUT (*with residual™; ri.....r)
(The procedure was successful.)

STOP
Step 5 Setu = Av: (Note: u = AvIY)
I = (Note: t = 1)
2 vt

X = x + tv: (Note: x = x'*)
r =r — tu; (Note: r = r'©)
W= C_Ir; (Note: w = “_.[k))
B = Zf=| wf- (Note: B = (w® _ wik)))

Step 6 If || <= TOL then
if ||r|| = TOL then
OUTPUT(*Solution vector’; xy,....x,);
OUTPUT(*with residual’; ri, ..., rm);
(The procedure was successful.)
STOP

Step 7 Sets = B/a: (s = s;)
v=C"w+sv; (Note: v= v‘-““})
a = B: (Update o.)
k=k+ 1.

Step 8 If (k = n) then

OUTPUT (*The maximum number of iterations was exceeded.”);

(The procedure was unsuccessful.)
STOP.

MAP2220

MAP2220

The next example illustrates the effect of preconditioning on a poorly conditioned
matrix. In this example, we use D~'/? to represent the diagonal matrix whose entries are the
reciprocals of the square roots of the diagonal entries of the coefficient matrix A. This is used
as the preconditioner. Because the matrix A is positive definite we expect the eigenvalues
of D7Y2AD7Y2 to be close to 1. with the result that the condition number of this matrix
will be small relative to the condition number of A.

Example 3 Use Maple to find the eigenvalues and condition number of the matrix

—

0.2 0.1 1 1 0

0.1 4 —1 1 —1

A= 1 —1 60 0 —2
1 1 0 8 4

0 —1 -2 4 700

and compare these with the eigenvalues and condition number of the preconditioned matrix
D-V2ap—1/2

Solution We first need to load the LinearAlgebra package and then enter the matrix.

with(LinearAlgebra):
A = Matrix([[0.2,0.1,1,1,0],[0.1,4, —1,1,—1].,[1,—1,60,0, =2],
[1,1,0,8,4],]0,—-1,-2,4,700]])

To determine the preconditioned matrix we first need the diagonal matrix, which being
symmetric is also its transpose. its diagonal entries are specified by

1
p a3 = ! ;a4 = l;.f:.i:: l
700.0

V60.0°

al :

1
= — a2 =
/0.2 /4.0

and the preconditioning matrix is

CI = Matrix([[al,0,0,0,0],[0,a2.0,0,0],[0.0,a3,0,0],[0,0,0, a4, 0], [0, 0,0,0, aS]])

5

which Maple returns as

[2.23607 0 0 0 0]
0 500000 0 0 0
0 0 129099 0 0
0 0 0 353553 0
0 0 0 0 0.0377965

The preconditioned matrix is

AH = Cl A Transpose(CI)

[1.000002 0.1118035 0.2886744 0.7905693 0
0.1118035 1 —0.0645495 0.1767765 —0.0188983
0.2886744 —0.0645495 0.9999931 0O —0.009758938
0.7905693 0.1767765 0 0.9999964 0.05345219

| 0 —0.0188983 —0.00975898 0.05345219 1.000005

The eigenvalues of A and AH are found with
Maple gives these as

Eigenvalues of A :700.031,60.0284, 0.0570747, 8.33845, 3.74533
FEigenvalues of AH :1.88052,0.156370,0.852686, 1.10159, 1.00884

The condition numbers of A and AH in the [~ norm are found with

ConditionNumber(A); ConditionNumber(AH)

which Maple gives as 13961.7 for A and 16.1155 for AH. It is certainly true in this case that

AH i1s better conditioned that the original matrix A.

MAP2220

MAP2220

[llustration The linear system Ax = b with

- 0.2 0.1 | | 0 1
0.1 4 —1 | —1 2
A= 1 —1 60 0 —2 and b=| 3
1 1 0 8 4 4

0 —1 —2 4 700 |5]

has the solution

x* = (7.859713071, 0.4229264082, —0.07359223906, —0.5406430164, 0.01062616286)".

Table 7.5 lists the results obtained by using the Jacobi, Gauss-Seidel, and SOR (with @ =
1.25) iterative methods applied to the system with A with a tolerance of 0.01, as well as
those when the Conjugate Gradient method is applied both in its unpreconditioned form
and using the preconditioning matrix described in Example 3. The preconditioned conjugate

gradient method not only gives the most accurate approximations, it also uses the smallest
number of iterations. []

MAP2220

Table 7.5
Number

Method of Iterations x® Ix* — x* |

Jacobi 49 (7.86277141, 0.42320802, —0.07348669, 0.00305834
—0.53975964, 0.01062847)*

Gauss-Seidel 15 (7.83525748, 042257868, —0.07319124, 0.02445559
—0.53753055,0.01060903)"

SOR (@ = 1.25) 7 (7.85152706,042277371, —0.07348303, 0.00818607
—0.53978369,0.01062286)"

Conjugate Gradient 5 (7.85341523,0.42298677, —0.07347963, 0.00629785
—0.53987920, 0.008628916)"

Conjugate Gradient 4 (7.85068827,0.42288329, —0.07359878, 0.00009312

{ Preconditioned)

—0.54063200,0.01064344)’

MAP2220

Perform only two steps of the conjugate gradient method with C = C~! = [on each of the following
linear systems. Compare the results in parts (b) and (c) to the results obtained in parts (b) and (c) of
Exercise | of Section 7.3 and Exercise 1 of Section 7.4.

a. 3x— 0+ x;=1,
—X] T 0OX2 T 2.1’3 = 0,
X1 T 213 T T.Ig = 4.

b. 10x;— x =9,

—X] + l{}Ig — 2}:3
— EIE + lﬂI_:',

|-
o =~

Set r = b — Ax; (Compute r'”.)
w = Clr; (Note: w = w'")
v = C'w: (Note: v =v'")
n 2
[— Z_{:I H_JJI- .

Setu = Av: (Nofe: u = Av“‘]}

[

= — . (Note: t = 1)
Ej:] Uil
X = X + tv; (Note: x = x'*)
r =r — tu; (Note: r = r'?)
w = C~'r: (Note: w = w'")
B = Z}-’:l wf. (Note: B = (w'F_ why)

Sets = f/a; (s = s5)
v = C'w + sv: (Note: v = vkl
a = f; (Update o.)
k=k+ 1.

MAP2220

MAP2220

and, fork=1.2,....n,

{1"-"‘_”1 I.{.ﬂ:—]}}

h.{kliﬂf[k}} :

(k) (k)
. L. . - - i r : r
x‘-“:x[i_” n f.t""[”-a I":"‘]= 1.1_.#—1} _ rkﬂ‘.i.i}ll g = {)

I = — .
i (rk=1) pk=D)

and

VD = ¢ 8 v (7.31)

MAP2220

MAP2220

7 Iterative Techniques in Matrix Algebra 431

1.7 Survey of Methods and Software 495

MAP2220

S stem result’ 1mt1a1‘11near 1 g i
1nt

MATLABnum arycenti

differential um large factorwork bac omd

maﬂ?%%at?g p 1 rl(m?arp 0 1 ate
code bou d

1terate coeﬁic:lents
€1 genvalue p eva ua‘g[e
exagl’gn e ba31s FE0tstep Jan %‘Zﬁﬁm m
Lagrange mesh S 0 V e
1‘681(1 t integral

”3ﬁlﬁema I'lX u °°mple’;[10n
condltf“(“i“ﬁ°€I’I'OI;10t- qualtc
=polynomial=
analysis approximate

