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1.5 Error Bounds and lterative Refinement

Example 1

[t seems intuitively reasonable that if X is an approximation to the solution x of Ax = b and
the residual vector r = b — AX has the property that ||r|| is small, then ||x — x|| would be
small as well. This is often the case. but certain systems, which occur frequently in practice.
fail to have this property.

The linear system Ax = b given by

[t bl

L% )= Sooor |

has the unique solution x = (1, 1)". Determine the residual vector for the poor approximation
£ = (3, —0.0001)".

1
[ 1.0001

Solution We have

e b_az—|3 [ 3 _ [ 0.0002
- "~ | 3.0001 1.0001 —0.0001 |~ | 0 :

so [|r|l = 0.0002. Although the norm of the residual vector is small, the approximation
X = (3,—0.0001)" is obviously quite poor; in fact, [|x — X[|.c = 2. u

P e
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The difficulty in Example 1 is explained quite simply by noting that the solution to the
system represents the intersection of the lines

h: xp+202=3 and [L: 1.0001x; + 2x = 3.0001.
The point (3, —0.0001) lies on [, and the lines are nearly parallel. This implies that

(3, —0.0001) also lies close to [;, even though it differs significantly from the solution of
the system, given by the intersection point (1, 1). (See Figure 7.7.)




MAP2220

Example 1 was clearly constructed to show the difficulties that can—and, in fact, do—
arise. Had the lines not been nearly coincident, we would expect a small residual vector to
imply an accurate approximation.

In the general situation, we cannot rely on the geometry of the system to give an
indication of when problems might occur. We can, however, obtain this information by
considering the norms of the matrix A and its inverse.

Theorem 7.27  Suppose that X is an approximation to the solution of Ax = b, 4 is a nonsingular matrix,
and r is the residual vector for X. Then for any natural norm,

Ix — || < [l - 147"
and if x = 0 and b == 0,

lIx —xII _py Il
——— < JIAl| - JAT" | . (7.20)
1] bl

Proof  Sincer = b—AX = Ax —AX and A is nonsingular, we have x — X = A~'r. Theorem
7.11 on page 440 implies that

lx —%|| = A~ el < JA7Y - |Ie)l.
Moreover, since b = Ax, we have ||b]| < [|A]| - |x].. So 1/]|x]| < [|A[l/[|b]| and

- . —1
Ix —xIl_ lial- 1A~
[l bl

Il ===
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Condition Numbers

The inequalities in Theorem 7.27 imply that lA=" | and JA] - |A7Y provide an indication
of the connection between the residual vector and the accuracy of the approximation. In

general, the relative error || x —X||/||x] is of most interest, and, by Inequality (7.20), this error
is bounded by the product of ||A]| - lA~"|| with the relative residual for this approximation,

x|l /|Ib]l. Any convenient norm can be used for this approximation: the only requirement
is that it be used consistently throughout.

Definition 728 The condition number of the nonsingular matrix A relative to a norm || - || is
K(A) = Al - A7]. O

With this notation, the inequalities in Theorem 7.27 become

I

Ix —X|| = K(A)—
IA]|
and
Ix — x| |l
= K(A)—-.
fixl Iib]|

For any nonsingular matrix A and natural norm || - ||,
== A-A7" < Al - [A'] = K(A).

A matrix A is well-conditioned if K(A) is close to 1, and is ill-conditioned when K{A) is
significantly greater than 1. Conditioning in this context refers to the relative security that
a small residual vector implies a correspondingly accurate approximate solution.
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Determine the condition number for the matrix

1 2
"ﬂ‘=[ 1.0001 z]'

Solution We saw in Example 1 that the very poor approximation (3, —0.0001)' to the exact
solution (1, 1)" had a residual vector with small norm, so we should expect the condition
number of A to be large. We have ||A||x = max{|1]| + [2], |1.001] + |2]} = 3.0001, which
would not be considered large. However,

A :[ — 10000 10000

—1 _
5000.5 —5{1013} S0 IA7 lloo = 20000,

and for the infinity norm, K{A) = (20000)(3.0001) = 60002. The size of the condition
number for this example should certainly keep us from making hasty accuracy decisions
based on the residual of an approximation. u
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Although the condition number of a matrix depends totally on the norms of the matrix
and its inverse, the calculation of the inverse is subject to roundoff error and is dependent on
the accuracy with which the calculations are performed. If the operations involve arithmetic
with r digits of accuracy, the approximate condition number for the matrix A is the norm
of the matrix times the norm of the approximation to the inverse of A, which is obtained
using f-digit arithmetic. In fact, this condition number also depends on the method used
to calculate the inverse of A. In addition, because of the number of calculations needed to
compute the inverse, we need to be able to estimate the condition number without directly
determining the inverse.

If we assume that the approximate solution to the linear system Ax = b is being
determined using f-digit arithmetic and Gaussian elimination, it can be shown (see [FM],
pp. 45—47) that the residual vector r for the approximation X has

el 2 107" JA]| - I1X]]. (7.21)
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From this approximation, an estimate for the effective condition number in f-digit
arithmetic can be obtained without the need to invert the matrix A. In actuality, this approxi-
mation assumes that all the arithmetic operations in the Gaussian elimination technique are
performed using r-digit arithmetic but that the operations needed to determine the residual
are done in double-precision (that is, 21-digit) arithmetic. This technique does not add sig-
nificantly to the computational effort and eliminates much of the loss of accuracy involved
with the subtraction of the nearly equal numbers that occur in the calculation of the residual.

The approximation for the f-digit condition number K{A) comes from consideration
of the linear system

Ay =r.

The solution to this system can be readily approximated because the multipliers for the
Gaussian elimination method have already been calculated. So A can be factored in the
form P'LU as described in Section 5 of Chapter 6. In fact ¥, the approximate solution of
Ay = r, satisfies

=AM lr=A"'"b—Av) =A""p—A AT =x -1, (7.22)

=

and

-

&
1
_|_
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So ¥ is an estimate of the error produced when X approximates the solution x to the original
system. Equations (7.21) and (7.22) imply that

IF1 = lx = %| = A"l < JAT' - fiell = A~ ) (107 LAl - IR11) = 101X K (A).

This gives an approximation for the condition number involved with solving the system
Ax = b using Gaussian elimination and the f-digit type of arithmetic just described:

K(A) = MID’ : (7.23)
X1l
lllustration  The linear system given by
3.3330 15920 —10.333 X 15913
2.2220 16710  9.6120 X, | =| 28544
1.5611 5.1791 1.6852 X3 8.4254

has the exact solution x = (1, 1, 1)".

Using Gaussian elimination and five-digit rounding arithmetic leads successively to the
augmented matrices

3.3330 15920 —10.333 15913

0 — 10596 16.501 10580

0 —T7451.4 6.5250 —T74449 ]
and

3.3330 15920 —10.333 15913

] — 10596 16.501 — 10580

] 0 —5.0790 —4,7000 |

The approximate solution to this system is

X = (1.2001,0.99991, 0.92538)".



The residual vector corresponding to X is computed in double precision to be

r—=h— A%
15913 ] [ 33330 15920 —10.333 1.2001

= | 28544 | —| 22220 16.710 9.6120 (.99991
| 84254 | | 15611 5.1791 1.6852 (.92538
15913 ] [ 15913.00518 —0.00518

— | 28544 | — | 2826987086 | = 0.27412914
| 84254 | | 8.611560367 —0.186160367

I]loc = 0.27413.

The estimate for the condition number given in the preceding discussion is obtained by
first solving the system Ay = r for y:

3.3330 15920 —10.333 Vi —0.00518
22220 16.710 9.6120 Ya | = 0.27413
1.5611 5.1791 1.6852 ¥3 —0.18616

This implies that v = (—0.20008, 8.9987 x 1077, 0.074607)". Using the estimate in
Eq. (7.23) gives
¥l o 10° — 0.20008
Ix]lao 1.2001

K(A) ~ 10° = 16672. (7.24)

MAP2220
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To determine the exact condition number of A, we first must find A~'. Using five-digit
rounding arithmetic for the calculations gives the approximation:

—1.1701 % 107% —1.4983 % 10! 8.5416 x 10!
A 6.2782 % 103 1.2124 % 10—+ —3.0662 % 10—*
—8.6631 % 102 1.3846 %« 107! —1.9689 % 10!

Theorem 7.11 on page 440 implies that A |ac = 1.0041 and ||A]| = 15934,
As a consequence, the ill-conditioned matrix A has

K(A) = (1.0041)(15934) = 15999.

The estimate in (7.24) is quite close to K(A) and requires considerably less computa-
tional effort.
Since the actual solution x = (1, 1, 1" is known for this system. we can calculate both

Ix — X[loe  0.2001

Ix — X|| =0.2001 and = (.2001.
IAYES !
The error bounds given in Theorem 7.27 for these values are
y 15999)(0.27413
Ix — ¥ < K@)l _ ) ) _ 027525
lA e 15934
and
X — x|, r 15999)(0.27413 _
I lloo EK(A}II loo )| ) _ 027561 0

1%l o Iblloe 15913
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1.6 The Conjugate Gradient Method

The conjugate gradient method of Hestenes and Stiefel [HS] was originally developed as
a direct method designed to solve an n x n positive definite linear system. As a direct
method it is generally inferior to Gaussian elimination with pivoting. Both methods require
n steps to determine a solution, and the steps of the conjugate gradient method are more

computationally expensive than those of Gaussian elimination.

However, the conjugate gradient method is useful when employed as an iterative ap-
proximation method for solving large sparse systems with nonzero entries occurring in
predictable patterns. These problems frequently arise in the solution of boundary-value
problems. When the matrix has been preconditioned to make the calculations more effec-
tive, good results are obtained in only about /n iterations. Employed in this way, the method
is preferred over Gaussian elimination and the previously-discussed iterative methods.

Throughout this section we assume that the matrix A is positive definite. We will use
the inner product notation

(x,¥) =x'y, (7.26)

where x and y are n-dimensional vectors. We will also need some additional standard results
from linear algebra. A review of this material is found in Section 9.1.
The next result follows easily from the properties of transposes (see Exercise 12).
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Theorem 7.30 For any vectors X, v, and z and any real number o, we have

(a) (x,y) = (y,x): (b) (ax,y) = (X,ay) = a(X.y):
() (X+2zZYy) = (X,¥) + (Z,¥); (d) (x,x) =0;
(e) (x,x) =0if and only if x = 0. |

When A is positive definite, (x,AX) = x'AX = 0 unless x = 0. Also, since A is
symmetric, we have xX'Ay = x'A’'y = (Ax)'y. so in addition to the results in Theorem 7.30,

we have for each x and v,
(x,Ay) = (AX)'y = x'A'y = x'Ay = (Ax,y). (7.27)

The following result is a basic tool in the development of the conjugate gradient method.

Theorem 731 The vector X* is a solution to the positive definite linear system AX = b if and only if x*
produces the minimal value of

2(x) = (X, Ax) — 2(x. b). |
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Proof Let x and v # 0 be fixed vectors and f a real number variable. We have
g(X+1v) = (X +tv,AX + tAV) — 2(xX 4+ tv,b)
= (X, AX) + 1{V,AX) + H{X, AV) + 2 (v, Av) — 2(x. b) — 2t(v.b)
= (X,AX) — 2(x,b) + 2¢{v,Ax) — 2f(v,b) + (v, Av),
SO
(X + tv) = g(x) — 2t{v,b — AX) + 1> (v, AV). (7.28)
With x and v fixed we can define the quadratic function /1 in f by
hit) = g(x + tv).

Then h assumes a minimal value when #’(f) = 0, because its > coefficient, (v, Av), is
positive. Because

h(t) = —2(v,b — AX) 4 21(v,Av),
the minimum occurs when
(v.b — AX)
(V,Av)

=
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and, from Equation (7.28),
h(t) = g(x +1v)
= g(x) — 2f(v.b — AX) + 2 (v, AV)

o wb—AY) (v.b—Ax)\*
= 50 2 Ax}+( A )h.m}
B (v,b — Ax)?
= g(x) — VA

So for any vector v # (), we have g(x + tv) < 2(x) unless {(v.b — Ax) = 0, in which case
¢(x) = g(x 4 1v). This is the basic result we need to prove Theorem 7.31.

Suppose x* satisfies Ax® = b. Then (v, b — Ax*) = 0 for any vector v, and g(x) cannot
be made any smaller than g(x*). Thus, X* minimizes g.

On the other hand, suppose that x* is a vector that minimizes g. Then for any vector v,
we have g(x* + 7v) = g(x*). Thus, {v.b — Ax*) = 0. This implies that b — Ax* = 0 and,
consequently, that Ax* = b. m ==
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To begin the conjugate gradient method, we choose x, an approximate solution to
AXx* = b, and v #£ 0, which gives a search direction in which to move away from x to
improve the approximation. Let r = b — Ax be the residual vector associated with x and

(v.b — AX) (v.r)

(v,Av) (v,Av)

If r £ 0 and if v and r are not orthogonal, then X 4 fv gives a smaller value for g than g(x)
and is presumably closer to x* than is x. This suggests the following method.

Let x' be an initial approximation to x*, and let v'") £ 0 be an initial search direction.
Fork =1,2,3,...,wecompute

{"r'['“.. h — Axfk—])}
{:‘r{k:}?ﬂ"r{k:}} 1

Ik
xﬂ:) — KI'J:—IJ 4 rk‘,{kj

and choose a new search direction v**!. The object is to make this selection so that the
sequence of approximations {x'®'} converges rapidly to x*.

To choose the search directions, we view g as a function of the components of x =
('Il s A2y v e :-'IH}F' ThUS,

n n i
g(X1, X2, .. .. %) = (X, AX) — 2(x,b) = Z Zﬂu.r,-xj — QZ){,-.E:E-.
i—1

i=1 j=1
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Taking partial derivatives with respect to the component variables x; gives

g !
—x:ZE apiX; — 2by,
ELH-() — ki-vi k

which is the kth component of the vector 2(Ax — b). Therefore, the gradient of g is

i
Ve(x) = ( 98 %), 28 (x),..., 08 (x}) — 2(Ax — b) = —2r,

ax; O 9x ax

where the vector r is the residual vector for x.

From multivariable calculus, we know that the direction of greatest decrease in the
value of g(x) is the direction given by —Vg(x); that is, in the direction of the residual r.
The method that chooses

vED — b0 — Ax®

is called the method of steepest descent. Although we will see in Section 10.4 that this
method has merit for nonlinear systems and optimization problems, it is not used for linear
systems because of slow convergence.
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An alternative approach uses a set of nonzero direction vectors {v'", ..., v} that
satisfy

(VO AVIY =0, if §#].

This is called an A-orthogonality condition, and the set of vectors {v'", ..., v"} is said
to be A-orthogonal. It is not difficult to show that a set of A-orthogonal vectors associated
with the positive definite matrix A is linearly independent. (See Exercise 13(a).) This set of
search directions gives

(vO b — AxE-Dy  (y®) plk-D)
e = VO, AvBY T Ty ® Ay®))

and x™ = x*=D 4 v,

The following theorem shows that this choice of search directions gives convergence
in at most n-steps, so as a direct method it produces the exact solution, assuming that the
arithmetic is exact.



MAP2220

Theorem 7.32 Let {v'",...,v!"} be an A-orthogonal set of nonzero vectors associated with the positive
definite matrix A, and let x'”’ be arbitrary. Define

(v b — Axk-D)

(k) _ (k—1) (k)
VO Av) and x"' =x + Hv'?,

Iy =
for k = 1,2,...,n. Then, assuming exact arithmetic, Ax"” = b. [ |

Proof Since, foreachk = 1,2,....n, x® = x*D 4+ v we have

A = Ax"Y 1 AV

= A" +£,,Av" D) + 1,4V

= AXY + 1AV + HAVD + 1, AV
Subtracting b from this result yields
AX" — b = AXY — b+ 1AV + AV 4+ AV™,

We now take the inner product of both sides with the vector v**) and use the properties of
inner products and the fact that A is symmetric to obtain

(AX™ — b, vy = (AX© — b, v®) 41, (AvID v g, AV V)
= {AKUJJ — b, v{ﬁ'}} + rl{\"“J,A\’m} 4.4+ rn{v[ﬂ},‘qv{k}}.
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The A-orthogonality property gives, for each £,

(A — b, v?) = (AxY — b, vy 4 1 (vP, AV, (7.29)
However f; (v¥, Av®) = (v(® b — Ax*1) so
v AVEY = (v b — Ax©@ 4 Ax© — AxD .o Ax®D o Ax D gy D)y

= (v b —Ax7) + (v® AxD —AxV) 4 (v AP —ax ),

But for any i,

XD =x"V 4 1v?  and  AxY = AxUTD 4 AV,
SO

Ax'TD —AxY = —rAv?.

Thus

(VO AVEY = (vB b — AXD) — 1 (v AvDy — g (v ARy,



Because of the A-orthogonality, (v¥, Av'") = 0, for i # k, so
(v AV = (vIP b — AxD).
From Eq.(7.29),
(AX™ — b, vy = (A — b, vP) + (v b — Ax)
= (AX'"? — b, v®) + (b — Ax'", v®)
= (Ax'” — b, v®) — (AxD — b, vPy = 0.

MAP2220

Hence the vector Ax" — b is orthogonal to the A-orthogonal set of vectors {v(V, ... v®].

From this, it follows (see Exercise 13(b)) that Ax” — b = 0, so Ax" = b.
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Example 1 The linear system

4x, + 3x7 = 24,
3x; +4x; — x3 = 30,
— X2+ 4x; =-24

has the exact solution x* = (3,4, —5)". Show that the procedure described in Theorem 7.32
with X' = (0,0, 0)" produces this exact solution after three iterations.
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Solution We established in Example 2 of Section 7.4 that the coefficient matrix
4 3 0
A=1| 3 4 -1
0 —1 4

of this system is positive definite. Let vV = (1,0,0)', v'*¥ = (=3/4.1,0)", and v?® =
(—3/7.4/7,1)". Then

(viD, AV = v AV — (1,0,0)

o W

(v, AV = (1,0,0)

o LIPS T S0
e Lad
|
_

1

|
]

and

. 4 3 0 -3
{v“z‘,Av[—”}:(—i,l.o) 3 4 —1 ' — 0.
0

Hence {v'", v? v(¥} is an A-orthogonal set.
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Applying the iterations described in Theorem 7.22 for A with x'7 = (0,0.0)" and
b = (24,30, —24)" gives

r{m —h — Axm} = h = (24. 30, _24)r:

50

(v r @) — yOrp@ — 24 (v AvDy =4, and 1y = ? = 6.

Hence
XV = x9 v = (0,0,0)" +6(1,0,0) = (6,0,0)".
Continuing, we have

e — b — AxD = (0,12, —24)": 1, = V) 1248
» L4 ' VO AV 774 7"

‘ x 48 (3 Y6 48 1\
X:E}:K“J—I—Iﬁ’:z}: (6.D,D}I—|—— (__,]?0) — (_ _’0) :

7 4 77

\ ~ 120 A3 p@ —120/7
r® —p— Ax@ — (01 0, __) Lt = {‘1 r'<) _ / = —5;
7 (V3 Av3) 24/7

6 48 \' 34 3\
A3) (2) A3 I
= +6v ==, —,0) +(=5|—-=,=.1) =(3,4,-5)".
X X 2V (?’ 7’ ) ( }( 77 ) ( )

Since we applied the technique n = 3 times, this must be the actual solution. u
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