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Jacobi's Method B .
1 f
I:-H = Z(—aﬂx}k—”)—l—b; . fori=12,...,n
i | o
| J# _
x® = Tx* 1 4. T;=D ' (L+U)and¢; =D"'b
The Gauss-Seidel Method
| i—1 f
xt = . —Z{a,-;x}”} - Z (ﬂ:‘j{!ﬁ_”} +b;|.
1 . R
_.I'=| _|'=I+|

X =T e, To=(D—L)y'"Uande, = (D—L)" b,
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General Iteration Methods
To study the convergence of general iteration techniques, we need to analyze the formula
x® = 1x* Y 4+, foreachk=1.2,...,

where x'¥ is arbitrary. The next lemma and Theorem 7.17 on page 449 provide the key for
this study.

Lemma 7.18 If the spectral radius satisfies p(T) < 1, then (I — T)~! exists, and

o0
I-T)"'=1+T+T*+... =) "T. O
J=0

Proof Because Tx = Ax is true precisely when (/ — T)x = (1 — A)x, we have A as an
eigenvalue of T precisely when 1 — A is an eigenvalue of / — 7. But || =< p(T) < 1, s0
5. = 11is not an eigenvalue of T, and 0 cannot be an eigenvalue of / — T'. Hence, (I — T)~!
exists.

LetSy=I1+T+T>+---+T™ Then

U=T)Sy=(1+T+T*+ - +T")—(T+T ...+ 7™y =] — TmH,
and, since T is convergent, Theorem 7.17 implies that

lim (I — T)Spm = lim (I — T™") =1.
M— 00

M— 00

Thus, ([ = T) ' =limp oo Sm =1+ T +T* +--- =3 5, T. = =
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Theorem 7.19 For any x'” € R", the sequence {x"*'}3°, defined by
x =7x*V ¢, foreachk = 1, (7.11)

converges to the unique solution of X = T'x + ¢ if and only if p(T) < 1. |

Proof First assume that o(T) < 1. Then,

xtk} — Tx[k‘” +¢

=T(Tx"7 +¢)+c
=T x" 2 (T +e

=T +(T" "+ + T+ e
Because p(T') < 1, Theorem 7.17 implies that T is convergent, and

lim T %' = 0.
k—o0

Lemma 7.18 implies that

oo
lim x* = lim 7"x" + E Fle=0+0-T)y'e=u-17)"ec.
k— o0 k—o0 par

Hence, the sequence (x*1) converges to the vector x = (I — Ty 'candx = Tx +c.
To prove the converse, we will show that for any z € ", we have lim; . T = 0.
By Theorem 7.17, this is equivalent to p(T) < 1.



Corollary 7.20
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But z € " was arbitrary, so by Theorem 7.17, T is convergentand p(7) <1l.m u =

The proof of the following corollary is similar to the proofs in Corollary 2.5 on page 62.
[t is considered in Exercise 13.

It |7 < 1 for any natural matrix norm and ¢ is a given vector, then the sequence [x[“}ﬁiﬂ
defined by x'¥ = Tx"~1 + ¢ converges, for any x ¢ B", to a vector x € R", with
X = T'x + ¢, and the following error bounds hold:

M Ix=x®p =171 = xl; i) x—x®) < 2 x® —x@).

We have seen that the Jacobi and Gauss-Seidel iterative techniques can be written
D=Tx" Y 4+¢ and x™ =Tx" 4,
using the matrices
I=D'"L+U) and T,=(D—-L)"'U

If p(T;) or p(T,) is less than 1. then the corresponding sequence [x[“} - o Will converge to
the solution x of Ax = b. For example, the Jacobi scheme has

IU&] — D—]{-L + U}x[.‘.’—]] +D_lh._,
and, if {x'™}?°, converges to x, then

x=D""L+U)x+D"b
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This implies that
Dx=(L+Ux+b and (D—-—L-U)x=hb.

Since DD — L — U = A, the solution x satisfies Ax = b.

We can now give easily verified sufficiency conditions for convergence of the Jacobi
and Gauss-Seidel methods. (To prove convergence for the Jacobi scheme see Exercise 14,
and for the Gauss-5Seidel scheme see [Or2], p. 120.)

If A is strictly diagonally dominant, then for any choice of x'”, both the Jacobi and
Gauss-Seidel methods give sequences {x“‘]}f - that converge to the unique solution of
Ax =bh. u

The relationship of the rapidity of convergence to the spectral radius of the iteration
matrix T can be seen from Corollary 7.20. The inequalities hold for any natural matrix
norm, 50 it follows from the statement after Theorem 7.15 on page 446 that

X — x| = p(T)*Ix"" — x|. (7.12)

Thus we would like to select the iterative technique with minimal p(T) < 1 for a particular
system Ax = b. No general results exist to tell which of the two techniques, Jacobi or Gauss-
Seidel, will be most successful for an arbitrary linear system. In special cases, however, the
answer is known, as is demonstrated in the following theorem. The proof of this result can
be found in [Y]. pp. 120-127.
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(Stein-Rosenberg)

[fa;; =0,foreachi # janda; = 0, foreachi = 1.2, ..., n, then one and only one of the
following statements holds:
(i) 0=p(T) < p(d;) <1 (i) 1 <= p(T) = p(Ty):
(iii) p(T)) = p(Ty) = 0; (iv) p(T) = p(T,) = 1. o

For the special case described in Theorem 7.22, we see from part (i) that when one
method gives convergence, then both give convergence, and the Gauss-5eidel method con-
verges faster than the Jacobi method. Part (ii) indicates that when one method diverges then
both diverge. and the divergence is more pronounced for the Gauss-Seidel method.
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1.4 Relaxation Techniques for Solving Linear Systems

We saw in Section 7.3 that the rate of convergence of an iterative technique depends on the
spectral radius of the matrix associated with the method. One way to select a procedure to
accelerate convergence is to choose a method whose associated matrix has minimal spectral
radius. Before describing a procedure for selecting such a method. we need to introduce a
new means of measuring the amount by which an approximation to the solution to a linear
system differs from the true solution to the system. The method makes use of the vector

described in the following definition.

Definition 7.23  Suppose X € " is an approximation to the solution of the linear system defined by Ax = b.
The residual vector for X with respect to this system is r = b — AX. u

In procedures such as the Jacobi or Gauss-5eidel methods, aresidual vector is associated
with each calculation of an approximate component to the solution vector. The true objective
is to generate a sequence of approximations that will cause the residual vectors to converge
rapidly to zero. Suppose we let

K k k k
[‘:] (ky (k) .[ﬁ}f

il LATRPY CTAN
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denote the residual vector for the Gauss-Seidel method corresponding to the approximate
solution vector xf.” defined by

{.t} k) _(k) k) _ik-1} H:—I}}t

= (XX LXK Ky

i—1°

The mth component of r; &)

:rf:F bm — Zﬂmjxm Zﬂnuxﬁ “, (7.13)

or, equivalently,

l
I:ﬁ] (k—1}) {k—13
= by — E I51.11'1_.r-35: E ﬂmjl}- — QmiX; .

J=i+1

foreachm =1,2,....n.
In particular, the ith component of 1'5” is

i—1 n
k) _ p. 2 : ) E : k=1 k=1
-",-,- —_ b} - EI!_;.IJ - ﬂu.x} —EI“.I'I- 5
i=1

Jj=i+1

1
k—1 k k k1
cznx': '+ ” = b — Eczfjx” E cz,-;x} ! (7.14)
j=i+1
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Recall, however, that in the Gauss-Seidel method. xf“ is chosen to be

i—1 n
1 : .
a0 = — | bi- S ax =y apx | (7.15)
1 i—1 j=i+]
so Eq. (7.14) can be rewritten as

k—1) (k) ﬂ]
a.l'.l'-rl:: + -r!'!' iI”.I.'

Consequently, the Gauss-Seidel method can be characterized as choosing x}“ to satisfy

u:.
D A e (7.16)
Hﬁ
We can derive another connection between the residual vectors and the Gauss-

Seidel technique. Consider the residual vector r ®) | associated with the vector x.

41 i+1
P D Xl By Eq. (7.13) the ith component of ;) is

i i+1
n
e B (k) 1)
Fiin = b 2 :HU'I 2 : d;ix;
j=i+1

i—1 n
_ (k) (k—1) (k)
=b; — 5 ajx; — E ajjx; — dX; .
j=l

=i+l
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By the manner in which x|’ is defined in Eq. (7.15) we see that r'%)
the Gauss-Seidel technique is characterized by choosing each x
that the ith component of 1'f-fl is zero.

Choosing xf.[fr'] 50 that one coordinate of the residual vector is zero, however, is not
necessarily the most efficient way to reduce the norm of the vector ri | If we modify the

i+1°
Gauss-Seidel procedure, as given by Eq. (7.16). to

= 0. In a sense, then.

k) .
ip1 in such a way

(k)

- [
=Yyl (7.17)
i

then for certain choices of positive « we can reduce the norm of the residual vector and
obtain significantly faster convergence.

Methods involving Eq. (7.17) are called relaxation methods. For choices of @ with
0 <= w = 1, the procedures are called under-relaxation methods. We will be interested
in choices of @ with 1 < o, and these are called over-relaxation methods. They are
used to accelerate the convergence for systems that are convergent by the Gauss-Seidel
technique. The methods are abbreviated SOR, for Successive Over-Relaxation, and are
particularly useful for solving the linear systems that occur in the numerical solution of
certain partial-differential equations.

Before illustrating the advantages of the SOR method, we note that by using Eq. (7.14).
we can reformulate Eq. (7.17) for calculation purposes as

i—1 il
ky k—1)y , @ _ ) k=1
X = (1 —wx; + ; b; — E aijx; — E a; jX;
. j= j=it]
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To determine the matrix form of the SOR method. we rewrite this as

i—1 f
(k) (k) (k—1) (k—1
diX;  + w E aijx; = (1 — w)aiix; — E @i jX; Lt b,
=1 j=i+1

50 that in vector form, we have
(D — wl)x™ =[(1 — @)D + oUx* " + wb.
That is,
X = (D —wLl) "1 —0)D + UK + (D —wL) b (7.18)

Letting T, = (D — wL) '[(1 — @)D + wlU] and ¢, = w(D — wL)"'h, gives the SOR
technique the form

M =1 x4, (7.19)
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The linear system Ax = b given by

4x, + 3x; = 24,
3x) +4x — x3 = 30,
— X2+ 4 = —24,

has the solution (3,4, —5)'. Compare the iterations from the Gauss-Seidel method and the
SOR method with @ = 1.25 using x = (1, 1, 1)' for both methods.

Solution Foreach k = 1,2,..., the equations for the Gauss-Seidel method are
1Y = —0.75x"" + 6,
) = —0750" + 025" +7.5,
x = 0255 — 6,
and the equations for the SOR method with e = 1.25 are
x = —025:" " — 09375 475,
) = —09375x" — 0255 + 03125x " +9.375,

oY =o031250" — 025V — 75,

The first seven iterates for each method are listed in Tables 7.3 and 7.4. For the iterates
to be accurate to seven decimal places, the Gauss-Seidel method requires 34 iterations, as
opposed to 14 iterations for the SOR method with @ = 1.25. |
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Table 7.3

k 0 1 2 3 4 5 6 7
x{“ 1 5.250000 3.1406250 30878906 3.0549316 3.0343323 3.0214577 3.0134110
xi_,“ 1 JE12500 3.BE28125 39267578 39542236 39713898 30821186 30888241
xg“ 1 —5.046875 —5.0202060 —5.0183105 —5.0114441 —5.0071526 —5.0044703 —5.0027940
Table 7.4

k 0 1 2 3 4 5 6 7
x{” 1 6.312500 2.6223145 3.1333027 2.9570512 3.0037211 2.9963276 3.0000498
xi_,“ 1 3.5195313 3.0585266 4.0102646 40074838 4.0029250 4.0000262 4.0002586
xg** 1 —6.6501465 —4.6004238 —5.0966863 —4.9734897 —5.0057135 —4.9982822 —5.0003486
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An obvious question to ask is how the appropriate value of « is chosen when the SOR
method is used. Although no complete answer to this question is known for the general
n x n linear system, the following results can be used in certain important situations.

Theorem 724 (Kahan)

Ifa; #0,foreachi =1,2,...,n,then p(T,) = |ew— 1|. This implies that the SOR method
can converge only if 0 = w < 2. n

The proof of this theorem is considered in Exercise 9. The proof of the next two results
can be found in [Or2], pp. 123-133. These results will be used in Chapter 12.

Theorem 7.25 ( Ostrowski-Reich)

If A is a positive definite matrix and 0 < @ <= 2, then the SOR method converges for any
choice of initial approximate vector x'?, u

Theorem 7.26 If A is positive definite and tridiagonal, then p(T,) = [p(T;)]* < 1. and the optimal choice
of @ for the SOR method is

2
o —

1+ TP

With this choice of @, we have p(T,,) = @ — 1. [ |



Example 2  Find the optimal choice of @ for the SOR method for the matrix

Solution This matrix is clearly tridiagonal, so we can apply the result in Theorem 7.26 if we
can also who that it is positive definite. Because the matrix is symmetric, Theorem 6.24 on
page 416 states that it is positive definite if and only if all its leading principle submatrices
has a positive determinant. This is easily seen to be the case because

det(A) = 24, det([g i]):?, and  det ([4]) = 4.
Because
i 00 0 -3 0 0  —075 0
T,=D'"(L+U)=| 0 1 0 -3 01 |=| -075 0 025 |,
00 1 0 10 0 025 0
we have
—A —0.75 0
T}—JJ= —0.75 —A 025 |,
0 0.25 —A
S0
det(Tj — Al) = —A(A* — 0.625).
Thus
p(T) = +/0.625
and

2

2
_ ~ 1.24.
T—[p)P 1+/1-0625

This explains the rapid convergence obtained in Example 1 when using @ = 1.25. [
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SOR

To solve Ax = b given the parameter « and an initial approximation x':

INPUT  the number of equations and unknowns n; the entries a;;. 1 < i,j = n, of the
matrix A; the entries b;, 1 < i < n, of b; the entries XO,, 1 < i < n, of XO = x'; the
parameter e tolerance TOL; maximum number of iterations V.

OUTPUT  the approximate solution xy, . . ., X, or a message that the number of iterations
was exceeded.

Step1 Setk=1.
Step 2 While (k = N) do Steps 3-6.
Step3 Fori=1,....n

[ i
set x; = (1 — w)X0; + — [w (— o1 @i — X1 GiiX0; + b;)}-
i

Step 4 If ||x — XO|| < TOL then OUTPUT (xy.....x);
(The procedure was successful.)

STOP.
Step 5 Setk=k+1.

Step & Fori=1,....nset XO; = x;.

Step 7 OUTPUT (*Maximum number of iterations exceeded’);
(The procedure was successful.)
STOP. u
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EXERCISE SET 74

1. Find the first two iterations of the SOR. method with @w = 1.1 for the following linear systems, using
x® — O

a. Iy — n»nd+ =1, b. 10x;— x =9,

3.1'-| +6I3 -+ 11'3 = 1, —x; + 10x, — 253 =17,

35+ 30+ T =4, — 2x: 4 10x;3 = 6.

":-‘-']' b: — Ky k—1}
- i i iX; ajiX; .
. Z T

j=1 j=it1

k k—1 @ k k—1
I:;}:{]—EE.}:II;-[ :'—|——_ b; — E‘IUIH Eax{ )

J=1 J=i+1
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