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If the truss is in static equilibrium, the forces at each joint must add to the zero vector, so
the sum of the honzontal and vertical components at each joint must be (). This produces the
system of linear equations shown in the accompanying table. An 8 » 8 matrix describing this
system has 47 zero entries and only 17 nonzero entries. Matrices with a high percentage
of zero entries are called sparse and are often solved using iterative, rather than direct,
techniques. The iterative solution to this system is considered in Exercise 18 of Section 7.3

and Exercise 10 in Section 7.4.

The methods presented in Chapter 6 used direct techniques to solve a system of n x n
linear equations of the form Ax = b. In this chapter, we present iterative methods to solve

a system of this type.



MAP2220

This linear system can be placed in the matrix form

-1 0 0 £ 1 0 o 0
0 -1 Z o o o o |[[FAR] [ 0o ]
- F 0
1 2
o 0 -1 0o 0o o 1 o0 r. 0
o 0 o -£2 o -1 -1 o0 Al 0
o o0 0 0 -1 0 0 @1 Lo 0
0o 0 0 0 1 0 ? mﬁm
_ 4
0o 0 o -£ o £ 0o |ls] L o
0 0 0 0 0 —£ 1 ]
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7.1 Norms of Vectors and Matrices

Definition 7.1 A vector norm on " is a function, || - ||, from R" into & with the following properties:

(i) ||x|| = Oforallx € R",

(i) ||x|| =01if and only if x = 0,
(i) Jax|| = |a|||x| forallx € B and x € R",
(iv) |x+¥| = [x|| +l¥| forall x, ¥y € B". |

Definition 7.2 The [> and [ norms for the vector x = (x1.x2.....x,)" are defined by

n 172
7
Ixll2 = {2 jx.-] and  [|x]loc = max xi]. 2
— l=i=n
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Xz 4 X3
0.1 1.1
(—1.1)4 joy @y (0,0,1)
1.0,1
(1.0.1)4 . (0,1,1)
= = --x
(—1, 0) (1,0
X
- 2k L : X
(-1, -1) 0.-1  (1,-1) (11,0 ’
The vectors in B2 with The vectors in the first
I norm less than 1 are octant of B? with [_ norm
inside this figure. less than 1 are inside

this figure.



Theorem 7.3

Defnition 7.4
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(Cauchy-Bunyakovsky-Schwarz Inequality for Sums)

Foreach x = (xj.x2.....x,) and ¥y = (v1. v2.....¥) In B,

" " 1/2 " 1/2
Xy =) xy = } { Z_v,?l = [Ix[l2 - ll¥ll2- (7.1)
i.=|. I.=|.

i=1
|

If x = (x1.x2.....x,) and ¥ = (vi.¥2.....v,) are vectors in B, the > and [ distances

between x and v are defined by

n 1,2
Ix =yl = {Z(x.- —_v,-}?} and [|x — yloc = max |x; — ;|
i=1 -
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Definition 7.5 A sequence {x'© 12, of vectors in R" is said to converge to x with respect to the norm || - ||
if, given any £ = 0, there exists an integer N (&) such that

|Ix* —x|| <&, forallk = N(e). [l

Theorem 7.6 The sequence of vectors {x'*)} converges to x in R with respect to the [, norm if and only

if limk_,,:,;:,Jr"-“"'J = x;, foreachi=1,2,...,n. u

Theorem 7.7 For each x € R",

Ixlloe < lIxll2 = VAllx]loo- N
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Matrix Norms and Distances
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Definition 7.8 A matrix norm on the set of all n x n matrices is a real-valued function, || - ||, defined on

this set, satisfying for all n x n matrices A and B and all real numbers «:

(i)
(i)
(i)
(iv)

(v)

Al = O;

I[A]l = 0, if and only if A 15 O, the matrix with all 0 entries:
leAll = la|llAll:

A+ Bl = [lAll + |IB]I:

IAB] = [|AllIB]].

Theorem 7.9 If || - || is a vector norm on R", then

[All = max [|Ax]|
Ixll=1
Is a matrix norm.
Corollary 7.10  For any vector z # 0, matrix A, and any natural norm || - ||, we have

[Az]| < [A]l - [lz]].

(7.2)
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The measure given to a matrix under a natural norm describes how the matrix stretches
unit vectors relative to that norm. The maximum stretch 1s the norm of the matrix. The
matrix norms we will consider have the forms

IA]|l.c = max ||Ax||,. the [ norm,
lxllco=1

d
o IAl> = max x|z, the b norm.

If__|=

An illustration of these norms when n = 2 is shown in Figures 7.4 and 7.5 for the

matrix
o -2
=2 7]



Figure 7.4
Y2 &
x|l
1
/
-
—1 X
—1

MAP2220

X2 4
Ax for
-2 Ixll.=1
|4]|--
A oy
T+ 1
Ax
I I I I -
—2 —1 1 2 X
+ —1




Figure 7.5
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Theorem 7.11 If A = (a;;) is an n % n matrix, then

n
1Al = max ) " laj|.
i=1

| =i<=n

MAP2220



MAP2220
1.2 Eigenvalues and Eigenvectors

Definition 7.12  If A is a square matrix, the characteristic polynomial of A is defined by

pld) = det(A — AT). |

Definition 7.13 If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues,
or characteristic values, of the matrix A. If A 15 an eigenvalue of A and x # 0 satisfies

(A — Af)x = 0, then x is an eigenvector, or characteristic vector, of A corresponding to

the eigenvalue A. ]
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If x is an eigenvector associated with the real eigenvalue A, then Ax = Ax, so the matrix
A takes the vector x into a scalar multiple of itself.

® [f L isreal and A = 1, then A has the effect of stretching x by a factor of A, as illustrated
in Figure 7.6(a).

® [f0 < A < 1. then A shrinks x by a factor of A (see Figure 7.6(b)).

e [f L = (0, the effects are similar (see Figure 7.6(c) and (d)). although the direction of Ax

1s reversed.
Figure 7.6
fa) A>1 b) 1=x=0 (c) A< —1 (d) —1=x=0
Ax
X
X
A/
Ax
Ax = Ax
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Spectral Radius

Definition 7.14  The spectral radius p(A) of a matrix A is defined by
2(A) = max |A|., where A 1s an eigenvalue of A.

(For complex A = a + Bi, we define |A| = (& + 52

Theorem 7.15 1If Ais ann x n matrix, then

(i) [All2 = [p(A'A)]'",
(i) p(A) = [|A]|. for any natural norm || - || |



Convergent Matrices
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In studying iterative matrix technigques. it 1s of particular importance to know when powers
of a matrix become small (that i1s, when all the entries approach zero). Matrices of this type
are called convergent.

Definition 7.16 We call an n % n matrix A convergent if

lim (A¥);; =0, foreachi=1,2,.
k—00

Theorem 7.17 The following statements are equivalent.

(i)
(ii)
(iii)
(iv)

(v)

A 1s a convergent matrix.

lim, . [|A%]] = 0, for some natural norm.
lim, .0 |A"]] = 0, for all natural norms.
plA) = 1.

lim, .. A"x = 0, for every x.

..nandj=1.2,....n. |
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This linear system can be placed in the matrix form
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1.3 The Jacobi and Gauss-Siedel Iterative Techniques

In this section we describe the Jacobi and the Gauss-Seidel iterative methods, classic
methods that date to the late eighteenth century. Iterative techniques are seldom used for
solving linear systems of small dimension since the time required for sufficient accuracy
exceeds that required for direct techniques such as Gaussian elimination. For large sys-
tems with a high percentage of 0 entries, however, these techniques are efficient in terms
of both computer storage and computation. Systems of this type arise frequently in circunt
analysis and 1n the numerical solution of boundary-value problems and partial-differential
equations.

An iterative technique to solve the n x n linear system Ax = b starts with an initial
approximation x'” to the solution x and generates a sequence of vectors {x{k']fin that
converges to x.
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Jacobi’s Method

The Jacobi iterative method is obtained by solving the ith equation in Ax = b for x; to
obtain (provided a;; = 0)

"
aijX; bi .
X = E — + —, fori=1,2,....n.
[ el

o
= — > (~a V) 4bif, fori=12..m (7.5)
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Example 1

The linear system Ax = b given by

Er: 10x— x4+ 2x = 0,
Er: —xp 4 1lxy —  x3 4 3xg =25,
Ey: 2xyy— x4 10x— x3=-—11,
Es: 3 — x3+Bu=15

has the unique solution x = (1,2, —1,1)". Use Jacobi’s iterative technique to find approxi-
mations x*' to x starting with x'”’ = (0,0, 0, 0)' until

||:'-:['H' _ xlk—l}llm

=107,
%% || o
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Soluion We first solve equation E; for x;, foreach i = 1, 2, 3, 4, to obtain

- 1 1 L3
= T 5
1 1 3 25
T NETERE TR T
| N | N | 11
X3 = ——x —X —xy — —.
SR TV 010
B 3L LI
X4 = — S.rg 313 3"
From the initial approximation x'" = (0,0,0,0)" we have x'" given by
| 1 3
[ ] An
x = TR - E‘H} + 5= 0.6000,
| | 3 25
i1 {0 A0y (0
X' = % +17% _ﬁlf,] 7= 22777,
I | | 11
[ i ] 0
: =—§xi +ﬁx3‘ T — 75 = —1.1000.
3 1 15
xD = — Xy O +— = 1.8750.
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- . ik k) k k) . .
Additional iterates, x'*) = (x; }ﬁré J,_IE }ﬁ_ri "\!, are generated in a similar manner and are

presented in Table 7.1.

Table 7.1

k 0 | 2 3 4 5 6 T 2 0 10
xgt] 0.0000 0.6000 1.0473 0.9326 1.0152 0.9800 1.0032 0.9081 1.0006 0.90407 1.00:01
x%k] (0.0000 22727 1.7159 2.053 1.9537 20114 1.9922 2.0023 1.9987 2.0004 1.99498
xgk] 0.0000 —1.1000 —08052 —-1.0493 —-09681 —1.0103 —09945 —-1.0020 —09990 —1.0004 —0.9998
x&t] 0.0000 1.8750 0.8852 1.1309 0.9730 1.0214 0.9044 1.0036 (.9089 1.0006 0.000%

We stopped after ten iterations because

X1 —x@|y, 8.0 1074
x|  1.9998

< 1073,

In fact, ||x!'% — x|, = 0.0002. u
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In general, iterative techniques for solving linear systems involve a process that converts
the system Ax = b into an equivalent system of the form x = Tx + ¢ for some fixed matrix
T and vector c. After the initial vector x'? is selected, the sequence of approximate solution
vectors is generated by computing

x® = x®D 4 ¢

foreach k = 1,2,3,.... This should be reminiscent of the fixed-point iteration studied in
Chapter 2.

The Jacobi method can be written in the form x'* = Tx"*~! + ¢ by splitting A into its
diagonal and off-diagonal parts. To see this, let D) be the diagonal matrix whose diagonal
entries are those of A, —L be the strictly lower-triangular part of A, and —U be the strictly
upper-triangular part of A. With this notation,

dyy dyi2 -+ da
dx dx --- A
A=
| gy dp2 -+ Upy |

is split into
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My Oneeeenes 0 7 [ Oueeeerenennnn. 07 [0.—@pe—ay, ]
A 0 fl.zz- _ | —an =1 I. . b
ﬁ L
B (I EEEEEEREE ()] yn _ﬂﬂ]'“_ﬂﬂ-ﬂ.—l.{}_ _ﬂ ........... () |
=D—-L-U

The equation Ax = b, or (D) — L. — U)x = b, is then transformed into
Dx =(L+ U)x+b,
and. if D" exists, that is, if a; #= 0 for each i, then
x=D"(L+U)x+D"'b.
This results in the matrix form of the Jacobi iterative technique:
XM =p'L+Uux*"+Dw, k=1.2..... (7.6)

Introducing the notation T; = D~'(L + U/) and ¢; = D~'b gives the Jacobi technique the
form

x® = Tx*Y g (7.7)

In practice, Eq. (7.5) is used in computation and Eq. (7.7) for theoretical purposes.
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Example 2 Express the Jacobi iteration method for the linear system Ax = b given by

Ey: 10x;— x4+ 2x; = 0,
E: —x+11x—  x3+43x4 =25,
Ex: 21— x4+ 10— xy=-—11,
E,: 3x; — x3+8xy =15

in the form x = Tx%-1 4+ ¢,

Solution We saw in Example 1 that the Jacobi method for this system has the form

| | 3
X = ﬁ.tg — E.h + E,.
| 1 3 25
X = ﬁm +ﬁ.t3—ﬁx4+ﬁ,
| | 1 11
X3 = _EII +ﬁ.1:p_ T m.ﬁﬁ — ﬁ,
3 | 15
Xg = — EIE—'_ E.h +E'
Hence we have
o 4o 3
1 0 1 _3 L
O L B R -
5 10 10 10
0 -2 1 0 _ B
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Jacobi lterative

To solve Ax = b given an initial approximation x':

INPUT the number of equations and unknowns n; the entries a;;, 1 < i, j < n of the
matrix A: the entries b;, 1 < i < n of b: the entries X5, 1 < i < n of XO = x'": tolerance
TOL:; maximum number of iterations V.

OQUTPUT  the approximate solution x,, . . ., X, or a message that the number of iterations
was exceeded.

Step 1 Setk=1.
Step 2 While (k < N) do Steps 3-6.
Step3 Fori=1,....n
set x; = al,-,- [— Z?’E (ai; X0;) -|—b;].
Step 4 1f ||x — XO|| = TOL then OUTPUT (x1,.. ., %)

(The procedure was successful.)
STOP.

Step 5 Setk=k+1.

Step6 Fori=1,....nsetX0; = x,.

Step 7 OUTPUT (‘Maximum number of iterations exceeded’):

(The procedure was successfil.)
STOP. n
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Step 3 of the algorithm requires that a; # 0, foreach { = 1.2,....n. If one of the a;
entries is 0 and the system is nonsingular, a reordering of the equations can be performed
so that no a; = 0. To speed convergence, the equations should be arranged so that a; is as
large as possible. This subject is discussed in more detail later in this chapter.

Another possible stopping criterion in Step 4 is to iterate until

K (k-1
Ix® — x|

lIx®)

is smaller than some prescribed tolerance. For this purpose. any convenient norm can be
used. the usual being the [/, norm.
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The Gauss-Seidel Method

A possible improvement in Algorithm 7.1 can be seen by reconsidering Eq. (7.5). The

components of x*~" are used to compute all the components x\" of x*). But, for i > 1.

the components ,1:“:3', e ““ of x'™ have already been -:crmputed and are expected to be

1 k-1
better approximations to theactual solutionsxy,....x;— than are::, Lo Itseems

i—1
(k)

reasonable, then, to compute x;” using these most recently calculated values. That is, to use

) = Z(u,ﬁ:“ﬂ'}— Z(a”x” N+ b, (7.8)

J=i+l1

foreachi = 1.2,...,n, instead of Eq. (7.5). This modification is called the Gauss-Seidel
iterative technique and is illustrated in the following example.
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Example 3 Use the Gauss-Seidel iterative technique to find approximate solutions to
I'DI] — X2 -+ 11:3 = ﬁﬁ
—x1 4+ 1lx — x3 4+ 3xg = 25,
2 — x4+ 10x3 — x4 =-—11,
3, — X3+ 8y =15
starting with x = (0,0, 0.0)" and iterating until

let-ﬂ _ IH_”".}D
X% ]| oo

< 1073,
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Solution The solution x = (1,2, —1. 1)" was approximated by Jacobi’s method in Example
1. For the Gauss-5Seidel method we write the system, foreachk =1,2,... as

. 1 . . 3
k) _ k—1) 1 (k—1) =

X = _I{}'Iz 513 + 5
1 1 . 3 25

ik) (k) (k—1) (k—1)
X T + 7% Tt
1 ] . | 11

(k) ] (k) ik—1}
) = — x4yt 4+ _—x ——
3 5! 102 104 10
3 1 15
) = - 2+ Y + —
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When x' = (0,0,0,0), we have x'"' = (0.6000, 2.3272, —0.9873, 0.8789)'. Subsequent
iterations give the values in Table 7.2.

Table7.2 0 | 7 3 1 5
xm 0.0000 0.6000 1.030 1.0065 1.0009 1.0001
x 0.0000 2.3272 2.037 2.0036 2.0003 2.0000
) 0.0000 —0.9873 —1.014 —1.0025 —1.0003 —1.0000
) 0.0000 0.8789 0.9844 0.9983 0.9999 1.0000
Because

||1-(5} — x4 lloc 0.0008
IXP  2.000

=4 % 1074,

x"9' is accepted as a reasonable approximation to the solution. Note that Jacobi’s method in
Example 1 required twice as many iterations for the same accuracy. H
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To write the Gauss-Seidel method in matrix form, multiply both sides of Eq. (7.8) by
@;; and collect all kth iterate terms, to give

(k) (k) ky (k—1) k=17
a1 X, + 12X + -1 adX; = _Ef-f'-l-l'xr'-l-] — = gk y + b;.

foreachi = 1,2,...,n. Writing all n equations gives

(k) (k—1) (k1) k-1

apx, = —apX, = —diXy o —---—dapky )+ by,
k k k-1 _

ayx)” + anxy” = —ayxy T = —apxlY + by,

(k) k)

Xy +0agpX, +-- T ﬂnnxr[f} = by,
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with the definitions of D, L, and U given previously, we have the Gauss-5eidel method
represented by

(D—Lx® =ux*D +p
and
O =D-Ly'ux*Y +(D—-L)y'p, foreachk=1.2..... (7.9)
Letting T, = (D—L)~'U and ¢, = (D — L)~ 'b, gives the Gauss-Seidel technique the form
W =Tx" Y te, (7.10)

For the la:rwer—tri"mgular matrix [ — L to be nonsingular, it is necessary and sufficient that
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Gauss-Seidel lterative

To solve Ax = b given an initial approximation x'?:

INPUT the number of equations and unknowns n; the entries a;;, 1 < i, j < n of the
matrix A: the entries b;, 1 < i < n of b; the entries XO0;. 1 < i < n of XO = x'?; tolerance
TOL; maximum number of iterations N.

OUTPUT the approximate solution x1, .. .. x, or a message that the number of iterations
was exceeded.

Step 1 Setk=1.
Step 2 While (k < N) do Steps 3-6.
Step3 Fori=1,....n

—1 n

l i

setx; = — —Za,-jxj— Z a; ; XO; + b;
ol [ j=itl

Step 4 1f ||x — XO|| < TOL then OUTPUT (xy,....X);
(The procedure was successful.)

STOP.
Step 5 Setk=k+1.
Step 6 Fori=1,....nsetX0; = x,.

Step 7 OUTPUT (*‘Maximum number of iterations exceeded’);

(The procedure was successful.)
STOP. |
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The comments following Algorithm 7.1 regarding reordering and stopping criteria also
apply to the Gauss-5Seidel Algorithm 7.2,

The results of Examples 1 and 2 appear to imply that the Gauss-Seidel method is
superior to the Jacobi method. This is almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel method does not (see Exercises
O and 10).



EXERCISE SET 7.3

1.  Find the first two iterations of the Jacobi method for the following linear systems. using x'™ = 0:

a Ixn— 0+ un=I1, b. 10x;— x =9,
3x, + 6x; + 2x; =0, —x; + 10x; — 2xy; =7,
3o 4+ 30+ T =4 — 2x7 4+ 10x: = 6.
c. 10x 4+ 5x — 6. d. 4q4+ x4+ x4+ X5 = 6,
Sxp + 10x; — 4x; = 25, —x—3n4+ a4+ 1 = 6,
— dx; + 85 — xy =—11, 2+ 45— xp— x5=6,
— X3+ 5xy =—11. —X] — X2 — X3+ 4dxy = f,

2% — X3+ xg+4dxs =6,

3.  Repeat Exercise | using the Gauss-Seidel method.
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