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Using the notation i = x) — xp gives the following rule:
Trapezoidal Rule:

b I i
f fix)dx = E[fﬂ'ﬂ] + filx)] — E}mfﬂ-

This is called the Trapezoidal rule because when f is a function with positive values,
_if fix) dx 1s approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3 Y
y = flx)

— Pi(x)

= )

a = Xp x=~h

The error term for the Trapezoidal rule involves ", so the rule gives the exact
result when applied to any function whose second denvative is identically zero, that is, any
polynomial of degree one or less.
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Theorem 4.5 Let f e Cla.bl, h = (b — a)/n, and x; = a + jh. foreach j = 0, 1,...,n. There exists
au € (a,b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as

b i i b—a
_ i - _ 2
j; fixyde = 3 f{ﬂ}+12f{-’i:;}+_f[ﬁ} T3 b (). [ |

.||=

Figure 4.8
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45 Romberg Integration

In this section we will illustrate how Richardson extrapolation applied to results from the
Composite Trapezoidal rule can be used to obtain high accuracy approximations with little

computational cost.
In Section 4.4 we found that the Composite Trapezoidal rule has a truncation error of

order O(h%). Specifically, we showed that for h = (b — a)/n and xj = a + jh we have

b
f () dr = h

for some number u in (a. b).
By an alternative method it can be shown (see [RR]. pp. 136-140), that if f € C™|a, b],

the Composite Trapezoidal rule can also be written with an error term in the form

n—1 h— - .
f@+23_f05)+ 1 S ILE ML P
=

b |

b I n—1
f f)dy =5 [f{a} +23 ) + f’ibj} +Kih® 4 Koh* + Kb 4+, (4.33)
il = _,|;=|

where each K; is a constant that depends only on f@"(a) and f2-D{b).
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Recall from Section 4.2 that Richardson extrapolation can be performed on any
approximation procedure whose truncation error is of the form

m—1
Y Kl + Ok,
j=]
for a collection of constants K; and when o = @2 < a3 = -+ < @y. In that section we

gave demonstrations to illustrate how effective this techniques is when the approximation

procedure has a truncation error with only even powers of h, that is, when the truncation
error has the form.

m— |
Y Kb + 0™,

i=l

Because the Composite Trapezoidal rule has this form, it 1s an obvious candidate for
extrapolation. This results in a technique known as Romberg integration.
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To approximate the integral _,I': f(x) dx we use the results of the Composite Trapezoidal
rule with n = 1.2,4.8, 16, . ... and denote the resulting approximations, respectively, by
Ry 1. Ra21, R, etc. We then apply extrapolation in the manner given in Section 4.2, that 1s,
we obtain O(h*) approximations R, R32, Ry, etc.. by

|
Riz=Rii + E{R.E.I —Ri—11), fork=12.3,...
Then O(h®) approximations R 3. Ry 3. Rs 3. etc., by

|
Rii=Ri2+ ﬁiﬂk,z —Ri_12), fork=3.4,....

In general, after the appropriate Ry ;| approximations have been obtained, we determine
the O(h*/) approximations from

! .
—_I[R.E.j—l —Ri—1 1), fork=j7+1....

Ry =Ry ;1 + v
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Example 1 Use the Composite Trapezoidal rule to find approximations to f; sinx dr withn = 1, 2, 4,
8. and 16. Then perform Rombere extrapolation on the results.

Composite Trapezoidal rule

1

" P = | (b—a)f"(u)
j;.-"LI]Id_r:E[}Lﬂ]+1§}[xj]+j[b]:|—Th-_

4.2 Richardson’s Extrapolation

Table 4.6 ﬂ[fi‘?] G[ﬁ"‘} G[ﬁﬁ}l ﬂ{ﬂ!’}
1: Nyih h N- :
_1(h/2) = N;_y(h)
2: Ni(hy 3: Na(h) Ni(h) = Nj (E) + — T 11 :
4: Ni(3) 5: Na(3) 6: Na(h
7: Ni(3) 8: Na(3) 9: Na(3) 10: Nyth)
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Use the Composite Trapezoidal rule to find approximations to fD” sinydywithn=1,2,4,
8. and 16. Then perform Romberg extrapolation on the results.

The Composite Trapezoidal rule for the various values of n gives the following approx-
imations to the true value 2.

R, = %[sinﬂﬂinﬂ =0

Ryi = } [siﬂ{} +2 siﬂ; + sin n] = 1.57079633;

3 .3 .3
Ry =% |:S'IHD—|—2(SII1;—I—S'IH£ + sin —H) —|—Siﬂ.‘-‘i’] = 1.89611890;

2 1

Ris = [in0 +2 (siﬂ X o sinT 4. tsin"" 4sin T—T) —I—sinn:| — 1.97423160;
16| 8 4 4 g

Ry = = |sin0 + E(sin T orsinZ 4o psin ™ 4 sin IS—H) + sinj'r:| — 1.99357034.
12| 16 8 g 16

The O(h*) approximations are

1 1
Ry =R+ E[RE.I — Ry 1) =2.00430511: Rya =R+ E{Ra.l — R21) = 2.00455976:

Ry» =Ry + ;—{R4_| — R3,) =2.00026917: Rs,=Rs; + ;—{Rj.l — Ry 1) = 2.00001659;

The O(h*) approximations are

1 1
Rz = Riz+ E(R.‘-.I — R22) = 1.99857073; R4z = R4z + E{Ra..z — R32) = 1.99998313;

1
Rs;= Rsa+ E{Rﬁl — R42) = 1.99999975.



Table 4.9

The two Q(h®) approximations are

MAP2220

1 |
Rys = E4'3+E{R4'3_R5'ﬂ = 2.00000555; Rss= R5_3+§{R5_3—R4_3J = 2. 00000001,

and the final O(h'") approximation is

These results are shown 1n Table 4.9.

1
Rss = Rs4 + E{Ri# — Ry4) = 1.9990900900,

0

1.57079633
1.8961 1890
1.97423160
1.99357034

2.09439511
2.00455976
2.00026917
2.00001659

1.99857073
1.99998313
1.99999975

2.00000555
200000001

19949999499

MNotice that when generating the approximations for the Composite Trapezoidal rule
approximations in Example 1, each consecutive approximation included all the functions
evaluations from the previous approximation. That 15, R ; used evaluations at 0 and 7, K2
used these evaluations and added an evaluation at the intermediate point 7 /2. Then Ry
used the evaluations of K> | and added two additional intermediate ones at /4 and 37 /4.
This pattern continues with R4 | using the same evaluations as K3 but adding evaluations
at the 4 intermediate points 7 /8, 37 /8, 37 /8, and 7 /8, and so on.



MAP2220

This evaluation procedure for Composite Trapezoidal rule approximations holds for an
integral on any interval [a, b]. In general, the Composite Trapezoidal rule denoted R;, |
uses the same evaluations as R but adds evaluations at the 2*~? intermediate points.
Efficient calculation of these approximations can therefore be done in a recursive manner.

To obtain the Composite Trapezoidal rule approximations for [ j fix)ydx, let by =
(b —a)/mp = (b—a)/2". Then

(b —a)

. Y@+ fb)L:

h
R = Ellffﬁ} + fib)] =
and

h
Ry, = flﬂm + f(b) +2f(a+ hy)].

By reexpressing this result for R, | we can incorporate the previously determined approxi-
mation Ry |

(b —a)
4

(b —a)

 S—
21 3

I
[f'{ﬂ}+f{b}+2f (H-I— )]ZEIR"' + hi fla+ )l

In a stmilar manner we can write

1
Ry = E{Rll + Il fla+ ha) + fla+ 3h3)])



In a similar manner we can write
l
Ry = E{Rll + hal fla+ ha) + fla+ 3hs)]):

and, in general (see Figure 4.10 on page 216), we have

Hk—2
| - _ .
Ry = 7 |:R.E—]_] + iy Z fla+ (2i — 1}1’!&)} i

=1

foreach k = 2. 3. ....n. (See Exercises 14 and 15.)

Figure 4.10

L L L

"MAP2220

(4.34)

=
- Y

w- ¥



MAP2220

Extrapolation then is used to produce D{hi" ) approximations by

1 .
]—_I[R&.;-l — Ry 1), fork=jj+1,...

Ry i=Rp; 1+ -

as shown n Table 4.10.

Tabled10  om) o@) o)  o@ 0 (1)
1 Ry,
2 R1_| R.’.‘ F)
3 R3_| Rs,l RJ.J
4 Ry Ris Ry Riy
fl Ry Ry Ru3 Ry 4 R

The effective method to construct the Romberg table makes use of the highest order
of approximation at each step. That 1s, it calculates the entries row by row, in the order
Ri1. R21. R22. Ry, Raz, Raa, etc. This also permits an entire new row in the table to be
calculated by doing only one additional application of the Composite Trapezoidal rule. It
then uses a simple averaging on the previously calculated values to obtain the remaining
entries in the row. Remember

¢ Calculate the Romberg table one complete row at a time.



Example 2 Add an additional extrapolation row to Table 4.10 to approximate _lf'[;T sin x dx.

Solution To obtain the additional row we need the trapezoidal approximation

R-E-.lz_ R‘i["‘— SinM

5 | Rsi+ ¢ = — 1.00830336.

The values in Table 4.10 give

Rex=Rs, + %{Rﬁ_l — Rs;) = 1.99839336 + %u 190839336 — 1.99357035)
= 2.00000103:

1 1
Res =Rez + E{Rﬁj — Rs2) = 2.00000103 + ﬁ(lﬂmlﬂfr — 2.00001639)
= 2.00000000:;

|
Ris=Rsz + E(R&J — Rs3) = 2.00000000;

!
Ris = Rea + 5z (Rss — Rs4) = 2.00000000;

255

and R ; = Rgs + ]D]?(E'Ej — Rs5) = 2.00000000. The new extrapolation table 1s shown
in Table 4.11. |

0

1.57079633 209439511

1.8961 1890 200455976 1.99857073

1.97423160 200026917 1.99998313 2.00000555

1.99357034 200001659 1.99999975 200000001 1.99999999

1.99839336 2.00000103 200000000 200000000 200000000 200000000
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Notice that all the extrapolated values except for the first (in the first row of the second
column) are more accurate than the best composite trapezoidal approximation (in the last row
of the first column). Although there are 21 entries in Table 4.11, only the six in the left column
require function evaluations since these are the only entries generated by the Composite
Trapezoidal rule; the other entries are obtained by an averaging process. In fact, because
of the recurrence relationship of the terms in the left column, the only function evaluations
needed are those to compute the final Composite Trapezoidal rule approximation. In general,
Ry | requires 1 + 25~1 function evaluations, so in this case 1 4 27 = 33 are needed.

Algorithm 4.2 uses the recursive procedure to find the initial Composite Trapezoidal
Rule approximations and computes the results in the table row by row.



Romberg
To approximate the integral [ = [ j fix)dx, select an integer n = (.

INPUT endpoints a. b; integer n.
OUTPUT anarray R. (Compute R by rows; only the last 2 rows are saved in storage.)

Step1 Seth=b—a;

Rii = 5(f(@) + f(b)).
Step2 OUTPUT (R ).
Step3 Fori=2....,ndo Steps 4-8.

Stepd SetRy, — [RH +hY fla+ (k- n.5;m].
2 k=1

(Approximation from Trapezoidal method.)

Step5 Forj=2.....i
Ra;ir— Ry

4i-1 ]
Step 6§ OUTPUT (R forj=1.2....,i)
Step 7 Seth=h/2.
Step8 Forj=1.2....,isetR)j =Ry;. (Update row ! ofR.)

Step9 STOP. |

set Ry, =Ra;1 + ( Extrapolation.)

MAP2220
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4.7

YA

Gaussian Quadrature

The Newton-Cotes formulas in Section 4.3 were derived by integrating interpolating poly-
nomials. The error term in the interpolating polynomial of degree n involves the (n + 1)st
derivative of the function being approximated, so a Newton-Cotes formula 1s exact when
approximating the integral of any polynomial of degree less than or equal to n.

All the Newton-Cotes formulas use values of the function at equally-spaced points.
This restriction is convenient when the formulas are combined to form the composite rules
we considered in Section 4.4, but it can significantly decrease the accuracy of the approx-
imation. Consider, for example, the Trapezoidal rule applied to determine the integrals of
the functions whose graphs are shown in Figure 4.15.

L YA

¥y =flx)

MAP2220

ad =X

I

=Y
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The Trapezodal rule approximates the integral of the function by integrating the linear
function that joins the endpoints of the graph of the function. But this i1s not likely the best
line for approximating the integral. Lines such as those shown in Figure 4.16 would likely
give much better approximations in most cases.

L Y 4

y=7k)
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Gaussian gquadrature chooses the points for evaluation in an optimal, rather than equally-
spaced. way. The nodes x|, x5, ....x, inthe interval |a, b| and coefficients ¢y, ¢, .. .. c,. are
chosen to minimize the expected error obtained in the approximation

Jj "
[ 1w~ Y s,
a i=]

To measure this accuracy, we assume that the best choice of these values produces the exact
result for the largest class of polynomials, that 1s, the choice that gives the greatest degree
of precision.

The coefficients ¢1, 2. . . ., ¢y In the approximation formula are arbitrary, and the nodes
X1,X2.....%, are restricted only by the fact that they must lie in [a, b], the interval of
integration. This gives us 2n parameters to choose. If the coefficients of a polynomial are

considered parameters, the class of polynomials of degree at most 2n — 1 also contains
2n parameters. This, then, is the largest class of polynomials for which 1t 1s reasonable to
expect a formula to be exact. With the proper choice of the values and constants, exactness
on this set can be obtained.

To illustrate the procedure for choosing the appropriate parameters, we will show how
to select the coefficients and nodes when n = 2 and the interval of integrationis [—1, 1]. We
will then discuss the more general situation for an arbitrary choice of nodes and coefficients
and show how the technique 1s modified when integrating over an arbitrary interval.
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Suppose we want to determine ¢y, ¢2, x1, and x; so that the integration formula

|
f flx)ydx == flx1) 4+ c2fix)
1

gives the exact result whenever f(x) 15 a polynomial of degree 2(2) — 1 = 3 or less, that
15, when

flx)=ap+ax+ ax® + aw’,

for some collection of constants, ag. a,. a;, and a;. Because
f{aﬂ +aix + ax” 4 ayx’) dx = ﬂc.f 1 dx + a f:-r.:i:r +a3fxld.r+ﬂ3fx3 dx,

this is equivalent to showing that the formula gives exact results when f(x) is 1, x, x°,
and x°. Hence, we need ¢y, 3. x;. and x3, so that

| |
cl-|+c3~1=f | dx =2, f']‘.1'1+{'“_1'.1'1=f rder=0,
—1 —1

| . 2 |
€ xi 413 =f r.:ingf and c]-z‘;+rg-x§'=f x dx = 0.
—1 —1
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A little algebra shows that this system of equations has the unigue solution

which gives the approximation formula

! _
f flx)yde = f (Tﬁ) +f (if) (4.40)
-1 b

This formula has degree of precision 3. that is, it produces the exact result for every poly-
nomial of degree 3 or less.
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Legendre Polynomials

The technique we have described could be used to determine the nodes and coefficients for
formulas that give exact results for higher-degree polynomials, but an alternative method
obtains them more easily. In Sections 8.2 and 8.3 we will consider various collections of
orthogonal polynomials, functions that have the property that a particular definite integral
of the product of any two of them is (. The set that 1s relevant to our problem 1s the Legendre
polynomials, a collection {Py(x), Pi(x),....Py(x),....} with properties:

(1} For each n, P,(x) i1s a monic polynomial of degree n.

1
(2) f P(x)P,(x) dx = 0 whenever P(x) is a polynomial of degree less than n.
-1

The first few Legendre polynomials are

1

E 5

g 6, 3

Pi(x)=x" — %L and Pyx)=x" — ?;;— + 15

PDEI}:I! P[{I}=L Pz[_{}:_{l_

[

The roots of these polynomials are distinct, lie in the interval (—1, 1), have a symmetry
with respect to the origin, and. most importantly, are the correct choice for determining the
parameters that give us the nodes and coefficients for our quadrature method.



Table 4.12
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The constants ¢; needed for the quadrature rule can be generated from the equation

in Theorem 4.7, but both these constants and the roots of the Legendre polynomials are

extensively tabulated. Table 4.12 lists these values forn = 2.3, 4, and 3.

Roots ry;

Coefficients cq;

]

0.5773502692
—0.5773502692
0.7745966692
OLOODOOC0000
—0.77459%66692
08611363116
0.3399810436
—0.3399810436
—D.8611363116
0.9061798459
0.5384693101
0.0000000000
—0.5384693101
—0.9061798459

1. OOOOOOCKO00
10000000000
(0.5555555556
(.BEEREERER0
(.5555555556
(.3478548451
0.6521451549
0.6521451549
(.3478548451
0.2369268850
04786286705
(.56888E8ER0
0.4786286705
0.2369268850
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Approximate _,I'_Il €" cos x dx using Gaussian quadrature with n = 3.

Solution The entries in Table 4.12 give us

|
f £" cos xdx 7= .52 779501 -0 0.774506602
~1
1 0.8cos 0 4 0.5 0T - 0,774506602)
= 1.9333004.

Integration by parts can be used to show that the true value of the integral 1s 1.9334214, so
the absolute error is less than 3.2 = 102, ]



Gaussian Quadrature on Arbitrary Intervals

An integral _Ifj f(x) dx over an arbitrary [a, ] can be transformed into an integral over

[—1. 1] by using the change of variables (see Figure 4.17):

. = b—a
Figure 4.17

_lr—ﬂ—b

1
—x=3lb-a)y+a+b]

(5, 1)

This permits Gaussian gquadrature to be applied to any interval [a, k], because
[b—a}i‘—l—[b—l—a]) (b — a) 4

b
f f[.r}dx=f

l
f

1

(

2

o

2

f.

(4.41)

MAP2220
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3
Example 2 Consider the integral f x® — x% sin(2x) dx = 317.3442466.
|

(a) Compare the results for the closed Newton-Cotes formula with n = 1, the open
Newton-Cotes formula with n = 1, and Gaussian (QQuadrature when n = 2.

(b) Compare the results for the closed Newton-Cotes formula with n = 2, the open
Newton-Cotes formula with n = 2, and Gaussian Quadrature when n = 3.

n = 1: Trapezoidal rule
I h h}
f flx)dx = EU"[—"DJ + flx)] - Ef"‘[&fh where xp < § < xi. (4.25)
xn
n = 2: Simpson’s rule

f Cf) dr = g[f(xﬂj‘F“f(-fl} + flx)] - %f‘-“"(cﬂf where x3 <& < x.
R
(4.26)

n=1:

2 3h _ i,
f f':-r}fix=7|f(-’fﬂj+f[-’fl}|+Tf (§). where x_) <§ <x.  (430)

n=2:

f flydr= %21' (0) — f(x1) + 21 (x)] + %f““m 431)
x_] »
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Solution (a) Each of the formulas in this part requires 2 evaluations of the function f(x) =

x* — x% sin(2x). The Newton-Cotes approximations are

2
Closedn=1: 3 [F(1)+ f(3)] = 731.6054420;

3(2/3)
2

Openn=1: [F(53/3)+ f(7/3)] = 188.T856682.

Gaussian quadrature applied to this problem requires that the integral first be transformed
into a problem whose interval of integration 1s [—1. 1]. Using Eq. (4.41) gives

k) 1
f x° — xPsin(2x) dx = f (t4+2)% — (1 4+ 2)" sin(2(r + 2)) dt.
| -1
Gaussian quadrature with n = 2 then gives

3
f xf —xsin(2x)dx = f(—0.5773502692 +2) + £(0.5773502602 £ 2) = 306.8199344;
|
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(b) Each of the formulas in this part requires 3 function evaluations. The Newton-Cotes

approximations are

Closedn=12: {—i} [F(1)+4f(2)+ f(3)] = 333.2380040;

4(1/2) .
Openn=2: ——[2f(15) — f(2) +2(25)] = 303.5912023.

Gaussian quadrature with n = 3, once the transformation has been done, gives
3
f x® — ¥ sin(2x) dx = 0.5 F(—0.7745966692 + 2) + 0.8 f(2)
l

+ 0.5 £(0.7745966692 + 2) = 317.2641516.

The Gaussian quadrature results are clearly superior in each instance.
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