MAP2220 — aula 07

MAP 2220 - FUNDAMENTOS DE ANALISE NUMERICA
22 Semestre - 2017

Prof. Dr. Luis Carlos de Castro Santos
Isantos@ime.usp.br/lccs13@yahoo.com



4 MNumerical Differentiation and Integration 173

T NI e
e T TS T PO e

4.

44
45
4.6
47
4.8
49

Elements of Numerical Integration 193

Composite Numerical Integration 203
Romberg Integration 213

Adaptive Quadrature Methods 220
Gaussian Quadrature 228

Multiple Integrals 2335

Improper Integrals 250

4.10 Survey of Methods and Software 256

MAP2220



4.3

Elements of Numerical Integration

The need often arises for evaluating the definite integral of a function that has no explicit
antiderivative or whose antiderivative is not easy to obtain. The basic method involved in

approximating _ﬂf fix) dx 1s called numerical quadrature. It uses a sum E?:D a; fx;) to

approximate _i;b fix) dx.
The methods of quadrature in this section are based on the interpolation polynomials
given in Chapter 3. The basic idea is to select a set of distinct nodes {x, ..., xg} from the

interval [a, b]. Then integrate the Lagrange interpolating polynomial

Palx) =) flxLilx)

i=l

and its truncation error term over [a, b] to obtain

& p_a kR a+13
— AL L TTTEGD)
j; fix)dx = -[: ;f{.T,:}L,[:I}IiI'Ff; g{l —I,}de

" I h R : +|]
= E if (i | | x —x;) f 1) dx,
— af o)+ (n+ 1)! j.:: |.=|:|{T e

where E(x) is in [a, b] for each x and

b
i =j Liixydx, foreachi=0,1,....n
a

The quadrature formula is, therefore,

] "
f flyde=Y " aif (x),
d i=D
with error given by

B R
_ e gl
E(f) = f E{x %) O &) di.
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The Trapezoidal Rule

To denive the Trapezoidal rule for approximating _f;b fixydeletxp=a,xy,=bh=b—a
and use the linear Lagrange polynomial:

(x —x1) —J?n]
Pi(x) = {.tu—xlf]ﬂ u]+ f{ xp).

— (x—
f f{ﬂlﬂ‘f—f {(m_l:}]f{ ufl+ X0 f{ﬁ}'}

1
+Ef FUE ) x — xp)x — xp) dx. (4.23)
0

The product {(x — xp){x — x1) does not change sign on [xg, x1 ], so the Weighted Mean Value
Theorem for Integrals 1.13 can be applied to the error term to give, for some £ in (xp, x1)

1 x|
f FUEX)(x —xp)ix —x) dx = f”{EJf (x —xg)x — xp) dx
T Ip

. ¥ (g +x) . *
= F"(&) [E‘ L .t‘+mxlr}

= !

B,
=— 1€
Consequently, Eq. (4.23) implies that

— (x — B i o
ff'[f.‘lﬂ‘f [2{ fi’ J+ fII 1}} i ®

li .
_ {x) — xp)

K
Lf o) + flxp)] — %f”{ﬂ-
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Theorem 1.13 (Weighted Mean Value Theorem for Integrals)

Suppose f € C|a,b], the Riemann integral of g exists on [a, /], and g(x) does not change
sign on [a, b]. Then there exists a number ¢ in (a, b) with

& b
f fx)g(x) dx = f{-‘:]f £(x) dx. _



Using the notation i = x) — xp gives the following rule:
Trapezoidal Rule:

b I i
f fix)dx = E[fﬂ'ﬂ] + filx)] — E}mfﬂ-

This is called the Trapezoidal rule because when f is a function with positive values,
_if fix) dx 1s approximated by the area in a trapezoid, as shown in Figure 4.3.

Figure 4.3 Y
y = flx)

— Pi(x)

= )

a = Xp x=~h

The error term for the Trapezoidal rule involves ", so the rule gives the exact
result when applied to any function whose second denvative is identically zero, that is, any
polynomial of degree one or less.

MAP2220



Simpson’s Rule

Simpson’s rule results from integrating over [a. b] the second Lagrange polynomial with
equally-spaced nodes xp = a, x2 = b, and xy = a + h, where h = (b — a)/2. (See
Figure 4.4.)

Figure 4.4

y =)

=1
Il
e
[ —]
=
-
P
Il
=
w ¥

Therefore

b Iy - . - _
f Fix)dx =f [ & — )G H}}f{:n}+ (= =)z ﬂ}} fixp)
a

w Lo —x)(xp —x2 () —xp)(xy —x2

(x —xp){x —x1) :|
d
(x2 — xo)ixz —mﬂxﬂ *

. fxl (x —xp)(x — x1)(x —x2)
0 i

FREX) dr.

Deriving Simpson’s rule in this manner, however, provides only an Q(h*) error term involv-
ing f*). By approaching the problem in another way, a higher-order term involving f¥
can be derived.
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To illustrate this alternative method, suppose that f 1s expanded in the third Taylor
polynomial about x,. Then for each x in [xy, x;], a number £ (x) in (xp, x;) exists with

b . “poy (4
7 = fen+ o=+ IS x4 L ey L
and
f flx)yde= [fi-rlﬂl —x)+ / ';l}[l —x) + / éﬂ}{l —x)
A

) jM'{e}{x}J (x —x)tdx. (4.24)

4 fmfﬂ’]}{x _11}4]' -

24 ﬁ

Because (x — x1)" is never negative on [xg, x2], the Weighted Mean Value Theorem for
Integrals 1.13 implies that

{4 (4 Ty
f”}{ﬂx}}{x—xﬂ dr=7 'E”f x—x)* dr flgj‘}c.r—.rliﬁ] |
=] a

24 J,

for some number &) in (xp, x2).



However, h = x2 _ X = x| — X, SO
(2 —x1)% — (g —x1)" = (1 — 0} — (g —x)* =0,
whereas
(p—x1) — (o —x) =2k and (0 —x1)° — (w0 —x) =2k,

Consequently, Eq. (4.24) can be rewnitten as

x7 K i4)
f F) de = 2hf(x) + %f”{x;] + 1 ﬂ';‘f s,
x

If we now replace f"(x,) by the approximation given in Eq. (4.9) of Section 4.1, we
have

X2

! 2 (4) )
f () dx = 20 f (1) + %{ T ) — 2 )+ Fl)] = 731 tm} ¢ LB

60

A
_h » P14 P
_Elﬂ’m}+ j(,r]}+f[12}l—ﬁ 3/ &) -5 ED .

It can be shown by alternative methods (see Exercise 24) that the valvues £, and &; in this
expression can be replaced by a common value £ in (xp. x7). This gives Simpson’s rule.

Simpson’s Rule:
5

2 h h .
f flx)dx = Elf{m}l +4f(x) + fla)] - EJ"H'{EJ-
X
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The error term in Simpson’s rule involves the fourth derivative of f. so it gives exact

results when applied to any polynomial of degree three or less.



Example 1

2
Compare the Trapezoidal rule and Simpson’s rule approximations to f fix)dxwhen fix)
0
15
(a) x° (b) x* e (x+D!
(d) 1422 (e) sinx (f) &

Solution On [0, 2] the Trapezoidal and Simpson’s rule have the forms
2
Trapezoid: f fixyde= f(0)4+ f(2) and
0
Simpson’s: fﬁ fix) dx == %[f[ﬂ} +47h+ f(2)].
]
When f(x) = x” they give
2
Trapezoid: f fix)de=~0"4+2"=4 and
]
. : : 1 3 a3y B
Simpson’s: f fix) dx = E[[{.'rl} +4-1- 427 = 3
]

The approximation from Simpson's rule is exact because its truncation error involves f'™,
which is identically 0 when f{x) = x°.

The results to three places for the functions are summarized in Table 4.7. Notice that
in each instance Simpson’s Rule 1s significantly superior. [
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Table 4.7
(a) ib) (c) id) (e) (f)
fix) x? x! (x+ D! 1 +x sinx &
Exact value 2.667 6.400 1.099 2058 1416 6.380
Trapezoidal 4000 1 6000 1.333 3.326 0.909 8.380
Simpson’s 2.667 6.667 1.111 2.064 1.425 6.421




Measuring Precision MAP2220

The standard derivation of quadrature error formulas is based on determining the class of
polynomials for which these formulas produce exact results. The next definition 1s used to
facilitate the discussion of this derivation.

Definition 41 The degree of accuracy, or precision, of a quadrature formula 1s the largest positive integer
n such that the formula is exact for x*, foreachk = 0.1.....n. ]

Definition 4.1 implies that the Trapezoidal and Simpson’s rules have degrees of preci-

sion one and three, respectively.
Integration and summation are linear operations: that is,

h b h
f (@f (x) + Be(x)) dr = f f) e+ p f o(x) dr

and

Y laf(x) +pex)) =a ) flx)+B) elx),
=0

for each pair of integrable functions f and g and each pair of real constants @ and 8. This
implies (see Exercise 23) that:

® The degree of precision of a quadrature formula is n if and only if the error 1s zero for
all polynomials of degree k = 0, 1, ....n. but is not zero for some polynomial of degree

n+1.
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The Trapezoidal and Simpson’s rules are examples of a class of methods known as Newton-
Cotes formulas. There are two types of Newton-Cotes formulas, open and closed.
Closed Newton-Cotes Formulas

The (n+ 1)-point closed Newton-Cotes formulauses nodes x; = xp+ih. fori =0.1,....n,
where xp = a, x, = band h = (b — a)/n. (See Figure 4.3.) It 1s called closed because the
endpoints of the closed interval [a, b] are included as nodes.

Y i
Figure 4.5
y=F
a=x; X Xz Xy Xy=250 X
The formula assumes the form
b _ " a g M (x — x;)
f@) dr~ Y af(x). where g = f Lwdi= [ ] d
. =0 m 0 Fq{li— ;)
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Theorem 4.2

Suppose that ¥ 7 a; f (x;) denotes the (n + 1)-point closed Newton-Cotes formula with
xg =a, x, = b,and h = (b — a)/n. There exists £ € (a. b) for which

J;],.I|+3 f{n+ Z) {‘E} i

2
T ﬂr[r—l}u-{r—rz}:ﬂ,

h. A
[ fw =Y are+
a =1

if nis even and f € C"*[a, b], and

b n hﬂ+1f{ﬂ+l}{gw} L]
(x)de = s F(x —1)---(t —n) dt,
L. fix) ax §H1[11+ T tt—1)---(t —n) dt

if nisodd and f € C"t'[a. b]. u

Note that when n 1s an even integer, the degree of precision i1s n + 1, although the
interpolation polynomial is of degree at most n. When n 1s odd, the degree of precision is

only n.



Some of the common closed Newton-Cotes formulas with their error terms are listed.

Note that in each case the unknown value £ lies in (a. b).

n = 1: Trapezoidal rule

x| h h3
f flx)de = E[fllln} + fla)] — ﬁf”(‘q‘}, where xp <& < xj. (4.25)

X

n = 2: Simpson’s rule

A2 h ;5
f flx)ydx = i[fllxn} +4f(x1) + fx2)] — ;ﬁfﬂ}{EL where xp < & < x2.
x)
(4.26)

n = 3: Simpson’s Three-Eighths rule

I 3h _ _ _ 3k’ y
f _f{.thir=F[j[xﬂ}—I—Bj{xﬂ—l—i'rf{xzj—l—j{x}}]—ﬁf“(‘g’}, (4.27)

)

where x5 < £ < x3.

n=4:

” 2h 8h7
f flx)dx = E[?ﬂm} +32f(x1) +12f(x2) +32f(x3) + 7 fxq)] — Ef{ﬁjif}s
I

where x) < & < xa. (4.28)
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Open Newton-Cotes Formulas MAP2220

The open Newton-Cotes formulas do not include the endpoints of [a, b] as nodes. They use
the nodes x; = xp 4+ ih, foreachi=0,1,....n,whereh=(b—a)/(n+2)and xp = a+ h.
This implies that x, = b — h, so we label the endpoints by setting x_| = a and x,,| = b,
as shown in Figure 4.6 on page 200. Open formulas contain all the nodes used for the
approximation within the open interval (a, b). The formulas become

b S | A
f f ) de = f foydex Y af(x),
a x| i—0

where

b
ﬂ;:f L,(I]dl’

Y4

Figure 4.6

a=XxX-; Xp X Xz Xp Xy =0 X



Theorem 4.3

MAP2220

Suppose that 3 " ; a; f (x;) denotes the (n + 1)-point open Newton-Cotes formula with
Xy =da gy =b.and h = (b —a)/(n+ 2). There exists £ £ (a, b) for which

] n h.ﬁ:+_-'|-f{ﬂ+3} I:%—']_ n+ 1 ,
(x)dr = - fix: “(t—=1)--«(t —n) dt,
l £x) Eﬂ;ﬂLH — f A=)

if n is even and f € C"*[a, b], and

hﬂ+1f["+]’]“5_} n+1

h. I}
£ £() dx = gafmw — (t—1)--- (t —n) db,

if nis odd and f € C"t'[a, b]. Il

Notice, as in the case of the closed methods, we have the degree of precision compar-
atively higher for the even methods than for the odd methods.



Some of the common open Newton-Cotes formulas with their error terms are as

follows:

n = 0: Midpoint rule

X 3
f l f(x)dx=2hf(x) + %f”(f}, where x| =& = x).
X

n=1:

x3 3
f filx)dx = %[ﬂ-ﬂ]} + flxp)] + %f”[f]s where x_ ;| <& < x.
x|

n=2

s 4h 1443
f flx)de= ?llf'{ln] — flx1) +2f(xa2)] + ﬁj“}{g},
X_]

where x_| =& < x3.

n=23

4 Sh 035
f fix)de= ﬂl”ﬂm} + flx) + fn)+ 11 fix)] + mffjfm{f?},
x|

where x| =& = xa.

(4.29)

(4.30)

(4.31)

(4.32)
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Example 2 Compare the results of the closed and open Newton-Cotes formulas listed as (4.25)-(4.28)
and (4.29)+(4.32) when approximating

x/4
f sinx dx = 1 — +/2/2 = 0.20280322.
1]

Solution For the closed formulas we have

(7 /4)

n=1:

sin0 + sin E] ~ 027768018
(m/8)

zin 0 | 4 gim < +sin ﬂ = 0.29203264

Mm/12) 1. . T .o . T
] . 3‘ —_— - — | &= U
n=73 3 [5|nD+ sin 3 + 3sin 5 + sin 4] 0.20201070

n=4:

2w /16) [

3w
¥ Tsin0+ 325|n — 4+ 125|ﬂ — 4+ 328 — 4+ 7 sin Ii| == (.20289318

16 8 16

and for the open formulas we have

n=0: 2(x/8) [siﬂ %] 7 0.30055887

o MmN om Ty
n=1: =22 [sin T 4 sin E] =~ 0.29708754
Ha/1en [ 7 7 3;
n=72 W; ) _j s1n % — sin % + 2 sin %] =z (0.20285866
S(m/2h T 3
n=3: {Z’; ) hllsmﬁ—l—sm:—u—l—smﬁ—l— 11 sin %] =z (0.20286923

Table 4.8 summanzes these results and shows the approximation errors. [



Tahle 4.8

MAP2220

fn 0 1 2 3 4
Closed formulas 0.27768018 0.29293264 0.29291070 0.29289318
Error 0.01521303 0.00003942 0.00001748 0.00000004
Open formulas 030055887 (.29798754 0.29285866 0.29286923
Error 0.00766565 0.00509432 0.00003456 0.00002399
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4.4 Composite Numerical Integration

The Newton-Cotes formulas are generally unsuitable for use over large integration inter-
vals. High-degree formulas would be required, and the values of the coefficients in these
formulas are difficult to obtain. Also, the Newton-Cotes formulas are based on interpola-
tory polynomials that use equally-spaced nodes, a procedure that is inaccurate over large
intervals because of the oscillatory nature of high-degree polynomials.

In this section, we discuss a piecewise approach to numerical integration that uses the
low-order Newton-Cotes formulas. These are the techniques most often applied.
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Example 1

Use Simpson’s rule to approximate f; " dx and compare this to the results obtained

by adding the Simpson’s rule approximations for JI’DE &' dx and f; ' dv. Compare these
approximations to the sum of Simpson’s rule for fﬂl e dx, JI"]2 e dx, f; " dx, and E‘ e dx.

n = 2: Simpson’s rule

x2 h }5
f flx)de = ilfllxn} +4f(x) + flx)] - ;ﬁfﬂ}{éh where 1y < § < x.
X

(4.26)
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Solution Simpson’s rule on [0, 4] uses h = 2 and gives
4
f dea%wm+%z+ﬁ}=5&ﬁﬂﬂ.
|:| a

The exact answer in this case is ¢* — & = 53.508135, and the error —3.17143 is far larger

than we would normally accept.
Applying Simpson’s rule on each of the intervals [0, 2] and |2, 4] uses i = 1 and gives

fffcix fsdx+f€‘dr

: (¢® + 4’ + €Y

{e +f-1«£+£:l—|—1

...I-.'l

(" +4e+ 2% +4¢’ + €)

|_|_|._'|||_..

= 53.86385.

The error has been reduced to —0.26570.
For the integrals on [0, 1].[1. 2].[3.4]. and [3. 4] we use Simpson’s rule four times with

h = l giving

fe*dr—f e“dr+f€dx+f excir+f et dx

E{sn+4e’f* ]+ﬁ{£+4~53“ + &%)

1 1 ;
ts (2 + 4% + e }—I—E(es—l—ﬂle?f‘—l—e“)
] 3 2 2 i 1
=E(Eﬂ_‘_ﬂIF]I‘-_I_EE_l_q_E}f—_l_EF-+4eja2+2€3+4€?;;_+€4)

= 53.61622.

The error for this approximation has been reduced to —0.01807. |
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(%]

To generalize this procedure for an arbitrary integral - fix)dx, choose an even

integer n. Subdivide the interval [a, b] into a subintervals, and apply Simpson’s rule on
each consecutive pair of subintervals. (See Figure 4.7.)

Figure 4.7
L

w Y

a = Xp Xz Xy-z Xy1 Xy b=x




With i = (b —a)/n and x; = a + jh, foreach j = 0,1.....n, we have

b a2 x3;
[ rwa=Y [ rwas
a j=1 ¥ ¥1j-2

a2

j *"5
_ E |§I[f{11_.i—2]' —|—4f{1'2_.i—lj — f{xg_j]] — Efid}{fjjl .
j=l1

for some & with xz;_; < & = xzj, provided that f < C*[a. b]. Using the fact that for each
J=L2,....(n/2) — 1 we have f(x:;) appearing in the term corresponding to the interval
[x2j—2.%2;] and also in the term corresponding to the interval [X;.x2;42], we can reduce
this sum to

E h (n/2)—1 a2 T a2
f fRdv=21fE)+2 Y} fCap+4Y faj 0+ f0) | -5 FE).
a j=1 j=I i=l

The error associated with this approximation is

hj_ afl

- (4 e
E(f) = ‘?Ug‘f (),

where x;;_» < & < xy;, foreachj = 1,2,...,.n/2.
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If f ‘e C¥[a, b]. the Extreme Value Theorem 1.9 implies that £ assumes its maximum

and minimum in [a, b]. Since

min f¥x) < f®E) < max ft‘“{x}‘

relab]
we have
1 n/2
i Wy < (E4] .-,: - ()
5 min f4(x) < Zlf (§) = 5 max f@x)
i=
and
n,n'E
() i i4)
min X) < — < ma:-: X
min fx) Zf (&) < max fO).

=

By the Intermediate Value Theorem 1.11, there is a u € (a, b) such that

2 &
O == 9.

=1
Thus
P 4 4
- (] — {4)
E(f)= ; ) = ]Eunj (),
or, since b = (b— a)/n,

b —
_ﬂ;ﬁft@{m.
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Theorem 44 Let f € C*a.b], n be even, h = (b — a)/n, and xp =a+jh foreachj = 0,1.....n.
There exists a g € (a, b) for which the Composite Simpson’s rule for a subintervals can
be written with its error term as

b h (nj2)—1 a2 b—a,, .
l fix) e:i:r:_i fla)y+2 E f{xgjj+4§f(xg}-_]}+j'{bj _ﬁh FE .

Notice that the error term for the Composite Simpson’s rule is O(h*), whereas it was
(k) for the standard Simpson’s rule. However, these rates are not comparable because for
standard Simpson’s rule we have fi fixed at h = (b — a) /2. but for Composite Simpson's
rule we have h = (& — a)/n, for n an even integer. This permits us to considerably reduce
the value of f when the Composite Simpson’s rule 15 used.

Algorithm 4.1 uses the Composite Simpson’s rule on n subintervals. This 15 the most
frequently used general-purpose quadrature algorithm.
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Composite Simpson’s Rule
To approximate the integral | = f: fx)dx:

INPUT endpoints a. b; even positive integer a.
OUTPUT approximation X7 to [.
Step1 Seth=(b—a)/n.

Step 2 Set XI0 = fia) + f(b);
Xl =0 (Summation of f(x2-1).)
XI2 =0. (Summation of f(x).)

Step3 Fori=1,...,n—1do5teps 4 and 5.
Step 4 SetX =a+ ih.

Step 5 Ifiis even then set X12 = XI2 + fi(X)
else set XI'l = XTIl + fF(X).

Step 6 Set XI = hiXI0 +2-XI2+4- XI1)/3.

Step 7 OUTPUT (XT);
STOPR. u

The subdivision approach can be applied to any of the Newton-Cotes formulas. The
extensions of the Trapezoidal (see Figure 4.8) and Midpoint rules are given without proof.
The Trapezoidal rule requires only one interval for each application, so the integer n can be
either odd or even.



MAP2220

Theorem 4.5 Let f e Cla.bl, h = (b — a)/n, and x; = a + jh. foreach j = 0, 1,...,n. There exists
au € (a,b) for which the Composite Trapezoidal rule for n subintervals can be written
with its error term as

b i i b—a
_ i - _ 2
j; fixyde = 3 f{ﬂ}+12f{-’i:;}+_f[ﬁ} T3 b (). [ |

.||=

Figure 4.8
L

y=fl)

o ¥

b=x

a=Xp X X1 1 n—1




MAP2220

Theorem 4.6 Let f C*la.b), n be even, h = (b — a)/in+ 2), and x; = a + (f 4+ 1)h for each
j=—10,...,n+ 1. There exists a u = (a, b) for which the Composite Midpoint rule
for n + 2 subintervals can be written with 1ts error term as

a2

b—a, .
f r (). u
&a _ll'l]

Figure 4.9

y=rk

a = I—l. Iu I] Igll._l_.ra. Ii:'.+] In_1 I.I'I b - I."I'I‘l. X
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Example 2 Determine values of h that will ensure an approximation error of less than 0.00002 when
approximating _J",:“? sinx dx and employing
(a) Composite Trapezoidal rule and (b) Composite Simpson’s rule.

Solution (a) The error form for the Composite Trapezoidal rule for f{x) = sinx on [0, 7]
15

2

i} .
= I—,}l 5]“#'.

h* mh? i
7 f W=z (—sinp)

To ensure sufficient accuracy with this technique we need to have

B2 %
’T]—E|smﬂ| < % < 0.00002.

Since h = m /n imphes that n = 7 /h, we need
] 12

< 0.00002 which implies that 5 = (ﬁ) 72 350.44.

T3

12n2

and the Composite Trapezoidal rule requires n = 36().



{b) The error form for the Composite Simpson’s rule for fi{x) =sinxon [(, 7] s

‘T;I;fm{ }" 130 135'5"’”'
To ensure sufficient accuracy with this technigue we need to have
%lﬂlﬂﬂl %:; < 0.00002.
Using again the fact that n = 7 /h gives
T 0.00002 which implies that n = ( i )ua 2 17.07.
180n* FRO(0.00002)

S0 Composite Simpson’s rule requires only n = 18,
Composite Simpson’s rule with 1 = 18 gives

0 .
T bd - 2j-hmy |,
ﬁ sin x dr &= |: Zsm( )+4j=zsm(—13 ):| — 20000104,

This is accurate to within about 10~ because the true value is — cos(w) — (— cos{0)) = 2.

MAP2220



Round-Off Error Stability

In Example 2 we saw that ensuring an accuracy of 2 x 10~ for approximating _j'tf sin x dx
required 360 subdivisions of [0, ] for the Composite Trapezoidal rule and only 18 for
Composite Simpson’s rule. In addition to the fact that less computation is needed for the
Simpson’s technique, you might suspect that because of fewer computations this method
would also involve less round-off error. However, an important property shared by all the
composite integration techniques is a stability with respect to round-off error. That is, the
round-off error does not depend on the number of calculations performed.

To demonstrate this rather amazing fact, suppose we apply the Composite Simpson’s
rule with n subintervals to a function f on [a, b] and determine the maximum bound for the
round-off error. Assume that f(x;) 1s approximated by f {x;) and that

f(x) = fx)+e, foreach i=0.1,....n,

where ¢; denotes the round-off error associated with using £(x;) to approximate f(x;). Then
the accumulated error, e(fi), in the Composite Simpson’s rule is

h {mf—1 r/2
E €n + 2 Z Egj-kdzfz_‘i_l—kfﬂ

E’{:h:l =
=1 1=l

=1 =1

i {nf2)—1 Al
= 3 leal +2 Z |Ezj'|+42|-‘-’zj—||+|-‘?n| :

If the round-off errors are uniformly bounded by £, then
f fl n h
et < 3[e+2(5—1)e+4(5)e+e] = 33ne = nhe.
Butnh = b — a. so

elh) = (b—a)e,

a bound independent of & (and a). This means that, even though we may need to divide
an interval into more parts to ensure accuracy, the increased computation that 1s required
does not increase the round-off error. This result implies that the procedure is stable as h
approaches zero. Recall that this was not true of the numerical differentiation procedures
considered at the beginning of this chapter.
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15. Let f be defined by

o+ 1, 0=x=01,
fixy={1.001 +003(x -0 +03x - 0172 +2(x—-0.01)%, 01 =x=02,
1009 +0.15x — 0.2y +09x — 02 + 2(x — 02y, 02=x=03.

Investigate the continuity of the derivatives of f.

b. Use the Composite Trapezoidal rule with n = 6 to approximate f.?j fix) dx, and estimate the
error using the error bound.

c.  Use the Composite Simpson’s rule with # = 6 to approximate _fum fix) dr. Are the results more

accurate than in part (b)?

B

Composite 'fmp-ezniﬂal rule

rm—1
H b_ o |
fflix} 'i’-'=§[f':“]+zz flx)+ fiby | — uﬂh-}""m].

j=1
Composite Simpson’s rule
h h {mf21—1 afl b—a
f frydr= | f@+2 ) fla)+4) fai)+fb) | - ———h'fO ).
. j=1 j=1
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