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4.1 Numerical Differentiation \P2220

The derivative of the function f at xp is

fixo 4+ h) — fixg)
5 .

f ) — I.
[ (x0) = lim
This formula gives an obvious way to generate an approximation to f'(x,); simply compute

fixog + h) — fixg)
h

for small values of h. Although this may be obvious, it is not very successful, due to our
old nemesis round-off error. But it is certainly a place to start.

To approximate f'(xp). suppose first that xy € (a, b), where f € C*[a,b]. and that
x; = xp+h for some h # 0 that is sufficiently small to ensure that x; € [a, b]. We construct
the first Lagrange polynomial Py ix) for f determined by xy and x;, with its error term:

(x — xp)(x — x1)

Fx) = Poa(x) + > FrEX)
(xp(x — x5 — h) (xpg + h)x —xp)  (x—xplix —xp— H)
A e Tk OB S N )
—h h 2
for some £(x) between xp and x,. Differentiating gives
, x4+ h) — fix Xx—xp)x—xg—h) _,
f[_ﬂ:‘ﬂn ; f(la}}_i_ﬂj[[ Jl~|c+:|"|f1I 0 fl'El’:r}‘_i}
xp+ h) — filx 200x—xp)—h _,
_ flxo ; Jxa) N EUJ FUED)

X —xp)x —xg — h)
+'[ M}j 0

F =)

DA (E(x))).



Deleting the terms involving £(x) gives IAP2220

_ flag+h) — fixg)
A :

fix)

One difficulty with this formula is that we have no information about D, f"(£(x)), so the
truncation error cannot be estimated. When x is xp, however, the coefficient of D, f"(£(x))
is 0, and the formula simplifies to

Jlxg +h) — flxpg)
h

For small values of h, the difference quotient [ fixy + A) — f(x;)]/h can be used to
approximate f'{xg) with an error bounded by M |h|/2. where M is a bound on | f"(x)| forx
between xp and xp + h. This formula 1s known as the forward-difference formula if # = 0
(see Figure 4.1) and the backward-difference formula if h < 0.

h
) = — EI"LEL (4.1)

Figure 4.1 74 Slope [ (xg)
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Example 1

Table 4.1

Use the forward-difference formula to approximate the derivative of f(x) = Inxatx; = 1.8
using A = 0.1, i = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution The forward-difference formula

FULB+h) — F(18)
h

with i = 0.1 gives

In1.9—1In1.8  0.64185389 — 0.58778667

= 0.5406722.
0.1 0.1
Because f"(x) = —1/x* and 1.8 < £ < 1.9, a bound for this approximation error is
hf" h 0.1
lh7" @)l = il = 0.0154321.

2 262 T 2(1.8)2

The approximation and error bounds when h = 0.05 and & = 0.01 are found in a similar
manner and the results are shown in Table 4.1.

1.8+ h)— f(LE h
h FlLE+ i) fa8+h - 7.8 il -
h 2(1.8)°
0.1 0.64185389 0.5406722 0.0154321
0.05 061518564 05479795 00077160
0.01 0.59332685 0.5540180 00015432

Since f'(x) = 1/x, the exact value of f'(1.8) is 0.553, and in this case the error bounds are
quite close to the true approximation error. [ |
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To obtain general derivative approximation formulas, suppose that {xp.x;.....x;} are
(n + 1) distinct numbers in some interval / and that f  C"*' (/). From Theorem 3.3 on
page 112,

(x —xp)---(x
{n+ 1)

fO =) fouli(x) + — ) D g )),

k=0

for some £(x) in I, where L;(x) denotes the kth Lagrange coefficient polynomial for f at
Xg, X1, . .. . Xg. Differentiating this expression gives

(xr—xg)---(x —x,)
(n+ 1!)

o =) flli(x) + D, [ :| FPE @)
k=0

(x —xg) -+ - (X — xy) (1]
Dy x))].
) L E(x))]

We again have a problem estimating the truncation error unless x is one of the numbers
X;j. In this case, the term multiplying Djlf{”"":'n.g' (x))] is 0, and the formula becomes

, “ , "D (E ()
flagy =Y Fli) + / T fm’ | [ — 0. (4.2)

which is called an (# 4 1)-point formula to approximate f(x;).
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In general, using more evaluation points in Eq. (4.2) produces greater accuracy, al-
though the number of functional evaluations and growth of round-off error discourages this
somewhat. The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.
Because

Lo(x) — (x —x)(x — X2) we have  Lj(x) — Ix —x — X

(%o — x1){xg — x2)°

(xo — x1)(xg — x2)

Similarly,

2X — Xy — X3 2x —xp — x
(X — Xphx; — A7)

Hence, from Eq. (4.2),

2x; — x) — 2% — Xo — X
f’mhﬂm[ o M B }rﬂm[ i "t 7% }

(xg — X Mx5 — x7) (X — xphlx; —x1)

.L1 [I:} —

(x2 — xp)(x2 — x1)°

2 — xp — X
(X2 — xp)lxz — x1)

| 2
+ flx2) [ } + EIH}(E;'J l_[l’x; — Xik)s (4.3)
k=0
k#j

for each j = 0, 1, 2, where the notation £; indicates that this point depends on x;.



Three-Point Formulas

The formulas from Eqg. {(4.3) become especially useful if the nodes are equally spaced, that

is, when
Xxi=xp+h and x: =154 2h, forsomeh £0.

We will assume equally-spaced nodes throughout the remainder of this section.
Using Eq. (4.3) with x; = xy. ) = x5 + h. and x; = x, + 2h gives

f’ff}—l[—ifi }—|—“3'_f{xj—l_f{x J}-l—lffml:&}
or=gq | T/ A S iR :

Doing the same for x; = x; gives

! }—I : ( : ) - B (&)
fix =% —Eflﬂl+§f(12 _Ef 1),

and for x; = x;,

f’l.":]l—l lf{ J—Eftr}+iftr} +h—2f[33'{-§l
=013 Yo 1 51 3 2)-

Since x; = xp + h and x2 = xg + 2h, these formulas can also be expressed as

1 3 1 h?
i) = T —EI(IUJ +2f(xp+h) — Efﬂlﬂ -I—Eh}:| + TfG]{EDL
( -|—h}—| : ( J+1 (xg + 2h) " B g
fID _E__Ef“” Eflﬂ _Ef E];
and
, 11 3 L
fflu+zm=5 Ef{IUJ—EffID+-‘I}+Ef(Iu+2-‘I} +?f (£2).
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As a matter of convenience, the variable substitution x; for x; + h is used in the middle
equation to change this formula to an approximation for f'i{xp). A similar change, xy for
Xp + 2h. is used in the last equation. This gives three formulas for approximating f'(xg):

1 h?
f'(0) = 3213 (o) + 4 (o + ) — (o + 2] + ?f”} (Ea).

1 e
flix) = 21— f o — h) + f (%o + )] — Ef'ﬁ’ (&),
and
F 1 'ﬁg (3
fixg) = E[ftl’n —2h) —4fxg —h) 4+ 3 ()] + ?f (£5).

Finally, note that the last of these equations can be obtained from the first by simply replacing
h with —h, so there are actually only two formulas:



Three-Point Endpoint Formula MAP2220

1 h
* [0) = (=37 () +4f (o +h) — (0 +20)] + Ef”]l'EoL (4.4)

where £; lies between x and xp + 2h.

Three-Point Midpoint Formula
| h*
* [0) = [ Go+h) — flxo—h)]— Ef”” (&1), (4.5)

where £, lies between x; — h and x; + h.
Although the errors in both Eq. (4.4) and Eq. (4.5) are O(h?), the error in Eq. (4.5) is
approximately half the error in Eq. (4.4). This is because Eq. (4.5) uses data on both sides of
xp and Eq. (4.4) uses data on only one side. Note also that f needs to be evaluated at only two
points in Eq. (4.5), whereas in Eq. (4.4) three evaluations are needed. Figure 4.2 on page 178
gives an illustration of the approximation produced from Eq. (4.5). The approximation in
Eq. (4.4) is useful near the ends of an interval, because information about f outside the
interval may not be available.
Figure 4.2 i
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Five-Point Formulas

The methods presented in Egs. (4.4) and (4.5) are called three-point formulas (even though
the third point f{xp) does not appear in Eq. (4.5)). Similarly, there are five-point formulas
that involve evaluating the function at two additional points. The error term for these for-
mulas is @(A*). One common five-point formula is used to determine approximations for
the derivative at the midpoint.

Five-Point Midpoint Formula
4

, 1 h
o fix) = ﬁ[fﬁ-‘ﬁn—zh} —8f(xg — h) +8f(xp + h) —ffIn+Eﬁ}]+ﬁf[5]fEJ-..
(4.6)

where £ lies between xp — 2h and xp + 2h.

The derivation of this formula is considered in Section 4.2. The other five-point formula is
used for approximations at the endpoints.

Five-Point Endpoint Formula

1
. f'(x0) = ﬂ[—ﬁft‘u’n} + 48 f (xo + h) — 36 f (x0 + 2h)

I
+16f (00 +3h) —3f (xo +4M)] + = . (4.7)

where £ lies between xp and xg + 4h.

Left-endpoint approximations are found using this formula with i = 0 and right-endpoint
approximations with i < 0. The five-point endpoint formula is particularly useful for the
clamped cubic spline interpolation of Section 3.5.

MAP2220



Example 2

Values for fix) = xe" are given in Table 4.2. Use all the applicable three-point and five-point
formulas to approximate f°(2.0).

Table 4.2
x fx)
1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
22 19.855030
P 1 'ﬁz (3
fim) = ﬁ[—ﬂl’xﬂ + 4 f(xo+h) — fxg +’Er‘!J]+?f (o), (4.4)
, 1 s
ffxn]l:ﬂ[ﬂxn +h}—ff-"{n—-‘1J]—Ef (&1), (4.5)
’ I h4 (5]
f(x) = ﬁ[ﬂxﬂ —2h) —8f(xg —h) +8f (o +h) — flxg+2h)] + ﬁf (£),

(4.6)

MAP2220



Solution The data in the table permit us to find four different three-point approximations.
We can use the endpoint formula (4.4) with h = 0.1 or with h = —0.1, and we can use the

midpoint formula (4.5) with A = 0.1 or with A = 0.2,
Using the endpoint formula (4.4) with h = 0.1 gives

1
ﬁl—Ef[E.DJ +4f(2.1) — F(2.2] = 5[-3(14.778112) 4+ 4(17.148957)
| — 19.855030)] = 22.032310,

and with h = —0.1 gives 22.054525.
Using the midpoint formula (4.5) with A = 0.1 gives
1
{ﬁ[fﬂ.lfﬁ — f(1.9)] = 5(17.148957 — 12.7703199) = 22.228790,

and with h = 0.2 gives 22.414163.
The only five-point formula for which the table gives sufficient data is the midpoint
formula (4.6) with A = 0.1. This gives

1 1
F1F(1.8) —87(1.9) + 8 (2.1) — f(2.2)] = 7[10.889365 — 8(12.703199)

+ B(17.148957) — 19.855030]
= 22.166999

If we had no other information we would accept the five-point midpoint approximation using
h = 0.1 as the most accurate, and expect the true value to be between that approximation
and the three-point mid-point approximation that is in the interval [22.166, 22.229].
The true value in this case is f'(2.0) = (2 + 1)e* = 22.167168, so the approximation

errors are actually:

Three-point endpoint with h = 0.1: 1.35 x 107";

Three-point endpoint with i = —0.1: 1.13 = 10~';

Three-point midpoint with A = 0.1: —6.16 x 107%;

Three-point midpoint with A = 0.2: —2.47 = 10~!;

Five-point midpoint with A = 0.1: 1.69 x 1077, [ |
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Methods can also be derived to find approximations to higher derivatives of a function
using only tabulated values of the function at various points. The derivation is algebraically
tedious, however, so only a representative procedure will be presented.

Expand a function f in a third Taylor polynomial about a point x; and evaluate at xy + h
and x5 — h. Then

MAP2220

| . |
fg+h) = flxg) + fgh + Ef“u:n:m* +2f ()’ + EJ‘[‘”‘ (£ )h

and
| ., 1, |
flxg—h) = fixo) — f'(w)h + Ef”lllu}-‘l‘ —f (xo)h® + Ef[‘“t-%'_ulhﬂ

wherexp —h <& =xp < & =xp+ h
If we add these equations, the terms involving f'(xg) and — f'(xp) cancel, so

- |
flxo+ k) + fxo—h) =2f(x) + " (x)h® + ﬂ[f[‘“' (&) + [P E_DI.
Solving this equation for f"(x;) gives
| h*
[y = 5 1f (%o — h) = 2 (%o) + f (%o + )] — E[f[‘“' &)+ fPED)] 4.8)

Suppose ™ is continuous on [x; — h.xy + h]. Since %[f“”(!g.} + f™(E_,)] is between
&) and F™(&_), the Intermediate Value Theorem implies that a number £ exists
between £ and £_,, and hence in (xp — h, xg + h), with

FOE) = % [F9&) + 9]

This permits us to rewrite Eq. (4.8) in its final form.
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Second Derivative Midpoint Formula
| h*
. (o) = 251 (g — ) = 2f (o) + [ (%o + )] — EIH]IIEL (4.9)

for some £, where xp — h <= £ < xp + h.

If £ is continuous on [xy — A, Xy + A] it is also bounded, and the approximation is O(h?).

Example 3
In Example 2 we used the data shown in Table 4.3 to approximate the first derivative of
Table 4.3 F(x) = xe® at x = 2.0. Use the second derivative formula (4.9) to approximate f"(2.0).
x f(x) Solution The data permits us to determine two approximations for f"(2.0). Using (4.9)
with A = 0.1 gives
1.8 10.889365
1.9 12703199 1
— 9) — J A= J03 — . .
2.0 14778112 D,l}l[f“ 9 —2f02.0) + f(2.1)] = 100[12.703199 — 2(14.778112) + 17.148957]
21 17.148957 = 29.593200,
22 19.855030

and using (4.9) with A = 0.2 gives

1
Szl f (-8 = 2f(20) + £(2.2)] = 25[10.889365 — 2(14.778112) + 19.855030]
— 29.704275.

Because f"(x) = (x + 2)¢", the exact value is f"(2.0) = 29.556224. Hence the actual
errors are —3.70 x 1077 and —1.48 x 107", respectively. [ |



Round-Off Error Instability

It is particularly important to pay attention to round-off error when approximating deriva-
tives. To illustrate the situation, let us examine the three-point midpoint formula Eq. (4.5),

] h*
! - _ _ - {3}
flixg) = Eh[fﬂlu+ﬁj flxg — h)] 3 FED,

more closely. Suppose that in evaluating f(xp + h) and f(xo — k) we encounter round-off
errors €(xy + h) and e(xy; — k). Then our computations actually use the values f{xy + h)

and _.I'Flllﬂ — h), which are related to the true values f{xp + h) and fixg — k) by

fOg+h = fg+h) +elxg+h and  fxg—h) = flxg —h) + elxy — h).

The total error in the approximation,

fo+h —fp—h  ep+h—e—h K

fixg) — n oy Ef”’l’-éu ),

1s due both to round-off error, the first part, and to truncation error. If we assume that the

round-off errors e(xp = h) are bounded by some number £ = 0 and that the third derivative
of f 1s bounded by a number M = 0, then

, fog+h — fog—Mh| & &K
fix) — h EE-FFM

To reduce the truncation error, i*M /6, we need to reduce h. But as h is reduced, the round-

off error £ /h grows. In practice, then, it is seldom advantageous to let i be too small, because
in that case the round-off error will dominate the calculations.

MAP2220



lllustration
true value is cos 0.900 = 0.62161. The formula
F0.900) ~=
Table 4.4 x sinx X sInx
(.80 0.71736 0.901 0. 78395
(L850 0.75128 0.902 0. 78457
(L.8R0 0.77074 0.905 0. 78643
0.890 0.77707 0.910 0. 78950
(.895 0.78021 0.920 0.79560
(1.89% 0. 78208 0.950 0.81342
(.899 0.78270 1.000 0.84147

MAP2220

Consider using the values in Table 4.4 to approximate f'(0.900), where f(x) = sinx. The

£(0.900 + k) — £(0.900 — h)

2h

with different values of h, gives the approximations in Table 4.5,

Table 4.5

Approximation

h to f'(0.900) Error
0.001 0.62500 0.00339
0.002 0.62250 0.00089
0.005 0.62200 0.00039
0.010 0.62150 —0.00011
0.020 0.62150 —0.00011
0.050 0.62140 —0.00021
0.100 0.62055 —0.00106
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The optimal choice for i appears to lie between (0.005 and 0.05. We can use calculus to
verify (see Exercise 29) that a minimum for

3

h
eh) = - + L m.

h 6
occurs at h = /3/M, where
M= max |[f (x))= max |cosx|=cos0.8==069671.
e [(LE00, 1.00] xe[0.E00,1.00]

Because values of f are given to five decimal places, we will assume that the round-off
error is bounded by £ = 5 x 107°. Therefore, the optimal choice of h is approximately

- 3/3{[}.[[![10-[!5 )
¥V 0.69671

which is consistent with the results in Table 4.6. ]

0.028,

In practice, we cannot compute an optimal & to use in approximating the derivative, since
we have no knowledge of the third derivative of the function. But we must remain aware
that reducing the step size will not always improve the approximation. ]
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We have considered only the round-off error problems that are presented by the three-
point formula Eq. (4.5), but similar difficulties occur with all the differentiation formulas.
The reason can be traced to the need to divide by a power of h. As we found in Section 1.2
(see, in particular, Example 3), division by small numbers tends to exaggerate round-off
error, and this operation should be avoided if possible. In the case of numerical differenti-
ation, we cannot avoid the problem entirely, although the higher-order methods reduce the
difficulty.

As approximation methods, numerical differentiation is unstable, since the small values
of i needed to reduce truncation error also cause the round-off error to grow. This is the first
class of unstable methods we have encountered, and these techniques would be avoided if it
were possible. However, in addition to being used for computational purposes, the formulas
are needed for approximating the solutions of ordinary and partial-differential equations.



EXERCISE SET 41
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5.  Use the most accurate three-point formula to determine each missing entry in the following tables.
A X fix) fix)
1.1 9.025013
1.2 11.02318
1.3 13.46374
1.4 |6.44465
7. The data in Exercise 5 were taken from the following functions. Compute the actual errors in Exer-
cise 3, and find error bounds using the error formulas.
a.  flx)=e*
, ! e
F'xo) = o2 [=3f (x0) +4f (xo + ) — f (o + 2] + — " (5o). (4.4)

| h*
fFo) = —1f (o + 1) — f o — )] — Ef‘“n:m, (4.5)
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1,1
1,2
1,3
1,4

0,1

f(x)

9,025013
11,02318
13,46374
16,44465

f(x)

17,769705
22,193635
27,107350
32,510850

f'(x) exato
18,050027
22,046353
26,927476
32,889294

erro

0,280322
0,147282
0,179874
0,378444

MAP2220
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4.2 Richardson’s Extrapolation

Richardson’s extrapolation is used to generate high-accuracy results while using low-
order formulas. Although the name attached to the method refers to a paper written by
L. F. Richardson and J. A. Gaunt [RG] in 1927, the idea behind the technique 1s much older.
An interesting article regarding the history and application of extrapolation can be found

Extrapolation can be applied whenever it is known that an approximation technique
has an error term with a predictable form, one that depends on a parameter. usually the step
size h. Suppose that for each number i # 0 we have a formula N, (k) that approximates an
unknown constant M, and that the truncation error involved with the approximation has the
form

M—Nih =Kh+ KR +KRF+...,

for some collection of (unknown) constants K. K., K5. . ...
The truncation error is ('(h). so unless there was a large variation in magnitude among
the constants K,. K7, Ks. ...

M — N, (0.1) ~ 0.1K,, M — N,(0.01) =~ 0.01K,.

and, in general, M — Ny (h) = K\h .

The object of extrapolation is to find an easy way to combine these rather inaccu-
rate ()(f) approximations in an appropriate way to produce formulas with a higher-order
truncation error.



Suppose, for example, we can combine the N,(h) formulas to produce an O(h%)
approximation formula, N2 (h), for M with

M — Na(h) = Kol* + Ksh® 4+ -,
for some, again unknown, collection of constants ﬁ'zi ﬁ';i .. .. Then we would have
M — N3(0.1) = 0.01K2, M — N2(0.01) = 0.0001K,

and so on. If the constants K; and ﬂ"g are roughly of the same magnitude, then the Na(h)
approximations would be much better than the corresponding N, (h) approximations. The
extrapolation continues by combining the N> (/) approximations in a manner that produces
formulas with O(/) truncation error, and so on.

To see specifically how we can generate the extrapolation formulas, consider the O(h)
formula for approximating M

M =N,(h) + K h+ K" + Kl ... . (4.10)

The formula is assumed to hold for all positive k, so we replace the parameter fi by half its
value. Then we have a second (}(/) approximation formula

h h h* h
M=nN|- Ki—+Ki— +K3—+ .- . 4.11
1(2)+|2+L4+ 33+ ( )

Subtracting Eq. (4.10) from twice Eq. (4.11) eliminates the term involving K, and gives

2 3
M:Nl(i—’)Jr[N. (g)—N]m}}+xz(%—h3)+m(%—E)er. (4.12)
Define
No(h) = N h N h Ni(h
a(h) = L(E)-i-[ |(§)— ]lffI:|.

Then Eq. (4.12) is an O(h?) approximation formula for M:

K 3K
M = Nyth) — —h* — —

1 W 4.13)

MAP2220



Example 1

MAP2220

In Example 1 of Section 4.1 we use the forward-difference method with i = 0.1 and
h = 0.05 to find approximations to f'(1.8) for fi{x) = In(x). Assume that this formula has
truncation error (}(h) and use extrapolation on these values to see if this results in a better
approximation.

Solution In Example 1| of Section 4.1 we found that
with h = 0.1: f(1.8) ~ 0.5406722, and with h = 0.03: f'(1.8) =~ 0.5479795.
This implies that
N1(0.1) = 05406722 and N (0.05) = 0.5479795.
Extrapolating these results gives the new approximation

N2(0.1) = N (0.03) + (N (0.05) — N (0.1)) = 0.5479795 + (0.5479795 — 0.5406722)
= (.555287.

The i = 0.1 and h = 0.05 results were found to be accurate to within 1.5 x 10~ and

7.7 x 1072, respectively. Because f'(1.8) = 1/1.8 = 0.5, the extrapolated value is accurate
to within 2.7 = 10—, |



Extrapolation can be applied whenever the truncation error for a formula has the form

m—1
D Kihfs + Ok,
Jj=I

for a collection of constants K; and when oy < o2 < o3 < - - < . Many formulas used
for extrapolation have truncation errors that contain only even powers of A, that is, have the
form

M = N(h) + Kh* + I+ Kh® + .. (4.14)

The extrapolation is much more effective than when all powers of & are present because the
averaging process produces results with errors Q(h%). O(h*), O(h%), . ... with essentially
no increase in computation, over the results with errors, Q(h), O(h*), O, .. ..

Assume that approximation has the form of Eq. (4.14 ). Replacing i with h/2 gives the
O(h*) approximation formula

en (M) i e
=Mlg) Thig TR TR T

Subtracting Eq. (4.14) from 4 times this equation eliminates the A* term,

w—[mw (h) Nl_’h]}+ﬂ' (h4 h4)+f£' (hﬁ hﬁ)+
2k = 1 3 1 2 1 3 T

Dividing this equation by 3 produces an O(h*) formula

M Iawh Ny(h K (1 n K (1 e
=3 \z) "M rE T ) T\ ) T
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Defining

Nz(h : AN h Ny(h N h 1 N i N(h
zl}=§[ '(E)_ 1LJ}= ](E)_I_E[ |(§)— 11”1}

produces the approximation formula with truncation error Q(h*):
h 5h"

M=Nh—-K——Ki—+.-.. 4.15
2(h) 2 316+ ( )

Mow replace h in Eq. (4.15) with k/2 to produce a second Q(h*) formula

h h* Sh®
M=~Ns| - —K—.-——KJ — T,
"\ 2 64 1024

Subtracting Eq. (4.15 ) from 16 times this equation eliminates the i term and gives
h 15h"
I5M = | 16N> | = ) — Na(h K
16w (2) v |+ 22

Dividing this equation by 15 produces the new Q(h®) formula

I 16N " Na(h) Kﬁﬁ
=15 2\3 )~ 20f) ) + 364+-~-

We now have the Q(h%) approximation formula

Na(h : | 6N i Na(h N f : N h Na(h
3'[J=E|: E(E)_ 2( J]= E(E)_'_E[E(E)_ zf]:|.




Table 4.6

MAP2220

Continuing this procedure gives, for each j = 2, 3..... the O(h*) approximation

h Ni_1(h/2) —N;_(h
,nrj.(ﬁ";:,wj_l(E)Jr j |tdi_“.l]_1.r 1 (B)

Table 4.6 shows the order in which the approximations are generated when
M = Ny (h) + Kih* + Kxh* + Kb + - - - (4.16)

It is conservatively assumed that the true result 1s accurate at least to within the agreement
of the bottom two results in the diagonal, in this case, to within |Ni(h) — Ng(h)|.

O(h*) O(h*) O(h") O(h%)
1: Nyih)
2: Ni(d) 3 Naih)
4: Ni(dy i Na(d) 6: Nsih)
T: Ni(3) 8: Na(3) 9: Na(%) 10: Nyih)
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Example 2 Taylor's theorem can be used to show that centered-difference formula in Eq. (4.5) to
approximate f'(xp) can be expressed with an error formula:

¢ _L[ h h E i[ﬂ:-
ftxn}—zh[fxn+ ) — flp—h)] — +5f (xp) — lzﬂf (xg) — - .

Find approximations of order Q(h*), O(h*), and O(h®) for f'(2.0) when f(x) = xe* and
h =10.2.

O(h?) O(h*) OUH)

_ h 1 h
Ny(h) Ny (E) Nath) = i [4N| (E) — N {h}] : Niih) = |_15 I:I'ENQ (’—2!) _NE{-IH}]
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Solution The constants K, = — " (x5)/6. K3 = —f“(x5) /120, - - -, are not likely to be
known, but this is not important. We only need to know that these constants exist in order
to apply extrapolation.

We have the O(h%) approximation

¥ 'ﬁz £ h4 (5]
f{IDJ—Nl{hJ—Ef Ltu}—@f () — - (4.17)
where
|
leﬁ}=ﬁ[ffln+h}—ffl’u—m]-

This gives us the first O(h*) approximations

Ni(0.2) = i[f{lﬁj — f(1.8)] = 2.5(19.855030 — 10.889365) = 22.414160,
and

N0y = é[fﬂ.l} — f(1.9)] = 5(17.148957 — 12.703199) = 22.228786.
Combining these to produce the first @(h*) approximation gives

1
N2(0.2) = N (0.1) + E{M (0.1) — N1 (D.2))

I
— 22.228786 + El”EE.E’EE?Sﬁ — 22.414160) = 22.166995.
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To determine an (A% formula we need another Q(h*) result. which requires us to find the
third @(h*) approximation

I
N1(0.05) = m[ﬂlﬂﬁ] — f(1.953)] = 10(15.924197 — 13.705941) = 22.182564.
We can now find the O(h*) approximation

1
N2(0.1) = N (0.03) + ;mn (0.05) — N1 (D.1))

1
= 22182564 + E{EE.IBESM — 22.228786) = 22.167157.
and finally the O(h®) approximation

1
N3(0.2) = N»2(0.1) + E{Nﬂﬂ.l} — N (0.2))

1
= 22167157 + E[EE.IE?IS? — 22.166995) = 22.167168.

We would expect the final approximation to be accurate to at least the value 22.167 because
the N2(0.2) and N1(0.2) give this same value. In fact, N3(0.2) is accurate to all the listed
digits. |
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In Section 4.1, we discussed both three- and five-point methods for approximating
ffixg) given various functional values of f. The three-point methods were derived by
differentiating a Lagrange interpolating polynomial for f. The five-point methods can be
obtained in a similar manner, but the derivation is tedious. Extrapolation can be used to
more easily derive these formulas, as illustrated below.
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Ilustration

Suppose we expand the function f in a fourth Taylor polynomial about x;. Then

1 |
fix) =f(xo) + f{xp)(x —x) + Ef"l.’xn‘.l{x —xp)* + Ef'” (xp) (x — xp)°
1 1
R 4 (5) RY
+ 24.?‘ (xXg) (x — xp)* + Im}f (E¥ix — xp)”,

for some number £ between x and x;,. Evaluating f at x; + h and x; — h gives

’ ]- o ]' FEF
fGo+h) =f o) + f'Go)h + = f (Xo)h™ + of (xo)h’

| l
Ao 4 (5) 5
+ Mf (xp)h™ + mﬂf (E1)h (4.18)

and

Fl ]- o ]' R
flo —h) =f () — f'Xo)h + 5 f (xo)h* — &f (xp)h’
1 |
@ eyt Bhe e, 4.19
+ 55 ) o5& (4.19)

wherexp, —h =& <= x; <= £ <=x3+ h.



Subtracting Eq. (4.19) from Eq. (4.18) gives a new approximation for f'(x).
¢ 'ﬁj e hs {5} ()
flo+h) — fo—h) =2hf (x0) + = f o) + 55 176D + (&)L (4.20)

which implies that

-

ooy h m m s (5)
fx) = ﬁ[ft—xﬂ +h) — flxo—M] —?f Xo) — ﬁ[f (&) + (&)

If ) is continuous on [xg — h, X + k], the Intermediate Value Theorem 1.11 implies that
a number £ in (xy — h,xg + h) exists with

FOE) = % [F9&) + F9@)].

As a consequence,we have the O(h*) approximation

] h? I -
] - _ . - orr o {5]
fixg) = Eﬁ[J"U:n+ h) — flxg — ] 6 fixg) lznf (£). (4.21)

Although the approximation in Eq. (4.21) is the same as that given in the three-point for-
mula in Eq. (4.5). the unknown evaluation point occurs now in f%, rather than in f".

Extrapolation takes advantage of this by first replacing h in Eq. (4.21) with 2h to give the
new formula

164

l 4h? .
’ - _ _ R o (3]
fx) = 21 o +20) — (X = 2h)] — —f" (%) — = (&) (4.22)

whﬂr&.?;' is between x; — 2k and x; + 2h.
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Multiplying Eq. (4.21) by 4 and subtracting Eq. (4.22) produces

2 |
3f () = 7L (o +h) — f (0 — )] — - 1f o+ 20) — f (%0 — 20)]

h? - 2ht -
_ (3} (5
?,uf t-’;‘]+—]5 fE).

Even if f %) is continuous on [xo — 2h,xp + 2h], the Intermediate Value Theorem 1.11
cannot be applied as we did to derive Eq. (4.21) because here we have the difference of
terms involving f'*'. However, an alternative method can be used to show that f)(£) and
e ié ) can still be replaced by a common value f'*'(£). Assuming this and dividing by 3
produces the five-point midpoint formula Eq. (4.6) that we saw in Section 4.1

1 ht
F'G0) = o[ f (o — 2h) — 8f (o — h) + 8f (o + ) — f (%0 + 2)] + Tﬂfiﬁlnsj. O

Other formulas for first and higher derivatives can be derived in a similar manner. See,
for example, Exercise B.

The technique of extrapolation is used throughout the text. The most prominent appli-
cations occur in approximating integrals in Section 4.5 and for determining approximate
solutions to differential equations in Section 5.8.
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