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3.5

Cubic Spline Interpolation’

The previous sections concerned the approximation of arbitrary functions on closed intervals
using a single polynomial. However, high-degree polynomials can oscillate erratically, that
is, a minor fluctuation over a small portion of the interval can induce large fluctuations
over the entire range. We will see a good example of this in Figure 3.14 at the end of this
section.

An alternative approach is to divide the approximation interval into a collection of
subintervals and construct a (generally) different approximating polynomial on each sub-
interval. This is called piecewise-polynomial approximation.

Piecewise-Polynomial Approximation

The simplest piecewise-polynomial approximation is piecewise-linear interpolation. which
consists of joining a set of data points

{(xo, flxo)), (x1, Flx1)). ..., (Xn, X))

by a series of straight lines. as shown in Figure 3.7.
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Figure 3.7
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A disadvantage of linear function approximation is that there is likely no differ-
entiability at the endpoints of the subintervals, which, in a geometrical context, means
that the interpolating function is not “smooth.” Often it is clear from physical condi-
tions that smoothness is required, so the approximating function must be continuously
differentiable.

An alternative procedure is to use a piecewise polynomial of Hermite type. Forexample,
if the values of f and of f" are known at each of the points xy < x; <= --- = x,, a cubic
Hermite polynomial can be used on each of the subintervals [xg, x; ], [x. 0], ..o [Xa—1.Xa]

to obtain a function that has a continuous derivative on the interval [xo, xq].

To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine H; are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.
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The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, xq4] 1s the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [xp, x| ] agreeing with the function
at xp and x|, another quadratic on [x1, x2] agreeing with the function at x| and x2, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x’—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [xg. x,,|. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints x; and x,. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)
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Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)

&5
o) Figure 3.8
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Definition 3.10

Given a function f defined on [a.b] and a set of nodes @ = xyp = vy = -+ <
X, = b, a cubic spline interpolant § for f is a function that satisfies the following
conditions:

(@)

(b)
(c)
(d)
(e)
(f)

S(x) is a cubic polynomial, denoted S§;(x), on the subinterval [x;, x; ] for each
j=01,....n—1;

Si(x;) = flx;) and 5;(x; ) = f(xj) foreachj =0,1,....,n—1;
Siv1(xi41) = §j(xj4y) foreach j = 0.1,...,n — 2; (Implied by (b).)
5_;+]{:IJ,'_|_|] = .S'J,'-(A:J,-H} foreachj=0,1,....,.n—2;

S};]{IJ.-H} = S}’{_rj+]) foreachj=0.1,....n —2;

One of the following sets of boundary conditions is satisfied:

(i) S"(xg) =85"(x,) =0 (natural (or free) boundary);
(ii) S'(x0) = f'(x0) and S'(xs) = f'(x4) (clamped boundary). [
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Example 1

Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 3).
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Solution This spline consists of two cubics. The first for the interval [1, 2], denoted
So(x) = ao + bo(x — 1) + eolx — 1)* + do(x — 1)°,

and the other for [2, 3], denoted
Six) =a;+bi(x—2) +e(x —2)° +dy(x —2)°.

There are 8 constants to be determined, which requires 8 conditions. Four conditions come
from the fact that the splines must agree with the data at the nodes. Hence

2= f(ly)=ap, 3=f2Qy=av+bo+co+do. 3= f(2)=a, and
S= f(3)=a + by +c +d.
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Two more come from the fact that 5;(2) = 5](2) and 57(2) = S7(2). These are
S0(2)y =81(2) 1 by + 2cp + 3dy = by and S55(2) =8((2) 1 2+ 6dy = 2
The final two come from the natural boundary conditions:
Sp(ly=0: 2c0=0 and S5/(3)=0: 2 +6d =0.
Solving this system of equations gives the spline

- 2+ (r— 1)+ 2(x — 1), forx €[1,2]
Xl =
34 3(x—2)+3(x —2)* — 3(x —2)°, forx € [2.3]
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Construction of a Cubic Spline

As the preceding example demonstrates, a spline defined on an interval that is divided into n
subintervals will require determining 4n constants. To construct the cubic spline interpolant
for a given function f, the conditions in the definition are applied to the cubic polynomials

Si(x) = aj + bj(x — x) + ¢j(x — )% + di(x —x)°,

foreachj = 0,1,....n — 1. Since §;(xj) = aj = f(x;). condition (¢) can be applied to
obtain

aj+1 = Sjx1 (xj+1) = Sj(xj41) = a; + bj(xj+1 — X)) + ¢j(xjs1 — x7)° + dj(xj41 — X)),
foreachj=0,1,....,n—2.
The terms x;;; — x; are used repeatedly in this development, so it is convenient to
introduce the simpler notation
hj = Xj1 — %,
foreachj=0.1,...,n — 1. If we also define a, = f(x,). then the equation

aj+1 = aj + bjhj + c;h} + dih; (3.15)

holds foreachj =0.1,....n — 1.
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In a similar manner, define b, = 5'(x,) and observe that

Si(x) = by + 2¢j(x — x)) + 3dj(x — x)°
implies S;{.rj} = bj, foreachj =0,1,....n — 1. Applying condition (d) gives

bj+1 = bj + 2cjh; + 3d;h. (3.16)
foreachj=0,1,....n—1.

Another relationship between the coefficients of §; is obtained by defining ¢, =
§"(x,)/2 and applying condition (e). Then, foreachj =0,1,....n—1,

Ci+1 = ¢j + 3d;h;. (3.17)
Solving for d; in Eq. (3.17) and substituting this value into Eqgs. (3.15) and (3.16) gives,
foreachj=0,1,...,n — 1, the new equations
.’zf
dj+1 zaj+bjhj—l—?{2q+q+1} (3.18)
and

bj+| ij+hjl:ﬂj+ﬂj'+l}- (3.19)
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The final relationship involving the coefficients is obtained by solving the appropriate
equation in the form of equation (3.18), first for b;,

1 h;
b; = h—jmﬁl —a) — E"fﬁq + ¢jt1). (3.20)

and then, with a reduction of the index, for b;_,. This gives

1 hi_y
bj—l = h;__|[ﬂ’f —ﬂj—l} - T(EEJ—I + ¢j).

Substituting these values into the equation derived from Eq. (3.19), with the index reduced
by one. gives the linear system of equations

3 3
flj_|ﬂj_| + 2”!j—| + hj}ﬂ'j + hj'fj+| = E{{IJ,'_H — EIJ,'] — h-_](ﬂj — aj—1), (3.21)

il j—
foreachj = 1,2,...,n — 1. This system involves only the {c; ];’zn as unknowns. The values
of {h; };f::: and {a;}}_, are given, respectively, by the spacing of the nodes {x;}’_, and the
values of f at the nodes. So once the values of {c; };LD are determined, it is a simple matter
to find the remainder of the constants {b; ]}7‘;]! from Eq. (3.20) and {d; f;,:: from Eq. (3.17).

Then we can construct the cubic polynomials {5; {I}];::! :
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The major question that arises in connection with this construction is whether the values
of {c; }f:,:, can be found using the system of equations given in (3.21) and, if so, whether
these values are unique. The following theorems indicate that this is the case when either of
the boundary conditions given in part (f) of the definition are imposed. The proofs of these
theorems require material from linear algebra, which is discussed in Chapter 6.

Theorem 3.11

Natural Splines

If fisdefinedata = xy < x; < --- < x, = b.then f has a unique natural spline interpolant
5 on the nodes xq, xq, . . ., x,: that is, a spline interpolant that satisfies the natural boundary

conditions §"(a) = 0 and §"(b) = 0. H
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Proof The boundary conditions in this case imply that ¢, = 8" (x,)/2 = 0 and that

0 = 8" (x0) = 2co + 6do(xo — x0).

so cp = 0. The two equations ¢y = 0 and ¢, = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where Ais the (n 4 1) x

(n 4+ 1) matrix

—_—

1
hy

0.

0 ﬂ:::: ............................. 0
2o + ) hoo
Lohi 2 k) hy §

hoey 2hps + hyt) Iy
............................... 0 0 1
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Theorem 6.21 A strictly diagonally dominant matrix A is nonsingular. Moreover, in this case, Gaussian
elimination can be performed on any linear system of the form Ax = b to obtain its unique

solution without row or column interchanges, and the computations will be stable with

respect to the growth of round-off errors. |
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and b and x are the vectors

0 _
2(ay —ar) — ~(ay — ap) o |
I 2 1 T 1 0 [y}
(|
b = and x=| .
3 3 .
Efﬂ}r —dy_1) — E[ﬂn—l — dy—2) c
{} 9 —t

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear

system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a

unique solution for ¢y, ¢y, ..., cy. EE =



Natural Cubic Spline

To construct the cubic spline interpolant S for the function f, defined at the numbers
xp < X| < --- < Xy, satisfying 8" (xg) = 8" (x,) = O
INPUT  mixg.xp....oxiao = fxo)oar = f(x),....ap = flx).
OQUTPUT a;.bj.ci.diforj=0.1,....n— 1.
(Note: S(x) = 8j(x) = a;j + bj(x — x;) + ¢j(x — x)* + dj(x — x;)° for xj < x < xj51)

Step1 Fori=0,1,....n—lseth; =x; —x;.

Step2 Fori=12,....n—1set
R— 3': . '} ':: - -
oy = Tf: ai4] — i) — E a; — aj_1).

Step 3 Setly=1: (Steps 3, 4, 5, and part of Step 6 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)
pg =10
o = 0.
Step4d Fori=1,2,....n—1
set f; = 2y —x) — hiogpigs
i = hi/li;
zi = (o — hicizie) /L.
Step b Setl, =1
Za =0
oy = 0.
Step6 Forj=n—1,n-2,...,0
setq = Zj — KiCiy1s
bj = (ajs1 — aj)/hj — hj(civ1 + 2¢) /3,
dj = (cj+1 — ¢j)/ (3h;).

Step 7 OUTPUT (a;. bj.cj.d; forj =0,1,.....n — 1)

STOP. [

MAP2220



MAP2220

Example 2

At the beginming of Chapter 3 we gave some Taylor polynomials to approximate the expo-
nential f{x) = &*. Use the data points (0, 1), (1.¢€), (2,¢?), and (3. &) to form a natural
spline §(x) that approximates f(x) = e".



Construction of a Cubic Spline
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8j(x) = @ + bj(x — x) + cj(x — %)° + dilx — x7)°,

Si(x) = aj = flx), hj=x —

., }J'|

0
2(hg + )

-‘11

'.-b_ll

h

h.
@41 = a@) = 3 Q6+ 641y dj = (g1 = )/ Ghy).

e hn—? E{hil—l + hn— I.j - h_q_[

T

0

Co
Cl

Cn

i 0
i@y —ar) — (a1 —ao)

3 3
Ty (@ — @p1) — 5 (@n1 — @n-2)

0

=
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Solution Wehaven=3. hg=h =h=l.ap=1l.a; = e, a» = e-. and a3 = ¢ . S0 the
matrix A and the vectors b and x given in Theorem 3.11 have the forms

1 0 0 0 i 0 il oo
{1 4 10 13 =241 e
A=1lo 1 4 1] PT |3 —221e | ™ x=],

00 0 1 i 0 | 23

The vector-matrix equation Ax = b 15 equivalent to the system of equations

cyp =0,
cop +4dey o = 3(&1 —2e 4+ 1),
cp +4cy + 03 =3 — 26" +e),
oy = 0.

This system has the solution cp = ¢3 = 0. and to 5 decimal places,

. 1
€1 = E[—£3+6£‘ —O¢+4) =~ 0.75685, and ¢ = ;{453 —9¢" 4+ 6e — 1) ~ 5.83007.
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and

Solving for the remaining constants gives

| ho
= — _ —_ 2
by o (a) — ap) 3 (c1 + 2cp)

—e— 1) _1_15[_.5-34_6.5-2 — O 4 4) ~ 1.46600,

| /
by = h—]fﬂ: —ap) — %{fz + 2¢y)

; I 2
= (e" —¢) — I—ﬁ{EEJ + 3¢ — 12e 4+ T) == 222285,

by = —(az —az) — TZ{ES + 2c3)

hy
A
=(e —e)— ﬁfae* — 18¢% 4+ 12¢ — 2) = 8.80977.

dy = %{r] ) = %{—53 + 6% — e + 4) = 0.25228,

o
3k

d {rg—fl}=%f€.3—3£1—l—3€.— 1) = 1.60107,

1 1
dr=—(c3—c)) = E{_:Le-* 1 9¢” — 6e 4 1) == —1.04336.

T
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The natural cubic spine is described piecewise by

1 + 1.46600x 4 0.25228x°, for x € [0, 1].
S(x)=12.71828 + 2.22285(x — 1) + 0.75685(x —1)> +1.69107(x —1)°, forx e [1.2].
7.38006 + 8.80077(x —2) + 5.83007(x —2)* —1.94336(x —2)*, forx € [2.3].

The spline and its agreement with f(x) = ¢" are shown in Figure 3.10. u

Figure 3.10 Y




Illustration To approximate the integral of f(x) = ¢* on [0, 3]. which has the value

MAP2220
3
f ¢ dr = & — | = 20.08553692 — 1 = 19.08553692,
0

we can piecewise integrate the spline that approximates f on this integral. This gives

3 |
f S(x) = f | + 1.46600x + 025228+ dx
0 0
2
- f 271828 + 2.22285(x — 1) +0.75685(x — 1)* + 1.69107(x — 1)* dx
|
3 ol
+ f 7.38006 + 8.80077(x — 2) + 5.83007(x — 2)* — 1.04336(x — 2)° dx.
2

Integrating and collecting values from like powers gives

3 _x_l ;1'4
f S(x) = | x 4+ 1.46600= 4 0.25228—
1] 2 4 1]

4

—+

—

2.71828(x—1) + 2.22285

=

7.38906(x—2) + 8.80977

2

=1
2

+ 0.75685

+ 5.83007

(x—1)°
3

+1.69107

—1.94336

(x—2)? (x—2)%
2 3

-

= (1 4 2.71828 + 7.38006) + % (1.46600 4 2.22285 + 8.80977)

1 1
+ 3 (0.75685 + 5.83007) + 1 (0.25228 + 1.69107 — 1.94336)

= 19.55229.

(r—1)*7

4

(x=2)*7

=

il

(B



Clamped Splines

Theorem 3.12

If fisdefinedata=xy < x; = --- = x;, = b and differentiable at @ and b, then f has a
unigque clamped spline interpolant § on the nodes xp, xy, . . .. x,: that 15, a spline interpolant
that satisfies the clamped boundary conditions §'(a) = f'(a) and §'(b) = f'(b). |

Proof Since f'(a) = §(a) = §(xy) = by. Eq. (3.20) with j = 0 implies
. 1
fila) = —la, —ap) — @@L‘u +cp).
fig 3
Consequently,
3 .
2hoco + hoey = h—l{m —ap) — 3 f'(a).
I}

Similarly,
Jflribj = b.n = bﬂ—l +hn—l{fn—] + ).
so Eq. (3.20) with j = n — 1 implies that

n — p— By
.frtb} = - I e - 13 ] (2 -1+ €y +}rfl—liffl—] + Cy)
n—1

S h,_
_ g — g n Ty ][{‘”_] —|—EL"H}+
Jifﬂ—] 3

and

, 3
hﬂ—lcﬂ—| - E}Iil—]cﬂ = 3_." [b} - ﬁ[ﬂil _HJ‘:—IJ-
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Equations (3.21) together with the equations

and

3
2hoco + hoey = ;T“” —ap) — 3f(a)

1]

hg_1€a_1 + 2hy_10q = Sfltb} -

determine ﬂl?ﬁn@z’[ﬂm Ax = b, where

ho  2(ho + M) hy
0., hi.,

wlar —ag) —3f"(a)
3 3
arlar —ay) — gola) — ap)

3
Eﬂﬂ - I5]:.|'z—|} - miﬂﬂl—] - ﬂn—E}

3f'(b) — 52—(an — an-1)

3
hg—1

2o ho | PP
2 ) ko

e ....hn—l E{hn—ﬂ“‘hn—l.i..'hn—l

;_ (g — a1 }
T 1

hﬂ—l

V\zhn_lj\

s =

This matrix A 15 also strictly diagonally dominant, so 1t satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for

CheClsva e s Cps
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Clamped Cubic Spline
To construct the cubic spline interpolant § for the function f defined at the numbers xp <

x| < - - < Xp, satisfying 8 (xp) = f'(xp) and §'(x,) = f'(xa):

INPUT

R X0 X1 X @ = (o), ar = f(x),....an = flx): FPO = f'(x);

FPN = f'(x,).
OUTPUT a;.bj.ci.diforj=0.1,....n— 1.

(Note: S(x) = Sj(x) = a; + bi(x — x;) + ¢jlx —x)* +dilx —x;)* forx; = x = x;..)

Step 1

Step 2

Step 3

Step 4

Step &

Step 6

Step 7

Step 8

Fori=0,1,....n— lseth; = x,; — x;.

Set g = Jay) — ap)/ho — IFPO:
by, = 3FPN — 3('5:1! - ﬂfr—]}."'lhn—l'

Fori=1.2.....n—1

seto; = —(a; —a;) — (a; —a;_y)-

h; hii
Setlp = 2hg:  (Steps 45,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)
po = 0.5;
20 = ap/lp.
Fori=1.2.....n—1
set [; = 2(xip —xio1) —hio e
wi = hifli;
zi = (i — hioizi)/L

Setl, = h, ) {2 — Ha-1)3
Iy = (@, — hﬂ—lzﬂ—ljfﬂr;
Cn = Zn.
Forj=n—1.n-2.....0
set ¢; = Zj — 5415
bj = (ajs1 — a;j)/hj — hi(cjn1 + 2¢;)/3;
di = (cj+1 — )/ (3hy).
OUTPUT (a;, bj. cj.d; forj =0,1,....n—1):
STOP.

MAP2220



Example 4 MAP2220

Example 2 used a natural spline and the data points (0, 1), (1, e), (2.€%). and (3, ¢’ ) to form
a new approximating function 5(x). Determine the clamped spline 5(x) that uses this data
and the additional information that, since f'(x) = &*,so f(0) = 1 and f'(3) = &'

Solution Asin Example 2, wehaven =3 ho=h =h =1l.ay =0.a, = e.a; = €,

and a; = . This together with the information that f'{(0) = 1 and f'(3) = & gives the
the matrix A and the vectors b and x with the forms

’72 1 0 D—| [ q3[€—2j “
= Lé 1 a ?J b= E{g__;:?igj’ and -“=[1J'
0012 3¢ 3
The vector-matrix equation Ax = b is equivalent to the system of equations

2o+ ¢ =3e—2).

co +4e) +c2 =3 —2e+ 1),

c1+4o0 403 = 3[&3 —2¢7 + &),
¢y + 2c3 = 3.

Solving this system simultaneously for ¢g. . €2 and 3 gives, to 5 decimal places,
oy = %{1& — 12¢% + 42¢ — 59) = 0.44468,
e = %(—4{3 + 24¢* — 39¢ + 28) = 1.26548,
e = %{149 — 39¢” + 24¢ — 8) = 3.35087,

ey = ]'?;—?H +42¢% — 12e + 4) = 9.40815.
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Solving for the remaining constants in the same manner as Example 2 gives
by = 1.00000, b =2.71016, b =7.32652,

and

dy = 027360, d) =0.69513, d; =2.01900.

This gives the clamped cubic spine

1 4+ x + 0.44468x% 4 0.27360x°, if0<x <1,
s(x) = {2.71828 + 2.71016(x —1) + 1.26548(x —1)> + 0.69513(x —1), ifl =x <2,
7.38006 + 7.32652(x —2) 4 3.35087(x —2)> £ 2.01900(x —2)°, if2 <x <3.

The graph of the clamped spline and f(x) = &* are so similar that no difference can be

sgen. |



We can also approximate the integral of f on [0, 3], by integrating the clamped spline.

The exact value of the integral 1s

3
f ¢ dr = — 172008554 — 1 = 10.08554,
0

Because the data is equally spaced. piecewise integrating the clamped spline results in the
same formula as 1n (3.22), that 1s,

3
1
f 5(x) dx = (ap + ay +Hz}+5[bn+bl + b3)
0 2

1 |
+§[ED+E| —|—Eg}+1{du+dl +d2}-

Hence the integral approximation is

3
f s(x) dr = (1 + 271828 + 7.38006) + %[I + 271016 + 7.32652)
] .

1 1
+ 7 (0.44468 + 126548 + 3.35087) 4 7:(0.27360 + 0.69513 + 2.01909)
= 10.05965.

MAP2220
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The absolute error in the integral approximation using the clamped and natural splines are
Natural : |[19.08554 — 19.55229| = 0.46673
and

Clamped : |[19.08554 — 19.05965| = 0.02589,

For integration purposes the clamped spline 1s vastly superior. This should be no surprise
since the boundary conditions for the clamped spline are exact, whereas for the natural
spline we are essentially assuming that, since f"(x) = &%,

0=S5"(0)= f"0)y=e"'=1 and 0=5"(3)= f"(3) =& = 20.
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Table 3.18 lists the coordinates of 21 data points relative to thE-SuperimpD_sed coordinate

system shown in Figure 3.12. Notice that more points are used when the curve i1s changing
rapidly than when it 1s changing more slowly.

Table 3.18

x |u_q||_3||_9 |2 ||25|3_u|3_9|4_4 |4.:f |5_ﬂ|ﬁ_ﬂ |?_n|s_n |9_1 |1ﬂ.5|1].."~|]].ﬁ||2_l]|I2_6|1?~.[l|13.?-
FO0|13]15]1.85(2.1{2.6/2.7|2.4|2.15(2.05|2.1|2.25(2.3[2.25| 1.95| 1.4] 09| 0.7| 06| 05| 04| 0.25

filx) &
4
3
) g o
=
BERNIEE IS NETNE




Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in

Figure 3.13.

Tahle 3.19

J Xj i b Cj dj
0 0.9 1.3 5.40 0.00 —0.25
1 1.3 1.5 0.42 —0.30 0.95
2 1.9 1.85 1.09 1.41 —2.96
3 2.1 2.1 1.29 —0.37 —0.45
4 2.6 26 0.59 —1.04 0.45
5 3.0 2.7 —0.02 —0.50 0.17
6 39 24 —0.50 —0.03 0.08
T 44 215 —048 (.08 1.31
B 4.7 2.05 —0.07 1.27 —1.58
0 5.0 2.1 0.26 —0.16 0.04

10 6.0 2.25 0.08 —0.03 0.00

1 7.0 23 0.01 0.4 —0.02

12 8.0 2.25 —0.14 —0.11 0.02

13 Q.2 1.95 —0.34 —0.05 —0.01

14 10.5 1.4 —0.53 —0.10 —0.02

15 11.3 0.9 —0.73 —0.15 1.21

16 1.6 0.7 —0.49 .94 —0.84

17 12.0 0.6 —0.14 —0.06 0.04

18 12.6 0.5 —0.18 .00 —0.45

19 13.0 0.4 —0.39 —0.54 .60

20 13.3 0.25
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Figure 3.13 fix)
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For comparison purposes, Figure 3.14 gives an illustration of the curve that 1s generated using
a Lagrange interpolating polynomial to fit the data given in Table 3.18. The interpolating
polynomial in this case 1s of degree 20 and oscillates wildly. It produces a very strange
illustration of the back of a duck. in flight or otherwise.
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Theorem 3.13

Let f € C*a,b] with maxg<y<p | f*(x)] = M. If § is the unique clamped cubic spline
interpolant to f with respect to the nodes a = x3 < x; = --- = x, = b, then for all x in

[a, b],

M 4
|fx) —8(x)| = ﬁﬂ&ii]uﬂl — X)) |
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