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3.2 Data Approximation and Neville’s Method

In the previous section we found an explicit representation for Lagrange polynomials and
their error when approximating a function on an interval. A frequent use of these polynomials
involves the interpolation of tabulated data. In this case an explicit representation of the
polynomial might not be needed, only the values of the polynomial at specified points. In
this situation the function underlying the data might not be known so the explicit form of
the error cannot be used. We will now 1llustrate a practical application of interpolation in

such a situation.

P(x) = flxo)no(x) + -+ f(xa)Lpa(x) = z f () L i (), (3.1)
k=0
where, foreachk =0.1,....n,
Lag(x) = _“ o - L “.{ — 'q_”{x._ ) — ) (3.2)
(X — xo) (X —x1) - - - (0 — Xe—1 )Xk — Xgs1) - - - (Xk — Xn)
_ (x —x;) »
g (X —xi)
i#k

'fr:l+l}lr )
flx)=Plx) + / @ _I_i';:”{l —Xp)(x —x1) -+ - (X — Xa), (3.3)
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[llustration Table 3.2 lists values of a function f at various points. The approximations to f(1.5)

obtained by various Lagrange polynomials that use this data will be compared to try and
determine the accuracy of the approximation.

Table 3.2

x f(x)

1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623

1.5

v
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The most appropriate linear polynomial uses xjp = 1.3 and x; = 1.6 because 1.5 is between
1.3 and 1.6. The value of the interpolating polynomial at 1.5 1s
(1.5 — 1.6) (1.5
Pi(1.5) = 1.3 1.6
(1) =376 }+{lﬁ—13}ﬂ :
1.5-1.6 1.5—-1.3
_ ¢ ){D 6200860) + { ) (0.4554022) = 0.5102968.

- (1.3-1.6) (1.6 — 1.3)
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Two polynomials of degree 2 can reasonably be used, one with xp = 1.3, x; = 1.6, and
x = 1.9, which gives
(1.5-1.6)(1.5-1.9) (I.5—-13)(1.5-1.9)
P>(1.5) = 0.6200860 0.4554022
2(2) (].3—].6)(1.3—1.9){ )+(1.6—].3){1.6—1,9}( )

(L5 —-13)(1.5-1.6)

0.2818186) = 0.5112857,
{1.9—1.3}[1.9—1.6){ )

and one with xp = 1.0, x; = 1.3, and x, = 1.6, which gives P5(1.5) = 0.5124715.
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In the third-degree case, there are also two reasonable choices for the polynomial. One
with xp = 1.3, x; = 1.6, x» = 1.9, and x3 = 2.2, which gives P;(1.5) = 0.5118302.

The second third-degree approximation is obtained with xp = 1.0, x; = 1.3, x; = 1.6,

and x; = 1.9, which gives P;(1.5) = 0.5118127.
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The fourth-degree Lagrange polynomial

uses all the entries in the table. Withxp = 1.0, xy =13, x, = 1.6, x3 = 1.9, and x4 = 2.2,
the approximation is Ps(1.5) = 0.5118200.
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Because P3(1.5), Py(1.5), and P4(1.5) all agree to within 2 x 107 units, we expect
this degree of accuracy for these approximations. We also expect P4(1.5) to be the most
accurate approximation, since it uses more of the given data.

The function we are approximating is actually the Bessel function of the first kind of
order zero, whose value at 1.5 1s known to be 0.5118277. Therefore, the true accuracies of
the approximations are as follows:

IP1(1.5) — f(1.5)] ~ 1.53 x 107,
IPy(1.5) — f(1.5)] ~ 5.42 x 1074,
1P3(1.5) — f(1.5)] ~ 6.44 x 1074,
IP3(1.5) — f(1.5)] ~ 2.5 x 1078,
IP3(1.5) — £(1.5)] ~ 1.50 x 1072,
IP4(1.5) — f(1.5)| &~ 7.7 x 1075.
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Although P5(1.5) 1s the most accurate approximation, if we had no knowledge of the actual
value of f(1.5). we would accept Ps(1.5) as the best approximation since it includes the
most data about the function. The Lagrange error term derived in Theorem 3.3 cannot be

applied here because we have no knowledge of the fourth derivative of f. Unfortunately,
this 1s generally the case. L]
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Neville’s Method

A practical difficulty with Lagrange interpolation is that the error term 1s difficult to apply.
so the degree of the polynomial needed for the desired accuracy is generally not known
until computations have been performed. A common practice is to compute the results
given from various polynomials until appropriate agreement is obtained, as was done In
the previous Illustration. However, the work done in calculating the approximation by the
second polynomial does not lessen the work needed to calculate the third approximation;
nor is the fourth approximation easier to obtain once the third approximation is known,

and so on. We will now derive these approximating polynomials in a manner that uses the
previous calculations to greater advantage.

Definition 3.4

Let f be a function defined at xy.xy.x7....,x,, and suppose that my, my, ..., my are k
distinct integers, with 0 < m; < n for each i. The Lagrange polynomial that agrees with

f(x) at the k points X, , Xy, - - ., X, 18 denoted Py iy, my (X). ]
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Suppose that xop = 1, x; = 2. x» = 3, x3 = 4, x4 = 6, and f(x) = €. Determine the
imterpolating polynomial denoted P - 4(x), and use this polynomial to approximate f(3).

Solution This is the Lagrange polynomial that agrees with f(x) at x; = 2, x» = 3, and
x4 = 6. Hence

(x —3)(x—6) 2 (x —2)(x — 6) N (x —2)(x — 3}96
(2 —3)(2—-06) 3—-2)3—-6) (6-—2)(6-3)

Pi2a(x) =

So

6-36-6, 6-D6-6, 6-26-3 ,
2-3)2-6° T3-23-6) T (6-206-3"
] I

:—Ee +e +2eﬁm113.1ﬁ5, .

f3) = PO =
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Theorem 3.5

Let f be defined at xg, x,. .., X, and let x; and x; be two distinct numbers in this set. Then

P(x) — (x —x)Poi, j1jr1. k(X)) —(x —=x)Po1 i-tir1. k(X)

is the kth Lagrange polynomial that interpolates f at the k + [ points xg, xq, .. ... Y. O
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and Q(x) are polynomials of degree k — 1 or less, P(x) 1s of degree at most k.
First note that Q(x;) = f(x;). implies that

(x; — A;}Qm} — (i —x) Q) (xi — xj)

Xj — Xj (x; — x;)

P(x;) = fxi) = f(x).

Similarly, since Q(xj) = f(x;), we have P(x;) = f(x;).
In addition, 1f O < r < k and r is neither  nor j, then Q(x,) = Ox,) = f(x;). So

(X — x)Q(xr) — (& — X)) (¥ — *?f} fx) = fx).

Xi — Xj (Xi — xj)

Pix,) =

.....

f El[.ID...I|.....:I,e;.ThUS,PEPg_L___,k. E =
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Theorem 3.5 implies that the interpolating polynomials can be generated recursively.
For example, we have

1 1
[(x — x0) Py — (x — x1)Pol, Pi,=

X1 — X A2 — A

Py, [(x —x1)P2 — (x —x2)P1],

|
Ppi12 = [(x —x0)P12 — (x — x2) Py ],

A2 — X

and so on. They are generated in the manner shown in Table 3.3, where each row i1s completed
before the succeeding rows are begun.

Tahle 3.3
Xn Py
X P, Py,
X3 P, P, Py
X3 Ps P>5 P23 Poj23

11111
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The procedure that uses the result of Theorem 3.5 to recursively generate interpolating
polynomial approximations is called Neville’s method. The P notation used in Table 3.3
is cumbersome because of the number of subscripts used to represent the entries. Note,
however, that as an array is being constructed, only two subscripts are needed. Proceeding
down the table corresponds to using consecutive points x; with larger i, and proceeding to
the right corresponds to increasing the degree of the interpolating polynomial. Since the
points appear consecutively in each entry, we need to describe only a starting point and the
number of additional points used in constructing the approximation.
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To avoid the multiple subscripts, we let Q;;(x), for 0 < j < 1, denote the interpolating
polynomial of degree j on the (; 4 1) numbers x;_;, x;_j;1.....xi_1,x;: that 1s,

Qij = Piji—j+,.i-1-

Using this notation provides the () notation array in Table 3.4.

Tahle 3.4

Xo Py = QD,D

X) P, = QJ,D Pﬂ,l =

X2 P = (g Py = Q2 Poi1z =01

X3 Py = (s P33 = P33 =0h Pyi23=0s3

Xy Py = Q4 P34 = Q4 Py34 =045 Pi23a =043 Por23a = 0as
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Example 2

Values of various interpolating polynomials at x = 1.5 were obtained in the Illustration at
the beginning of the Section using the data shown in Table 3.5. Apply Neville's method to
the data by constructing a recursive table of the form shown in Table 3.4,

Table 3.5
X fix)

1.0 0.7651977
1.3 0.6200560
1.6 0.4554022
1.9 0.2818156
2.2 0.1103623
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Solution

Table 3.6

1.0 0.7651977
1.3 0.6200860 0.5233449

1.6 0.4554022 0.5102968 0.5124715
1.9 0.2818186 0.5132634 0.5112857 0.5118127
2.2 0.1103623 0.5104270 0.5137361 0.5118302 0.5118200

If the latest approximation, (4 4, was not sufficiently accurate, another node, x5, could
be selected, and another row added to the table:

xs Osp Osi1 Osa> 0Osi 0Osa Oss.

Then Q4. Os4, and Qs 5 could be compared to determine further accuracy.
The function in Example 2 is the Bessel function of the first kind of order zero, whose
value at 2.5 1s —0.0483838, and the next row of approximations to f(1.3) is

25 —0.0483838 0.4807699 0.5301984 05119070 0.5118430 0.5118277.

The final new entry, 0.5118277, is correct to all seven decimal places.
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Neville’s Iterated Interpolation

To evaluate the interpolating polynomial P on the n + 1 distinct numbers xg, . . ., X, at the
number x for the function f:

INPUT numbers x, xp, xi.....x,: values f(xo). f(x1)...., f(x,) as the first column

Qo0.CQ10s---.0npof 0.
OUTPUT the table Q with P(x) = Qp.n.
Step1 Fori=1.2.....n

forj=1,2,..., i
et 01, = (x—xi )01 — (= x)0i1 j—1 '
X — Xj_j
Step 2 OUTPUT (Q);
STOP. [ ]

The algorithm can be modified to allow for the addition of new interpolating nodes.
For example, the inequality

|Qii — Qi—1.i—1] < €

can be used as a stopping criterion, where ¢ is a prescribed error tolerance. If the inequality is
true, Q;; is areasonable approximation to f(x). If the inequality is false, a new interpolation
point, x;4 . is added.
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3.3 Divided Differences

Iterated interpolation was used in the previous section to generate successively higher-degree
polynomial approximations at a specific point. Divided-difference methods introduced in
this section are used to successively generate the polynomials themselves.

Suppose that P,(x) is the nth Lagrange polynomial that agrees with the function f at
the distinct numbers xg, xq, .. ., X,. Although this polynomial is unique, there are alternate
algebraic representations that are useful in certain situations. The divided differences of f
with respect to xp. Xy, .... X, are used to express P,(x) in the form

P,(x) =ap+a(x —xp) +ar(x —xpg)(x —x) 4+ - - +a,(x —xp) - - (x —x,1), (3.5)

for appropriate constants ag. ay, . ...d,. To determine the first of these constants, ap. note

that if P,(x) is written in the form of Eq. (3.5), then evaluating P,(x) at x; leaves only the
constant term ap; that is,

ap = P,(xp) = f(x0).
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Similarly, when P(x) is evaluated at x,, the only nonzero terms in the evaluation of
P, (x) are the constant and linear terms,

fxo) +ai(x) —xp) = Pu(xy) = fx):
S0

_ fx) — f(xp)

X1 — Xp

a, (3.6)

We now introduce the divided-difference notation, which is related to Aitken’s A’
notation used in Section 2.5. The zeroth divided difference of the function [ with respect
to x;, denoted f[x;], is simply the value of [ at x;:

fIxil = f(x). (3.7)

The remaining divided differences are defined recursively; the first divided difference
of f with respect to x; and x;, is denoted f[x;,x;4] and defined as
f[-}':a'+l] - f[If']

flxxi] = e (3.8)
Xip1 — X
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The second divided difference, flx;, x;11.x;12], s defined as

flxisi.xip2l = f [Ia'-..-’-f:'+l]‘

Xi+2 — X

flxi xic xi] =

Similarly, after the (k — 1)st divided differences.
Flx X Xy, . .. Xigk—1] and  flxig, X, oo Xipe—1. Xk ),
have been determined, the Ath divided difference relative to x;, x; . X;00.. ... X4 1S

FL Xt Xk Xing ] = FIXirrs X2, - s X ] — Flx Xiers - - s-}':a'+.i:—l]. (3.9)

Xitk — Xi

The process ends with the single nth divided difference,

f[II-.IE-.-- "1--1-#1] — f[Iﬂ!IJ!' "EIfi—l].

In _Il::l

f[Iq}._.I'J._. ..._,_I'n] =
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Because of Eq. (3.6) we can write a; = f[xo,x1]. just as ap can be expressed as ap =
f(xp) = flxo]. Hence the interpolating polynomial in Eq. (3.5) is
P,(x) = flxol + flx0,x11(x — Xo) + @2(x — xp)(x — x1)
+ - ap(x —Xp)Xx —Xx1) - - (X — Xp—1).
As might be expected from the evaluation of a; and a,. the required constants are

ﬂ_k — f[Iﬂ--Il-IE-- . . '.--I-k]'-'

foreach k = 0.1.....n. S0 P,(x) can be rewritten in a form called Newton’s Divided-
Difference:

P,(x) = flxol + Z flxo.xp oo ] — xp) - - - (X — X ). (3.10)
k=1
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The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9
First Second Third
x fix) divided differences divided differences divided differences
" il [xi1] — flxl
o _ _,f Xl — _,f X
AT flx, 0l = fl,x]
1.x2] — flrg.x
. flnl flxp.x.x] = i S
1] = flx] S flx. 5. x53] — flxg.x. 5]
j.ll-l’_r2.|= j-z—-] _,f'[_r,:,,_x],_xl,x_ﬂ: s 42s43 Af)s 4] 547
X3 — X '|r p ] _ f[x . I T3 — X
- flx] flxx. ] = I, ; . e
. . Xz —X) - . .
floayw) = L1218l ] o St = S35,
B =X . . Xy — X
X3 flxs] Flx, x3.x] = Jfl-r.i‘.xi] - _:[xz,_nl
. . ’ i o 2 o - - — f
flasx] = M Flxn. x5 x1.x5] = Flxs, xgx5] — fla,xs, 4]
X1 — X3 I ] Jf[x . I T5s — 1o
' . Xy X5] — .
Xy FEA | Flag. X xs] = Jlxg, xs 3,04
. . A5 — X3
_.f.[-l'_t -rsl — _”-ril - _”-ril

X5

flxs]

X5 — Xy
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Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)

distinct numbers xg. x;.. .., x, for the function f:
INPUT numbers xg, x,.....x,: values f(xg), f(x)...., f(xy)as Fop, Fro.....Fap.
OUTPUT the numbers Fyg. Fy .. .., F, . where

fl i—1
Pp(x) = Foo + ZFE,E ]_[(I —Xj).  (Fijis flxo.x1,..., xil.)

i=1 J=0
Step1 Fori=1.2.....n
Forj=1.2,..., i
Fii—Fi_y;-
sel Ff,_,i = J—1 y I. {Fu = f[.{;_j ..... I@].)
Xi — Xi—j
Step.? OUTPUT {F[.,D., F|1| ..... Fﬂ._ﬂ];

STOP. |
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Example 1

Complete the divided difference table for the data used in Example 1 of Section 3.2, and
reproduced in Table 3.10, and construct the interpolating polynomial that uses all this data.

Table 3.10
x fix)

1.0 0.7631977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623
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i X; flx;] flxiy.x] Flxia. iy, xi] Flxis, ..., x] Flxige .o x]
0 1.0 0.7651977
—0.4837057
1 1.3 0.6200860 —0. 1087339
—0.5489460 0.0658784
2 1.6 0.4554022 —0.0494433 0.0018251
—0.5786120 0.0680685
3 1.9 0.2818186 0.0118183
—0.5715210
4 2.2 0.1103623
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The coefficients of the Newton forward divided-difference form of the interpolating
polynomial are along the diagonal in the table. This polynomial is

Py(x) =0.7651977 — 0.4837057(x — 1.0) — 0.1087339(x — 1.0)(x — 1.3)
+ 0.0658784(x — 1.0)(x — 1.3)(x — 1.6)
+ 0.0018251(x — 1.0)(x — 1.3)(x — 1.6)(x — 1.9).

Notice that the value P4(1.5) = 0.5118200 agrees with the result in Table 3.6 for Example
2 of Section 3.2, as it must because the polynomials are the same. N
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The Mean Value Theorem 1.8 applied to Eq. (3.8) when i = 0,
f ) — f(xo)

X1 —Xp

flxo,x1] =

implies that when f' exists, f[xp.x1] = f'(&) for some number £ between xp and x;. The
following theorem generalizes this result.

Suppose that f = C"[a.b] and xp, xq, .. ., X, are distinct numbers in [a, b]. Then a number &
exists in (a., b) with

(m)
flxo. X1, . x,] = f [ﬁ. H
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Proof Let

g(I;l — f(I;l — P, (x).
Since f(x;) = P,(x;) foreachi = 0,1, ..., n. the function g has n+ 1 distinct zeros in [a, b].
Generalized Rolle’s Theorem 1.10 implies that a number £ in (a. b) exists with g (&) = 0,
SO

0=f"&) —Plr(E).
Since P,(x) is a polynomial of degree n whose leading coefficient is f[xg.xy,....x,].
P (x) = n!flxo. X1, ... Xl

for all values of x. As a consequence,
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Newton's divided-difference formula can be expressed in a simplified form when the
nodes are arranged consecutively with equal spacing. In this case, we introduce the notation
h=x;;, —x;,foreachi =0.,1,...,n—1and let x = xy + sh. Then the difference x — x;
isx —x; = (s — i)h. So Eq. (3.10) becomes

P,(x) = P,(xo + sh) = flxo] + shfxg,x;]1 + s(s — DA f[xp, X1, X2]
+ .ot s(s—=1)---(s—n+ DA flxo.x1..... %]

k=1

Using binomial-coefficient notation,

s\ _ sts—=1---(s—k+1)
k] k! ’

we can express P,(x) compactly as

P,(x) = P,(xo +sh) = flxol + ) (ka‘f Flxos Xis - - - . (3.11)
k=1
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EXERCISE SET 33

1. Use Eq. (3.10) or Algorithm 3.2 to construct interpolating polynomials of degree one, two, and three
for the following data. Approximate the specified value using each of the polynomials.
a.  f(84)1f f(8.1) = 1694410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 15.82091

b. f(0.9)if f(0.6) = —0.17694460, f(0.7) = 0.01375227, fF(0.8) = 0.22363362, f(1.0) =
0.65809197
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